A Concise Review on Mesenchymal Stem Cells for Tissue Engineering with a Perspective on Ocular Surface Regeneration

Author(s): Mohamed Salih, Bakiah Shaharuddin*, Samar Abdelrazeg

Journal Name: Current Stem Cell Research & Therapy

Volume 15 , Issue 3 , 2020

Become EABM
Become Reviewer


Organ and tissue transplantation are limited by the scarcity of donated organs or tissue sources. The success of transplantation is limited by the risk of disease transmission and immunological- related rejection. There is a need for new strategies and innovative solutions to make transplantation readily available, safer and with less complications to increase the success rates. Accelerating progress in stem cell biology and biomaterials development have pushed tissue and organ engineering to a higher level. Among stem cells repertoire, Mesenchymal Stem Cells (MSC) are gaining interest and recognized as a cell population of choice. There is accumulating evidence that MSC growth factors, its soluble and insoluble proteins are involved in several key signaling pathways to promote tissue development, cellular differentiation and regeneration. MSC as multipotent non-hematopoietic cells with paracrine factors is advantageous for regenerative therapies. In this review, we discussed and summarized the important features of MSC including its immunomodulatory properties, mechanism of homing in the direction of tissue injury, licensing of MSC and the role of MSC soluble factors in cell-free therapy. Special consideration is highlighted on the rapidly growing research interest on the roles of MSC in ocular surface regeneration.

Keywords: Mesenchymal stem cells, tissue engineering, secretome, immunomodulation, paracrine factors, ocular surface regeneration.

Han I, Kwon BS, Park HK, Kim KS. Differentiation potential of mesenchymal stem cells is related to their intrinsic mechanical properties. Int Neurourol J 2017; 21(Suppl. 1): S24-31.
[http://dx.doi.org/10.5213/inj.1734856.428] [PMID: 28446012]
Huang S, Xu L, Sun Y, Wu T, Wang K, Li G. An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. J Orthop Translat 2014; 3(1): 26-33.
[http://dx.doi.org/10.1016/j.jot.2014.07.005] [PMID: 30035037]
Zhang L, Chan C. Isolation and enrichment of rat mesenchymal stem cells (MSCs) and separation of single-colony derived MSCs. JoVE (J Vis Exp) 2010; 1(37) e1852
Baghaei K, Hashemi SM, Tokhanbigli S, et al. Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow. Gastroenterol Hepatol Bed Bench 2017; 10(3): 208-13.
[PMID: 29118937]
Poltavtseva RA, Nikonova YA, Selezneva II, et al. Mesenchymal stem cells from human dental pulp: isolation, characteristics, and potencies of targeted differentiation. Bull Exp Biol Med 2014; 158(1): 164-9.
[http://dx.doi.org/10.1007/s10517-014-2714-7] [PMID: 25408529]
Garikipati VNS, Singh SP, Mohanram Y, Gupta AK, Kapoor D, Nityanand S. Isolation and characterization of mesenchymal stem cells from human fetus heart. PLoS One 2018; 13(2)e0192244
[http://dx.doi.org/10.1371/journal.pone.0192244] [PMID: 29420637]
Araña M, Mazo M, Aranda P, Pelacho B, Prosper F. Adipose tissue-derived mesenchymal stem cells: Isolation, expansion, and characterization Cellular Cardiomyoplasty. Springer 2013; pp. 47-61.
Gong X, Sun Z, Cui D, et al. Isolation and characterization of lung resident mesenchymal stem cells capable of differentiating into alveolar epithelial type II cells. Cell Biol Int 2014; 38(4): 405-11.
[http://dx.doi.org/10.1002/cbin.10240] [PMID: 24403246]
Wang Y, Yu X, Chen E, Li L. Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases. Stem Cell Res Ther 2016; 7(1): 71.
[http://dx.doi.org/10.1186/s13287-016-0330-3] [PMID: 27176654]
Ranjbaran H, Abediankenari S, Mohammadi M, et al. Wharton’s jelly derived-mesenchymal stem cells: Isolation and characterization. Acta Med Iran 2018; 56(1): 28-33.
