A Comparative Review on Current and Future Drug Targets Against Bacteria & Malaria

Author(s): Usha K. Rout, A.S. Sanket, Brijesh S. Sisodia, Pradyumna K. Mohapatra, Sanghamitra Pati, Rajni Kant, Gaurav R. Dwivedi*

Journal Name: Current Drug Targets

Volume 21 , Issue 8 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Long before the discovery of drugs like ‘antibiotic and anti-parasitic drugs’, the infectious diseases caused by pathogenic bacteria and parasites remain as one of the major causes of morbidity and mortality in developing and underdeveloped countries. The phenomenon by which the organism exerts resistance against two or more structurally unrelated drugs is called multidrug resistance (MDR) and its emergence has further complicated the treatment scenario of infectious diseases. Resistance towards the available set of treatment options and poor pipeline of novel drug development puts an alarming situation. A universal goal in the post-genomic era is to identify novel targets/drugs for various life-threatening diseases caused by such pathogens. This review is conceptualized in the backdrop of drug resistance in two major pathogens i.e. “Pseudomonas aeruginosa” and “Plasmodium falciparum”. In this review, the available targets and key mechanisms of resistance of these pathogens have been discussed in detail. An attempt has also been made to analyze the common drug targets of bacteria and malaria parasite to overcome the current drug resistance scenario. The solution is also hypothesized in terms of a present pipeline of drugs and efforts made by scientific community.

Keywords: Infectious diseases, drug resistance, MDR, malaria, drug targets, Pseudomonas aeruginosa.

[1]
Sistrunk JR, Nickerson KP, Chanin RB, Rasko DA, Faherty CS. Survival of the fittest: how bacterial pathogens utilize bile to enhance infection. Clin Microbiol Rev 2016; 29(4): 819-36.
[http://dx.doi.org/10.1128/CMR.00031-16] [PMID: 27464994]
[2]
Erikssen G. Physical fitness and changes in mortality: the survival of the fittest. Sports Med 2001; 31(8): 571-6.
[http://dx.doi.org/10.2165/00007256-200131080-00001] [PMID: 11475318]
[3]
Chodasewicz K. Evolution, reproduction and definition of life. Theory Biosci 2014; 133(1): 39-45.
[http://dx.doi.org/10.1007/s12064-013-0184-5] [PMID: 23674095]
[4]
Burman LG. Influence of antimicrobial agents on host-parasite interactions. Scand J Infect Dis Suppl 1980; (Suppl. 24)179-87.
[PMID: 7010555]
[5]
Chakravorty AK, Shaw M. A possible molecular basis for obligate host-pathogen interactions. Biol Rev Camb Philos Soc 1977; 52(2): 147-79.
[http://dx.doi.org/10.1111/j.1469-185X.1977.tb01348.x] [PMID: 332241]
[6]
Brown JS. Why Darwin would have loved evolutionary game theory. Proc Biol Sci 2016; (1838-283):
[7]
Rainey PB, Remigi P, Farr AD, Lind PA. Darwin was right: where now for experimental evolution? Curr Opin Genet Dev 2017; 47: 102-9.
[http://dx.doi.org/10.1016/j.gde.2017.09.003] [PMID: 29059583]
[8]
Lenski RE. What is adaptation by natural selection? Perspectives of an experimental microbiologist. PLoS Genet 2017; 13(4)e1006668
[http://dx.doi.org/10.1371/journal.pgen.1006668] [PMID: 28426692]
[9]
Wilson ML, Miller CM, Crouse KN. Humans as a model species for sexual selection research. Proc Biol Sci 1866; 284(1866)
[10]
Llaurens V, Joron M, Billiard S. Molecular mechanisms of dominance evolution in Müllerian mimicry. Evolution 2015; 69(12): 3097-108.
[http://dx.doi.org/10.1111/evo.12810] [PMID: 26515086]
[11]
Brooks RC, Garratt MG. Life history evolution, reproduction, and the origins of sex-dependent aging and longevity. Ann N Y Acad Sci 2017; 1389(1): 92-107.
