Screening of an Alkaline CMCase-Producing Strain and the Optimization of its Fermentation Condition

Author(s): Junmei Zhou, Lianghong Yin*, Chenbin Wu, Sijia Wu, Jidong Lu, Hailing Fang, Yongchang Qian*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 13 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Objective: Alkaline Carboxymethyl Cellulase (CMCase) is an attractive enzyme for the textile, laundry, pulp, and paper industries; however, commercial preparations with sufficient activity at alkaline conditions are scarce.

Methods: High CMCase-producing bacterial isolate, SX9-4, was screened out from soil bacteria, which was identified as Flavobacterium sp. on the basis of 16S rDNA sequencing.

Results: The optimum pH and temperature for CMCase reaction were 8.0 and 55°C, respectively. Alkaline CMCase was stable over wide pH (3.0-10.6) and temperature (25-55°C) ranges. Enzyme activity was significantly inhibited by the bivalent cations Mn2+ and Cu2+, and was activated by Fe2+. To improve the alkaline CMCase production of SX9-4, fermentation parameters were selected through onefactor- at-a-time and further carried out by response surface methodologies based on a central composite design.

Conclusion: High CMCase production (57.18 U/mL) was achieved under the optimal conditions: 10.53 g/L carboxymethylcellulose sodium, 7.74 g/L glucose, 13.71 g/L peptone, and 5.27 g/L ammonium oxalate.

Keywords: Alkaline CMCase, screening, identification, enzyme characteristics, optimization, fermentation.