[PMID: 29436792]
Han Y-F, Tao R, Sun T-J, Chai J-K, Xu G, Liu J. Optimization of human umbilical cord mesenchymal stem cell isolation and culture methods. Cytotechnology 2013; 65(5): 819-27.
[http://dx.doi.org/10.1007/s10616-012-9528-0] [PMID: 23306781]
Ilic D, Polak JM. Stem cells in regenerative medicine: introduction. Br Med Bull 2011; 98(1): 117-26.
[http://dx.doi.org/10.1093/bmb/ldr012] [PMID: 21565803]
Datta I, Mishra S, Mohanty L, Pulikkot S, Joshi PG. Neuronal plasticity of human Wharton’s jelly mesenchymal stromal cells to the dopaminergic cell type compared with human bone marrow mesenchymal stromal cells. Cytotherapy 2011; 13(8): 918-32.
[http://dx.doi.org/10.3109/14653249.2011.579957] [PMID: 21696238]
Stock P, Brückner S, Winkler S, Dollinger MM, Christ B. Human bone marrow mesenchymal stem cell-derived hepatocytes improve the mouse liver after acute acetaminophen intoxication by preventing progress of injury. Int J Mol Sci 2014; 15(4): 7004-28.
[http://dx.doi.org/10.3390/ijms15047004] [PMID: 24758938]
Tang DQ, Wang Q, Burkhardt BR, Litherland SA, Atkinson MA, Yang LJ. In vitro generation of functional insulin-producing cells from human bone marrow-derived stem cells, but long-term culture running risk of malignant transformation. Am J Stem Cells 2012; 1(2): 114-27.
[PMID: 22833839]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
Zhao Q, Ren H, Han Z. Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. J Cellular Immuno 2016; 2(1): 3-20.
Sohni A, Verfaillie CM. Mesenchymal stem cells migration homing and tracking. Stem Cells Int 2013; 2013130763
[http://dx.doi.org/10.1155/2013/130763] [PMID: 24194766]
De Becker A, Riet IV. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells 2016; 8(3): 73-87.
[http://dx.doi.org/10.4252/wjsc.v8.i3.73] [PMID: 27022438]
Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 2009; 4(3): 206-16.
[http://dx.doi.org/10.1016/j.stem.2009.02.001] [PMID: 19265660]
Ryu CH, Park SA, Kim SM, et al. Migration of human umbilical cord blood mesenchymal stem cells mediated by stromal cell-derived factor-1/CXCR4 axis via Akt, ERK, and p38 signal transduction pathways. Biochem Biophys Res Commun 2010; 398(1): 105-10.
[http://dx.doi.org/10.1016/j.bbrc.2010.06.043] [PMID: 20558135]
Von Lüttichau I, Notohamiprodjo M, Wechselberger A, et al. Human adult CD34- progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but not CXCR4. Stem Cells Dev 2005; 14(3): 329-36.
[http://dx.doi.org/10.1089/scd.2005.14.329] [PMID: 15969628]
Krampera M. Mesenchymal stromal cell ‘licensing’: a multistep process. Leukemia 2011; 25(9): 1408-14.
[http://dx.doi.org/10.1038/leu.2011.108] [PMID: 21617697]
Haddad R, Saldanha-Araujo F. Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: what do we know so far? BioMed Res Int 2014; 2014216806
[http://dx.doi.org/10.1155/2014/216806] [PMID: 25025040]
Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 2006; 108(6): 2114-20.
[http://dx.doi.org/10.1182/blood-2005-11-011650] [PMID: 16690970]
Liang C, Jiang E, Yao J, et al. Interferon-γ mediates the immunosuppression of bone marrow mesenchymal stem cells on T-lymphocytes in vitro. Hematology 2018; 23(1): 44-9.
[http://dx.doi.org/10.1080/10245332.2017.1333245] [PMID: 28581352]
Najar M, Krayem M, Meuleman N, Bron D, Lagneaux L. Mesenchymal stromal cells and toll-like receptor priming: a critical review. Immune Netw 2017; 17(2): 89-102.