[http://dx.doi.org/10.1111/nyas.13302] [PMID: 28009055]
[12]
Goldsmith TC. Evolvability, Population Benefit, and the Evolution of Programmed Aging in Mammals. Biochemistry (Mosc) 2017; 82(12): 1423-9.
[http://dx.doi.org/10.1134/S0006297917120021] [PMID: 29486693]
[13]
Pennisi E. The power of many. Science 2018; 360(6396): 1388-91.
[http://dx.doi.org/10.1126/science.360.6396.1388] [PMID: 29954962]
[14]
Penesyan A, Gillings M, Paulsen IT. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules 2015; 20(4): 5286-98.
[http://dx.doi.org/10.3390/molecules20045286] [PMID: 25812150]
[15]
Zoraghi R, Reiner NE. Protein interaction networks as starting points to identify novel antimicrobial drug targets. Curr Opin Microbiol 2013; 16(5): 566-72.
[http://dx.doi.org/10.1016/j.mib.2013.07.010] [PMID: 23938265]
[16]
Robinson A, Causer RJ, Dixon NE. Architecture and conservation of the bacterial DNA replication machinery, an underexploited drug target. Curr Drug Targets 2012; 13(3): 352-72.
[http://dx.doi.org/10.2174/138945012799424598] [PMID: 22206257]
[17]
Zloh M, Kaatz GW, Gibbons S. Inhibitors of multidrug resistance (MDR) have affinity for MDR substrates. Bioorg Med Chem Lett 2004; 14(4): 881-5.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.015] [PMID: 15012986]
[18]
Gratia J-P. Genetic recombinational events in prokaryotes and their viruses: insight into the study of evolution and biodiversity. Antonie van Leeuwenhoek 2017; 110(12): 1493-514.
[http://dx.doi.org/10.1007/s10482-017-0916-5] [PMID: 28748289]
[19]
Goodenough U, Heitman J. Origins of eukaryotic sexual reproduction. Cold Spring Harb Perspect Biol 2014; 6(3)a016154
[http://dx.doi.org/10.1101/cshperspect.a016154] [PMID: 24591519]
[20]
Price PW. Evolutionary biology of parasites. Monogr Popul Biol 1980; 15: 1-237.
[PMID: 6993919]
[21]
Mignerot L, Coelho SM. The origin and evolution of the sexes: Novel insights from a distant eukaryotic linage. C R Biol 2016; 339(7-8): 252-7.
[http://dx.doi.org/10.1016/j.crvi.2016.04.012] [PMID: 27236828]
[22]
Valot B, Guyeux C, Rolland JY, Mazouzi K, Bertrand X, Hocquet D. What it takes to be a pseudomonas aeruginosa? the core genome of the opportunistic pathogen updated. PLoS One 2015; 10(5)e0126468
[http://dx.doi.org/10.1371/journal.pone.0126468] [PMID: 25961859]
[23]
Winstanley C, O’Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 2016; 24(5): 327-37.
[http://dx.doi.org/10.1016/j.tim.2016.01.008] [PMID: 26946977]
[24]
Özen AI, Ussery DW. Defining the Pseudomonas genus: where do we draw the line with Azotobacter? Microb Ecol 2012; 63(2): 239-48.
[http://dx.doi.org/10.1007/s00248-011-9914-8] [PMID: 21811795]
[25]
Classen DC. Information management in infectious diseases: survival of the fittest. Clin Infect Dis 1994; 19(5): 902-9.
[http://dx.doi.org/10.1093/clinids/19.5.902] [PMID: 7893877]
[26]
Angeletti S, Cella E, Prosperi M, et al. Multi-drug resistant Pseudomonas aeruginosa nosocomial strains: Molecular epidemiology and evolution. Microb Pathog 2018; 123: 233-41.
[http://dx.doi.org/10.1016/j.micpath.2018.07.020] [PMID: 30031889]
[27]
Fricks-Lima J, Hendrickson CM, Allgaier M, et al. Differences in biofilm formation and antimicrobial resistance of Pseudomonas aeruginosa isolated from airways of mechanically ventilated patients and cystic fibrosis patients. Int J Antimicrob Agents 2011; 37(4): 309-15.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.12.017] [PMID: 21382698]
[28]
Su XZ, Mu J, Joy DA. The “Malaria’s Eve” hypothesis and the debate concerning the origin of the human malaria parasite Plasmodium falciparum. Microbes Infect 2003; 5(10): 891-6.