Henrissat, B.; Driguez, H.; Viet, C.; Schulein, M. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat. Biotechnol., 1985, 3(8), 722-726.
Chen, H.; Jin, S. Effect of enthanol and yeast on cellulase activity and hydrolysis of crystalline cellulose. Enzyme Microb. Technol., 2006, 39(7), 1430-1432.
Kim, D.G.; Kim, E.Y.; Kim, J.K.; Lee, H.S.; Kong, I.S. Application of β-1,3-glucanase from Pyrococcus furiosus for ethanol production using laminarian. J. Life Sci., 2011, 21, 68-73.
Gavaco-Paual, A. Mechanism of cellulase action in the textile process. Carbohydr. Polym., 1998, 37, 273-277.
Miettinen-Oinonen, A. Cellulases in the textile industry.Industrial enzymes: Structure, function and applications; Polaina, J.; Mac Cabe, A.P., Eds.; Springer: Dordrecht, The Netherland, 2007, pp. 51-56.
Riswanali, S.B.; Saravanan, P.; Muthuvelayudham, R.; Viruthagiri, T. Optimization of nutrient medium for cellulase and hemicellulase production from rice straw: A statistical approach. Int. J. Chem. Anal. Sci., 2012, 3(4), 1364-1370.
Anish, R.; Rahman, M.S.; Rao, M. Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnol. Bioeng., 2007, 96(1), 48-56.
[] [PMID: 16952150]
Landaud, S.; Piquerel, P.; Pourquie, J. Screening for bacilli producing cellulolytic enzymes active in the neutral pH range. Lett. Appl. Microbiol., 1995, 21, 319-321.
Ito, S. Alkaline cellulases from alkaliphilic Bacillus: enzymatic properties, genetics, and application to detergents. Extremophiles, 1997, 1(2), 61-66.
[] [PMID: 9680303]
Miettinen-Oinonen, A.; Londesborough, J.; Joutsjoki, V.; Lantto, R.; Vehmaanperä, J. Three cellulases from Melanocarpus albomyces for textile treatment at neutral pH. Enzyme Microb. Technol., 2004, 34, 332-341.
Dutta, T.; Sahoo, R.; Sengupta, R.; Ray, S.S.; Bhattacharjee, A.; Ghosh, S. Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: Production and characterization. J. Ind. Microbiol. Biotechnol., 2008, 35(4), 275-282.
[] [PMID: 18210175]
Vijayaraghavan, P.; Arun, A. Al- Dhabi, N.A., Vincent, S.G.P., Arasu, M.V., & Choi, K.C. (2016). Novel Bacillus subtilis IND19 cell factory for the simultaneous production of carboxymethyl cellulase and protease using cow dung substrate in solid-substrate fermentation. Biotechnol. Biofuels, 2016, 9, 73.
[] [PMID: 27011767]
Vijayaraghavan, P.; Prakash Vincent, S.G.; Dhillon, G.S. Solid-substrate bioprocessing of cow dung for the production of carboxymethyl cellulase by Bacillus halodurans IND18. Waste Manag., 2016, 48, 513-520.
[] [PMID: 26459187]
Lynd, L.R.; Weimer, P.J.; van Zyl, W.H.; Pretorius, I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev., 2002, 66(3), 506-577.
[] [PMID: 12209002]
Naveena, B.J.; Altaf, M.; Bhadriah, K.; Reddy, G. Selection of medium components by Plackett-Burman design for production of L(+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran. Bioresour. Technol., 2005, 96(4), 485-490.
[] [PMID: 15491831]
Rani, D.S.; Nand, K. Production of thermostable cellulase-free xylanase by Clostridium absonum CFR-702. Process Biochem., 2000, 36, 355-362.
Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 1959, 31, 426-428.
Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 1997, 25(24), 4876-4882.
[] [PMID: 9396791]
Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 2013, 30(12), 2725-2729.
[] [PMID: 24132122]
Vijayaraghavan, P.; Vincent, S.G. Purification and characterization of carboxymethyl cellulase from Bacillus sp. isolated from a paddy field. Pol. J. Microbiol., 2012, 61(1), 51-55.
[] [PMID: 22708346]
Lee, Y-J.; Kim, H-J.; Gao, W.; Chung, C-H.; Lee, J-W. Statistical optimization for production of carboxymethyl cellulase of Bacillus amyloliquefaciens DL-3 by a recombinant Escherichia coli JM109/DL-3 from rice bran using response surface method. Biotechnol. Bioproc. E, 2012, 17, 227-235.
Wang, Y.; Fang, X.; An, F.; Wang, G.; Zhang, X. Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology. Microb. Cell Fact., 2011, 10, 98.
[] [PMID: 22082189]
Krootdilaganandh, J. Isolation and selection of thermotolerant bacteria capable of producing cellulase; Chiang Mai: Chiang Mai University Press , 2000; 88, pp. 20-21.
Singh, J.; Batra, N.; Sobti, R.C. Purification and characterisation of alkaline cellulase produced by a novel isolate, Bacillus sphaericus JS1. J. Ind. Microbiol. Biotechnol., 2004, 31(2), 51-56.
[] [PMID: 14758556]
Gomaa, E.Z. Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: Their potential in antifungal biocontrol. J. Microbiol., 2012, 50(1), 103-111.
[] [PMID: 22367944]
Smitha, S.; Bhat, S.G. Thermostable bacteriocin BL8 from Bacillus licheniformis isolated from marine sediment. J. Appl. Microbiol., 2013, 114(3), 688-694.
[] [PMID: 23216587]
Chakraborty, S.; Khopadea, A.; Kokarea, C.K.; Mahadika, K.S. Isolation and characterization of novel-amylase from marine Streptomyces sp. D1. J. Mol. Catal., B Enzym., 2009, 58, 17-23.
Singh, S.; Moholkar, V.S.; Goyal, A. Optimization of carboxymethylcellulase production from Bacillus amyloliquefaciens SS35. 3 Biotechnoloy, 2014, 4, 411-42.
Dalmaso, G.Z.L.; Ferreira, D.; Vermelho, A.B. Marine extremophiles: A source of hydrolases for biotechnological applications. Mar. Drugs, 2015, 13(4), 1925-1965.
[] [PMID: 25854643]
Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 1987, 4(4), 406-425.
[PMID: 3447015]
Liang, Y.L.; Zhang, Z.; Wu, M.; Feng, J.X. Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME 27-1. BioMed Res. Int., 2014, 5, 497-512.
Hakamada, Y.; Endo, K.; Takizawa, S.; Kobayashi, T.; Shirai, T.; Yamane, T.; Ito, S. Enzymatic properties, crystallization, and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans. Biochim. Biophys. Acta, 2002, 1570(3), 174-180.
[] [PMID: 12020807]
Sharma, M.; Bajaj, B.K. Cellulase production from Bacillus subtilis MS 54 and its potential for saccharification of biphasic-acid-pretreated rice straw. J. Biobased Mater. Bioenergy, 2014, 8, 449-456.
Trivedi, N.; Gupta, V.; Reddy, C.R.K.; Jha, B. Detection of ionic liquid stable cellulase produced by the marine bacterium Pseudoalteromonas sp. isolated from brown alga Sargassum polycystum C. Agardh. Bioresour. Technol., 2013, 132, 313-319.
[] [PMID: 23416618]
Annamalai, N.; Rajeswari, M.V.; Elayaraja, S.; Balasubramanian, T. Thermostable, haloalkaline cellulase from Bacillus halodurans CAS 1 by conversion of lignocellulosic wastes. Carbohydr. Polym., 2013, 94(1), 409-415.
[] [PMID: 23544556]
Gaur, R.; Tiwari, S. Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol., 2015, 15, 19-31.
[] [PMID: 25886936]
Shahriarinour, M.; Singh, A.; Wahab, M.N.A.; Mohamad, R.; Mustafa, S.; Ariff, A.B. Effect of medium composition and cultural condition on cellulase production by Aspergillus terreus. Afr. J. Biotechnol., 2013, 10(38), 7457-7467.
Kalra, M.K.; Sandhu, D.K. Optimal production of cellulolytic enzymes and their location in Trichoderma seudokoningii. Acta Biotechnol., 1986, 6, 161-166.
Mohana, S.; Shah, A.; Divecha, J.; Madamwar, D. Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash. Bioresour. Technol., 2008, 99(16), 7553-7564.
[] [PMID: 18374565]
Asha Poorna, C.; Prema, P. Production of cellulase-free endoxylanase from novel alkalophilic thermotolerent Bacillus pumilus by solid-state fermentation and its application in wastepaper recycling. Bioresour. Technol., 2007, 98(3), 485-490.
[] [PMID: 16844369]
Wen, Z.; Liao, W.; Chen, S. Production of cellulase by Trichoderma reesei from dairy manure. Bioresour. Technol., 2005, 96(4), 491-499.
[] [PMID: 15491832]
Haaland, P. Marcel Dekker Inc.: New York and Basel, 1989; pp. Statistical problem solving. In: Experimental design in biotechnology; Haaland, P.D., Ed. , 1989; pp. 1-8.
Liyana-Pathirana, C.; Shahidi, F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem., 2005, 93(1), 47-56.
Lin, G.; Hu, T.; Peng, J.H.; Yin, S.H.; Zhang, L.B.; Guo, W.Q.; Liu, Y.H. Optimization of experiments for microwave drying of hydrometallurgy mud using response surface methodology. Arab. J. Sci. Eng., 41, 1-8.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 28 November, 2020
Page: [1304 - 1315]
Pages: 12
DOI: 10.2174/1389201021666200129123818
Price: $65

Article Metrics

PDF: 22
PRC: 1