[http://dx.doi.org/10.4110/in.2017.17.2.89] [PMID: 28458620]
Sato K, Ozaki K, Oh I, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 2007; 109(1): 228-34.
[http://dx.doi.org/10.1182/blood-2006-02-002246] [PMID: 16985180]
Serejo TRT, Silva-Carvalho AÉ, Braga LDCF, et al. Assessment of the Immunosuppressive Potential of INF-γ Licensed Adipose Mesenchymal Stem Cells, Their Secretome and Extracellular Vesicles. Cells 2019; 8(1): 22.
[http://dx.doi.org/10.3390/cells8010022] [PMID: 30621275]
Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 2014; 32(3): 252-60.
[http://dx.doi.org/10.1038/nbt.2816] [PMID: 24561556]
Machado CdeV, Telles PD, Nascimento IL. Immunological characteristics of mesenchymal stem cells. Rev Bras Hematol Hemoter 2013; 35(1): 62-7.
[http://dx.doi.org/10.5581/1516-8484.20130017] [PMID: 23580887]
Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 2003; 5(6): 485-9.
[http://dx.doi.org/10.1080/14653240310003611] [PMID: 14660044]
Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003; 31(10): 890-6.
[http://dx.doi.org/10.1016/S0301-472X(03)00110-3] [PMID: 14550804]
El-Sayed M, El-Feky MA, El-Amir MI, et al. Immunomodulatory effect of mesenchymal stem cells: Cell origin and cell quality variations. Mol Biol Rep 2019; 46(1): 1157-65.
[http://dx.doi.org/10.1007/s11033-018-04582-w] [PMID: 30628022]
Gao F, Chiu SM, Motan DA, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis 2016; 7(1)e2062
[http://dx.doi.org/10.1038/cddis.2015.327] [PMID: 26794657]
Majumdar MK, Keane-Moore M, Buyaner D, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 2003; 10(2): 228-41.
[http://dx.doi.org/10.1007/BF02256058] [PMID: 12595759]
Özkaynak E, Wang L, Goodearl A, et al. Programmed death-1 targeting can promote allograft survival. J Immunol 2002; 169(11): 6546-53.
[http://dx.doi.org/10.4049/jimmunol.169.11.6546] [PMID: 12444166]
Augello A, Tasso R, Negrini SM, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 2005; 35(5): 1482-90.
[http://dx.doi.org/10.1002/eji.200425405] [PMID: 15827960]
Beer L, Mildner M, Ankersmit HJ. Cell secretome based drug substances in regenerative medicine: when regulatory affairs meet basic science. Ann Transl Med 2017; 5(7): 170.
Malemud CJ, Alsberg E. Mesenchymal Stem Cells and Immunomodulation. Springer 2016.
Osugi M, Katagiri W, Yoshimi R, Inukai T, Hibi H, Ueda M. Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A 2012; 18(13-14): 1479-89.
[http://dx.doi.org/10.1089/ten.tea.2011.0325] [PMID: 22443121]
Chen TS, Arslan F, Yin Y, et al. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med 2011; 9(1): 47.
[http://dx.doi.org/10.1186/1479-5876-9-47] [PMID: 21513579]
Basu J, Ludlow JW. Exosomes for repair, regeneration and rejuvenation. Expert Opin Biol Ther 2016; 16(4): 489-506.
[http://dx.doi.org/10.1517/14712598.2016.1131976] [PMID: 26817494]
Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441(7090): 235-8.
[http://dx.doi.org/10.1038/nature04753] [PMID: 16648838]
Yang S-H, Park M-J, Yoon I-H, et al. Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10. Exp Mol Med 2009; 41(5): 315-24.
[http://dx.doi.org/10.3858/emm.2009.41.5.035] [PMID: 19307751]
Franquesa M, Hoogduijn MJ, Bestard O, Grinyó JM. Immunomodulatory effect of mesenchymal stem cells on B cells. Front Immunol 2012; 3: 212.
[http://dx.doi.org/10.3389/fimmu.2012.00212] [PMID: 22833744]
Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 2008; 111(3): 1327-33.