[http://dx.doi.org/10.1016/S1286-4579(03)00173-4] [PMID: 12919857]
[29]
Escalante AA, Ayala FJ. Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proc Natl Acad Sci USA 1994; 91(24): 11373-7.
[http://dx.doi.org/10.1073/pnas.91.24.11373] [PMID: 7972067]
[30]
Zerka A, Kaczmarek R, Jaśkiewicz E. [From malaria parasite point of view--Plasmodium falciparum evolution]. Postepy Hig Med Dosw 2015; 69: 1519-29.
[31]
Waters AP. The ribosomal RNA genes of Plasmodium. Adv Parasitol 1994; 34: 33-79.
[http://dx.doi.org/10.1016/S0065-308X(08)60136-0] [PMID: 7976752]
[32]
Gardner MJ. The genome of the malaria parasite. Curr Opin Genet Dev 1999; 9(6): 704-8.
[http://dx.doi.org/10.1016/S0959-437X(99)00032-5] [PMID: 10607617]
[33]
Bourgard C, Albrecht L, Kayano ACAV, Sunnerhagen P, Costa FTM. Plasmodium vivax biology: insights provided by genomics, transcriptomics and proteomics. Front Cell Infect Microbiol 2018; 8: 34.
[http://dx.doi.org/10.3389/fcimb.2018.00034] [PMID: 29473024]
[34]
Criscione CD, Poulin R, Blouin MS. Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol 2005; 14(8): 2247-57.
[http://dx.doi.org/10.1111/j.1365-294X.2005.02587.x] [PMID: 15969711]
[35]
Prugnolle F, Durand P, Ollomo B, et al. A fresh look at the origin of Plasmodium falciparum, the most malignant malaria agent. PLoS Pathog 2011; 7(2)e1001283
[http://dx.doi.org/10.1371/journal.ppat.1001283] [PMID: 21383971]
[36]
Moradali MF, Ghods S, Rehm BHA. 2017.Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence Front Cell Infect Microbiol http://journal.frontiersin.org/article/ 10.3389/fcimb.2017.00039/full
[37]
Dwivedi G, Gangwar B, Gupta M, Gupta P, Singh D, Verma S, et al. Determination of MDR mechanisms of P. aeruginosa clinical isolates. EC Microbiology 2017; 5(6): 241-7.
[38]
Iglewski BH. PseudomonasMedical Microbiology. 4th ed. Galveston, TX: University of Texas Medical Branch at Galveston 1996.http://www.ncbi.nlm.nih.gov/books/NBK8326/ [Internet] [cited 2019 May 31]
[39]
Stover CK, Pham XQ, Erwin AL, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000; 406(6799): 959-64.
[http://dx.doi.org/10.1038/35023079] [PMID: 10984043]
[41]
Richards DM, Brogden RN. Ceftazidime. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 1985; 29(2): 105-61.
[http://dx.doi.org/10.2165/00003495-198529020-00002] [PMID: 3884319]
[42]
Liu Y-C, Huang W-K, Cheng D-L. Antibacterial activity of cefpodoxime in vitro. Chemotherapy 1997; 43(1): 21-6.
[http://dx.doi.org/10.1159/000239530] [PMID: 8996737]
[43]
Humphries RM, Hindler JA, Wong-Beringer A, Miller SA. Activity of ceftolozane-tazobactam and ceftazidime-avibactam against beta-lactam-resistant pseudomonas aeruginosa isolates. Antimicrob Agents Chemother 2017; 61(12): e01858-17.
[http://dx.doi.org/10.1128/AAC.01858-17] [PMID: 28993338]
[44]
Chapman TM, Perry CM. Cefepime: a review of its use in the management of hospitalized patients with pneumonia. Am J Respir Med 2003; 2(1): 75-107.