[http://dx.doi.org/10.1182/blood-2007-02-074997] [PMID: 17951526]
Niu J, Yue W, Le-Le Z, Bin L, Hu X. Mesenchymal stem cells inhibit T cell activation by releasing TGF-β1 from TGF-β1/GARP complex. Oncotarget 2017; 8(59): 99784-800.
[http://dx.doi.org/10.18632/oncotarget.21549] [PMID: 29245940]
Soleymaninejadian E, Pramanik K, Samadian E. Immunomodulatory properties of mesenchymal stem cells: cytokines and factors. Am J Reprod Immunol 2012; 67(1): 1-8.
[http://dx.doi.org/10.1111/j.1600-0897.2011.01069.x] [PMID: 21951555]
Yagi H, Soto-Gutierrez A, Parekkadan B, et al. Mesenchymal stem cells: Mechanisms of immunomodulation and homing. Cell Transplant 2010; 19(6): 667-79.
[http://dx.doi.org/10.3727/096368910X508762] [PMID: 20525442]
Sahu A, Foulsham W, Amouzegar A, Mittal SK, Chauhan SK. The therapeutic application of mesenchymal stem cells at the ocular surface. Ocul Surf 2019; 17(2): 198-207.
[http://dx.doi.org/10.1016/j.jtos.2019.01.006] [PMID: 30695735]
Hancharou A, Antonevich N, DuBuske LM. Mesenchymal Stem Cell Induce Tolerogenic Dendritic cells which Inhibit Proliferation of Autologous T-cells. J Allergy Clin Immunol 2017; 139(2): AB269.
Vasandan AB, Jahnavi S, Shashank C, Prasad P, Kumar A, Prasanna SJ. Human Mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Sci Rep 2016; 6: 38308.
[http://dx.doi.org/10.1038/srep38308] [PMID: 27910911]
Zhang Y, Ge XH, Guo X-J, et al. Bone marrow mesenchymal stem cells inhibit the function of dendritic cells by secreting galectin-1. BioMed Res Int 2017; 2017
Kyurkchiev D, Bochev I, Ivanova-Todorova E, et al. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 2014; 6(5): 552-70.
[http://dx.doi.org/10.4252/wjsc.v6.i5.552] [PMID: 25426252]
Ulivi V, Tasso R, Cancedda R, Descalzi F. Mesenchymal stem cell paracrine activity is modulated by platelet lysate: induction of an inflammatory response and secretion of factors maintaining macrophages in a proinflammatory phenotype. Stem Cells Dev 2014; 23(16): 1858-69.
[http://dx.doi.org/10.1089/scd.2013.0567] [PMID: 24720766]
Ren G, Su J, Zhang L, et al. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 2009; 27(8): 1954-62.
[http://dx.doi.org/10.1002/stem.118] [PMID: 19544427]
Munn DH, Sharma MD, Baban B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 2005; 22(5): 633-42.
[http://dx.doi.org/10.1016/j.immuni.2005.03.013] [PMID: 15894280]
Zimmermann JA, Hettiaratchi MH, McDevitt TC. Enhanced immunosuppression of T cells by sustained presentation of bioactive interferon-γ within three-dimensional mesenchymal stem cell constructs. Stem Cells Transl Med 2017; 6(1): 223-37.
[http://dx.doi.org/10.5966/sctm.2016-0044] [PMID: 28170190]
François M, Romieu-Mourez R, Li M, Galipeau J. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther 2012; 20(1): 187-95.
[http://dx.doi.org/10.1038/mt.2011.189] [PMID: 21934657]
Otterbein LE, Choi AM. Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol 2000; 279(6): L1029-37.
[http://dx.doi.org/10.1152/ajplung.2000.279.6.L1029] [PMID: 11076792]
Chauveau C, Rémy S, Royer PJ, et al. Heme oxygenase-1 expression inhibits dendritic cell maturation and proinflammatory function but conserves IL-10 expression. Blood 2005; 106(5): 1694-702.
[http://dx.doi.org/10.1182/blood-2005-02-0494] [PMID: 15920011]
Chabannes D, Hill M, Merieau E, et al. A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood 2007; 110(10): 3691-4.
[http://dx.doi.org/10.1182/blood-2007-02-075481] [PMID: 17684157]
Nakahira K, Kim HP, Geng XH, et al. Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med 2006; 203(10): 2377-89.
[http://dx.doi.org/10.1084/jem.20060845] [PMID: 17000866]
Vilahur G, Oñate B, Cubedo J, et al. Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium: systems biology study. Stem Cell Res Ther 2017; 8(1): 52.
[http://dx.doi.org/10.1186/s13287-017-0509-2] [PMID: 28279225]
Parkin J, Cohen B. An overview of the immune system. Lancet 2001; 357(9270): 1777-89.
[http://dx.doi.org/10.1016/S0140-6736(00)04904-7] [PMID: 11403834]
Vigo T, Procaccini C, Ferrara G, et al. IFN-γ orchestrates mesenchymal stem cell plasticity through the signal transducer and activator of transcription 1 and 3 and mammalian target of rapamycin pathways. J Allergy Clin Immunol 2017; 139(5): 1667-76.
[http://dx.doi.org/10.1016/j.jaci.2016.09.004] [PMID: 27670240]
Vigo T, La Rocca C, Faicchia D, et al. IFNβ enhances mesenchymal stromal (Stem) cells immunomodulatory function through STAT1-3 activation and mTOR-associated promotion of glucose metabolism. Cell Death Dis 2019; 10(2): 85.
[http://dx.doi.org/10.1038/s41419-019-1336-4] [PMID: 30692524]
Collins T, Korman AJ, Wake CT, et al. Immune interferon activates multiple class II major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts. Proc Natl Acad Sci USA 1984; 81(15): 4917-21.
[http://dx.doi.org/10.1073/pnas.81.15.4917] [PMID: 6431411]
Krampera M, Cosmi L, Angeli R, et al. Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 2006; 24(2): 386-98.
[http://dx.doi.org/10.1634/stemcells.2005-0008] [PMID: 16123384]
Torricelli AA, Santhanam A, Wu J, Singh V, Wilson SE. The corneal fibrosis response to epithelial-stromal injury. Exp Eye Res 2016; 142: 110-8.
[http://dx.doi.org/10.1016/j.exer.2014.09.012] [PMID: 26675407]
Bukowiecki A, Hos D, Cursiefen C, Eming SA. Wound-healing studies in cornea and skin: parallels, differences and opportunities. Int J Mol Sci 2017; 18(6): 1257.
[http://dx.doi.org/10.3390/ijms18061257] [PMID: 28604651]
Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Prog Retin Eye Res 2015; 49: 17-45.
[http://dx.doi.org/10.1016/j.preteyeres.2015.07.002] [PMID: 26197361]
Mittal SK, Omoto M, Amouzegar A, et al. Restoration of corneal transparency by mesenchymal stem cells. Stem Cell Reports 2016; 7(4): 583-90.
[http://dx.doi.org/10.1016/j.stemcr.2016.09.001] [PMID: 27693426]
Nili E, Li FJ, Dawson RA, et al. The Impact of Limbal Mesenchymal Stromal Cells on Healing of Acute Ocular Surface Wounds Is Improved by Pre-cultivation and Implantation in the Presence of Limbal Epithelial Cells. Cell Transplant 2019; 28(9-10): 1257-70.
[http://dx.doi.org/10.1177/0963689719858577] [PMID: 31208228]
Yoon JJ, Ismail S, Sherwin T. Limbal stem cells: Central concepts of corneal epithelial homeostasis. World J Stem Cells 2014; 6(4): 391-403.
[http://dx.doi.org/10.4252/wjsc.v6.i4.391] [PMID: 25258661]
Kitazawa K, Hikichi T, Nakamura T, Sotozono C, Kinoshita S, Masui S. PAX6 regulates human corneal epithelium cell identity. Exp Eye Res 2017; 154: 30-8.
[http://dx.doi.org/10.1016/j.exer.2016.11.005] [PMID: 27818314]
Sun J, Liu WH, Deng FM, et al. Differentiation of rat adipose-derived mesenchymal stem cells into corneal-like epithelial cells driven by PAX6. Exp Ther Med 2018; 15(2): 1424-32.