[http://dx.doi.org/10.1007/BF03256641] [PMID: 14720024]
[45]
Livermore DM. Penicillin-binding proteins, porins and outer-membrane permeability of carbenicillin-resistant and -susceptible strains of Pseudomonas aeruginosa. J Med Microbiol 1984; 18(2): 261-70.
[http://dx.doi.org/10.1099/00222615-18-2-261] [PMID: 6092639]
[46]
Lau WK, Mercer D, Itani KM, et al. Randomized, open-label, comparative study of piperacillin-tazobactam administered by continuous infusion versus intermittent infusion for treatment of hospitalized patients with complicated intra-abdominal infection. Antimicrob Agents Chemother 2006; 50(11): 3556-61.
[http://dx.doi.org/10.1128/AAC.00329-06] [PMID: 16940077]
[47]
Feng Y, van Hest RM, Hodiamont CJ, Brul S, Schultsz C, Ter Kuile BH. Optimization of therapy against Pseudomonas aeruginosa with ceftazidime and meropenem using chemostats as model for infections. FEMS Microbiol Lett 2017; 364(14)
[http://dx.doi.org/10.1093/femsle/fnx142]
[48]
Hansen C, Skov M. Evidence for the efficacy of aztreonam for inhalation solution in the management of Pseudomonas aeruginosa in patients with cystic fibrosis. Ther Adv Respir Dis 2015; 9(1): 16-21.
[http://dx.doi.org/10.1177/1753465814561624] [PMID: 25471692]
[49]
Zincke D, Balasubramanian D, Silver LL, Mathee K. Characterization of a Carbapenem-Hydrolyzing Enzyme, PoxB, in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 2015; 60(2): 936-45.
[http://dx.doi.org/10.1128/AAC.01807-15] [PMID: 26621621]
[50]
Martis N, Leroy S, Blanc V. Colistin in multi-drug resistant Pseudomonas aeruginosa blood-stream infections: a narrative review for the clinician. J Infect 2014; 69(1): 1-12.
[http://dx.doi.org/10.1016/j.jinf.2014.03.001] [PMID: 24631777]
[51]
Velkov T, Roberts KD, Nation RL, Thompson PE, Li J. Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol 2013; 8(6): 711-24.
[http://dx.doi.org/10.2217/fmb.13.39] [PMID: 23701329]
[52]
Poirel L, Jayol A, Nordmann P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev 2017; 30(2): 557-96.
[http://dx.doi.org/10.1128/CMR.00064-16] [PMID: 28275006]
[53]
Moreau JM, Conerly LL, Hume EBH, et al. Effectiveness of mupirocin and polymyxin B in experimental Staphylococcus aureus, Pseudomonas aeruginosa, and Serratia marcescens keratitis. Cornea 2002; 21(8): 807-11.
[http://dx.doi.org/10.1097/00003226-200211000-00016] [PMID: 12410042]
[54]
Crozier DN, Khan SR. Tobramycin in treatment of infections due to Pseudomonas aeruginosa in patients with cystic fibrosis. J Infect Dis 1976; 134(Suppl.): S187-90.
[http://dx.doi.org/10.1093/infdis/134.Supplement_1.S187] [PMID: 823275]
[55]
Omri A, Ravaoarinoro M. Comparison of the bactericidal action of amikacin, netilmicin and tobramycin in free and liposomal formulation against Pseudomonas aeruginosa. Chemotherapy 1996; 42(3): 170-6.
[http://dx.doi.org/10.1159/000239438] [PMID: 8983883]
[56]
Fu KP, Hetzel N, Hung PP, Gregory FJ. Therapeutic efficacy of cefpiramide and cefoperazone alone and in combination with gentamicin against pseudomonal infections in neutropenic mice. Chemotherapy 1986; 32(2): 166-72.
[http://dx.doi.org/10.1159/000238409] [PMID: 3698725]
[57]
Lozano R, Fullman N, Abate D, Abay SM, Abbafati C, Abbasi N, et al. GBD 2017 SDG Collaborators. measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related sustainable development goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392(10159): 2091-138.
[http://dx.doi.org/10.1016/S0140-6736(18)32281-5] [PMID: 30496107]
[58]
Kumar A, Ting Y-P. Streptomycin favors biofilm formation by altering cell surface properties. Appl Microbiol Biotechnol 2016; 100(20): 8843-53.
[http://dx.doi.org/10.1007/s00253-016-7793-0] [PMID: 27568380]
[59]
Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2011; 2: 65.
[http://dx.doi.org/10.3389/fmicb.2011.00065] [PMID: 21747788]
[60]
Kish T. New antibiotics in development target highly resistant gram-negative organisms. p t peer-rev J Formul Manag 2018;; ( 43(2):): 116- -20..
[61]
DiVincenzo CA, Shatzer KL, Venezio FR. In vitro activity of lomefloxacin against multiply resistant Pseudomonas aeruginosa, Enterobacter cloacae, and Staphylococcus epidermidis. Diagn Microbiol Infect Dis 1989; 12(3)(Suppl.): 13S-6S.
[http://dx.doi.org/10.1016/0732-8893(89)90059-X] [PMID: 2507220]
[62]
Shinabarger DL, Zurenko GE, Hesje CK, Sanfilippo CM, Morris TW, Haas W. Evaluation of the effect of bacterial efflux pumps on the antibacterial activity of the novel fluoroquinolone besifloxacin. J Chemother 2011; 23(2): 80-6.
[http://dx.doi.org/10.1179/joc.2011.23.2.80] [PMID: 21571623]
[63]
Blanco P, Sanz-García F, Hernando-Amado S, Martínez JL, Alcalde-Rico M. The development of efflux pump inhibitors to treat Gram-negative infections. Expert Opin Drug Discov 2018; 13(10): 919-31.
[http://dx.doi.org/10.1080/17460441.2018.1514386] [PMID: 30198793]
[64]
Mikalauskas A, Parkins MD, Poole K. Rifampicin potentiation of aminoglycoside activity against cystic fibrosis isolates of Pseudomonas aeruginosa. J Antimicrob Chemother 2017; 72(12): 3349-52.
[http://dx.doi.org/10.1093/jac/dkx296] [PMID: 28961705]
[65]
Stone GG, Newell P, Gasink LB, et al. Clinical activity of ceftazidime/avibactam against MDR Enterobacteriaceae and Pseudomonas aeruginosa: pooled data from the ceftazidime/avibactam Phase III clinical trial programme. J Antimicrob Chemother 2018; 73(9): 2519-23.
[http://dx.doi.org/10.1093/jac/dky204] [PMID: 29912399]
[66]
Koehnke A, Friedrich RE. Review: Antibiotic discovery in the age of structural biology - a comprehensive overview with special reference to development of drugs for the treatment of Pseudomonas aeruginosa infection. In Vivo 2015; 29(2): 161-7.
[PMID: 25792642]
[67]
Nayar AS, Dougherty TJ, Ferguson KE, Granger BA, McWilliams L, Stacey C, et al. Novel antibacterial targets and compounds revealed by a high-throughput cell wall reporter assaydirita VJ editor J Bacteriol. 2015; 197: pp. ((10)) 1726--34.
[http://dx.doi.org/10.1128/JB.02552-14]
[68]
Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control 2006; 34(5)(Suppl. 1): S3-S10.
[http://dx.doi.org/10.1016/j.ajic.2006.05.219] [PMID: 16813980]
[69]
Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22(4): 582-610.
[http://dx.doi.org/10.1128/CMR.00040-09] [PMID: 19822890]
[70]
Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 2001; 3(2): 255-64.
[PMID: 11321581]
[71]
Subedi D, Vijay AK, Willcox M. Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: an ocular perspective. Clin Exp Optom 2018; 101(2): 162-71.
[http://dx.doi.org/10.1111/cxo.12621] [PMID: 29044738]
[72]
Chatterjee M, Anju CP, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol 2016; 306(1): 48-58.
[http://dx.doi.org/10.1016/j.ijmm.2015.11.004] [PMID: 26687205]
[73]
Sainsbury S, Bird L, Rao V, et al. Crystal structures of penicillin-binding protein 3 from Pseudomonas aeruginosa: comparison of native and antibiotic-bound forms. J Mol Biol 2011; 405(1): 173-84.