[PMID: 29434727]
Bian F, Liu W, Yoon K-C, et al. Molecular signatures and biological pathway profiles of human corneal epithelial progenitor cells. Int J Biochem Cell Biol 2010; 42(7): 1142-53.
[http://dx.doi.org/10.1016/j.biocel.2010.03.022] [PMID: 20363357]
Zhang L, Coulson-Thomas VJ, Ferreira TG, Kao WW, Eds. Mesenchymal stem cells for treating ocular surface diseases BMC Ophthalmol. BioMed Central 2015.
Harkin DG, Foyn L, Bray LJ, Sutherland AJ, Li FJ, Cronin BG. Concise reviews: can mesenchymal stromal cells differentiate into corneal cells? A systematic review of published data. Stem Cells 2015; 33(3): 785-91.
[http://dx.doi.org/10.1002/stem.1895] [PMID: 25400018]
Kang SK, Shin IS, Ko MS, Jo JY, Ra JC. Journey of mesenchymal stem cells for homing: strategies to enhance efficacy and safety of stem cell therapy. Stem Cells Int 2012; 2012342968
[http://dx.doi.org/10.1155/2012/342968] [PMID: 22754575]
Ma Y, Xu Y, Xiao Z, et al. Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells 2006; 24(2): 315-21.
[http://dx.doi.org/10.1634/stemcells.2005-0046] [PMID: 16109757]
Oh JY, Kim MK, Shin MS, et al. The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem Cells 2008; 26(4): 1047-55.
[http://dx.doi.org/10.1634/stemcells.2007-0737] [PMID: 18192235]
Nishida K, Yamato M, Hayashida Y, et al. Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 2004; 77(3): 379-85.
[http://dx.doi.org/10.1097/01.TP.0000110320.45678.30] [PMID: 14966411]
Venugopal B, Shenoy SJ, Mohan S, Anil Kumar PR, Kumary TV. Bioengineered corneal epithelial cell sheet from mesenchymal stem cells-A functional alternative to limbal stem cells for ocular surface reconstruction. J Biomed Mater Res B Appl Biomater 2019.
[http://dx.doi.org/10.1002/jbm.b.34455] [PMID: 31400069]
Feizi S. Corneal endothelial cell dysfunction: etiologies and management. Ther Adv Ophthalmol 2018; 10 2515841418815802
[http://dx.doi.org/10.1177/2515841418815802] [PMID: 30560230]
Yamashita K, Inagaki E, Hatou S, et al. Corneal endothelial regeneration using mesenchymal stem cells derived from human umbilical cord. Stem Cells Dev 2018; 27(16): 1097-108.
[http://dx.doi.org/10.1089/scd.2017.0297] [PMID: 29929442]
Cejkova J, Trosan P, Cejka C, et al. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface. Exp Eye Res 2013; 116: 312-23.
[http://dx.doi.org/10.1016/j.exer.2013.10.002] [PMID: 24145108]
Elbarbry F, Ragheb A, Attia A, Chibbar R, Marfleet T, Shoker A. Cyclosporine-induced changes in drug metabolizing enzymes in hyperlipemic rabbit kidneys could explain its toxicity. Xenobiotica 2010; 40(11): 772-81.
[http://dx.doi.org/10.3109/00498254.2010.517276] [PMID: 20839931]
Jia Z, Jiao C, Zhao S, et al. Immunomodulatory effects of mesenchymal stem cells in a rat corneal allograft rejection model. Exp Eye Res 2012; 102: 44-9.
[http://dx.doi.org/10.1016/j.exer.2012.06.008] [PMID: 22800963]
Shukla S, Mittal SK, Foulsham W, et al. Therapeutic efficacy of different routes of mesenchymal stem cell administration in corneal injury. Ocul Surf 2019; 17(4): 729-36.
[http://dx.doi.org/10.1016/j.jtos.2019.07.005] [PMID: 31279065]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [211 - 218]
Pages: 8
DOI: 10.2174/1574888X15666200129145251
Price: $65

Article Metrics

PDF: 14