[http://dx.doi.org/10.1016/j.jmb.2010.10.024] [PMID: 20974151]
[74]
Hang Y, Chen Y, Xue L, et al. Evaluating biapenem dosage regimens in intensive care unit patients with Pseudomonas aeruginosa infections: a pharmacokinetic/pharmacodynamic analysis using Monte Carlo simulation. Int J Antimicrob Agents 2018; 51(3): 484-7.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.07.005] [PMID: 28709989]
[75]
Bassetti M, Righi E. Development of novel antibacterial drugs to combat multiple resistant organisms. Langenbecks Arch Surg 2015; 400(2): 153-65.
[http://dx.doi.org/10.1007/s00423-015-1280-4] [PMID: 25667169]
[76]
El Solh AA, Alhajhusain A. Update on the treatment of Pseudomonas aeruginosa pneumonia. J Antimicrob Chemother 2009; 64(2): 229-38.
[http://dx.doi.org/10.1093/jac/dkp201] [PMID: 19520717]
[77]
Bassetti M, Merelli M, Temperoni C, Astilean A. New antibiotics for bad bugs: where are we? Ann Clin Microbiol Antimicrob 2013; 12(1): 22.
[http://dx.doi.org/10.1186/1476-0711-12-22] [PMID: 23984642]
[78]
Quale J, Shah N, Kelly P, et al. Activity of polymyxin B and the novel polymyxin analogue CB-182,804 against contemporary Gram-negative pathogens in New York City. Microb Drug Resist 2012; 18(2): 132-6.
[http://dx.doi.org/10.1089/mdr.2011.0163] [PMID: 22196342]
[79]
Dwivedi GR, Sanchita , Singh DP, Sharma A, Darokar MP, Srivastava SK. Nano particles: emerging warheads against bacterial superbugs. Curr Top Med Chem 2016; 16(18): 1963-75.
[http://dx.doi.org/10.2174/1568026616666160215154556] [PMID: 26876525]
[80]
Lee JH, Lee C-S. Clinical Usefulness of Arbekacin. Infect Chemother 2016; 48(1): 1-11.
[http://dx.doi.org/10.3947/ic.2016.48.1.1] [PMID: 27104010]
[81]
Adam HJ, Laing NM, King CR, Lulashnyk B, Hoban DJ, Zhanel GG. In vitro activity of nemonoxacin, a novel nonfluorinated quinolone, against 2,440 clinical isolates. Antimicrob Agents Chemother 2009; 53(11): 4915-20.
[http://dx.doi.org/10.1128/AAC.00078-09] [PMID: 19738018]
[83]
Jain R, Beckett VV, Konstan MW, et al. KB001-A Study Group. KB001-A, a novel anti-inflammatory, found to be safe and well-tolerated in cystic fibrosis patients infected with Pseudomonas aeruginosa. J Cyst Fibros 2018; 17(4): 484-91.
[http://dx.doi.org/10.1016/j.jcf.2017.12.006] [PMID: 29292092]
[84]
Green AE, Amézquita A, Le Marc Y, Bull MJ, Connor TR, Mahenthiralingam E. The consistent differential expression of genetic pathways following exposure of an industrial Pseudomonas aeruginosa strain to preservatives and a laundry detergent formulation 2018.https://academic.oup.com/femsle/article/doi/10.1093/femsle/fny062/4935160
[http://dx.doi.org/10.1093/femsle/fny062]
[85]
Rahman T, Yarnall B, Doyle DA. Efflux drug transporters at the forefront of antimicrobial resistance. Eur Biophys J 2017; 46(7): 647-53.
[http://dx.doi.org/10.1007/s00249-017-1238-2] [PMID: 28710521]
[86]
Pletzer D, Braun Y, Dubiley S, et al. The Pseudomonas aeruginosa PA14 ABC Transporter NppA1A2BCD Is Required for Uptake of Peptidyl Nucleoside Antibiotics. J Bacteriol 2015; 197(13): 2217-28.
[http://dx.doi.org/10.1128/JB.00234-15] [PMID: 25917903]
[87]
Castillo-Juárez I, García-Contreras R, Velázquez-Guadarrama N, Soto-Hernández M, Martínez-Vázquez M. Amphypterygium adstringens anacardic acid mixture inhibits quorum sensing-controlled virulence factors of Chromobacterium violaceum and Pseudomonas aeruginosa. Arch Med Res 2013; 44(7): 488-94.
[http://dx.doi.org/10.1016/j.arcmed.2013.10.004] [PMID: 24126126]
[88]
Cho HS, Lee J-H, Ryu SY, Joo SW, Cho MH, Lee J. Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-viniferin. J Agric Food Chem 2013; 61(29): 7120-6.
[http://dx.doi.org/10.1021/jf4009313] [PMID: 23819562]
[89]
Artini M, Patsilinakos A, Papa R, et al. Antimicrobial and antibiofilm activity and machine learning classification analysis of essential oils from different mediterranean plants against pseudomonas aeruginosa. Molecules 2018; 23(2): 482.
[http://dx.doi.org/10.3390/molecules23020482] [PMID: 29473844]
[90]
Longbottom CJ, Carson CF, Hammer KA, Mee BJ, Riley TV. Tolerance of Pseudomonas aeruginosa to Melaleuca alternifolia (tea tree) oil is associated with the outer membrane and energy-dependent cellular processes. J Antimicrob Chemother 2004; 54(2): 386-92.
[http://dx.doi.org/10.1093/jac/dkh359] [PMID: 15254026]
[91]
Nuñez L, Aquino MD. Microbicide activity of clove essential oil (Eugenia caryophyllata). Braz J Microbiol 2012; 43(4): 1255-60.
[http://dx.doi.org/10.1590/S1517-83822012000400003] [PMID: 24031950]
[92]
Zhou J-W, Luo H-Z, Jiang H, Jian T-K, Chen Z-Q, Jia A-Q. Hordenine: A Novel Quorum Sensing Inhibitor and Antibiofilm Agent against Pseudomonas aeruginosa. J Agric Food Chem 2018; 66(7): 1620-8.
[http://dx.doi.org/10.1021/acs.jafc.7b05035] [PMID: 29353476]
[93]
Rudrappa T, Bais HP. Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. J Agric Food Chem 2008; 56(6): 1955-62.
[http://dx.doi.org/10.1021/jf072591j] [PMID: 18284200]
[94]
Kyriakopoulos AM, Dinda B. Cornus mas (Linnaeus) Novel Devised medicinal preparations: bactericidal effect against staphylococcus aureus and pseudomonas aeruginosa. Molecules 2015; 20(6): 11202-18.
[http://dx.doi.org/10.3390/molecules200611202] [PMID: 26091077]
[95]
Kalia M, Yadav VK, Singh PK, Sharma D, Narvi SS, Agarwal V. Exploring the impact of parthenolide as anti-quorum sensing and anti-biofilm agent against Pseudomonas aeruginosa. Life Sci 2018; 199: 96-103.
[http://dx.doi.org/10.1016/j.lfs.2018.03.013] [PMID: 29524516]
[96]
Kazemian H, Ghafourian S, Heidari H, et al. Antibacterial, anti-swarming and anti-biofilm formation activities of Chamaemelum nobile against Pseudomonas aeruginosa. Rev Soc Bras Med Trop 2015; 48(4): 432-6.
[http://dx.doi.org/10.1590/0037-8682-0065-2015] [PMID: 26312934]
[97]
Rasamiravaka T, Labtani Q, Duez P, El Jaziri M. The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. BioMed Res Int 2015; 2015759348
[http://dx.doi.org/10.1155/2015/759348] [PMID: 25866808]
[98]
Sithisarn P, Rojsanga P, Sithisarn P. inhibitory effects on clinical isolated bacteria and simultaneous hplc quantitative analysis of flavone contents in extracts from oroxylum indicum. Molecules 2019; 24(10): 1937.
[http://dx.doi.org/10.3390/molecules24101937] [PMID: 31137493]
[99]
Liang Y, Li S, Chen L. The physiological role of drug transporters. Protein Cell 2015; 6(5): 334-50.
[http://dx.doi.org/10.1007/s13238-015-0148-2] [PMID: 25797421]
[100]
Singh K, Dwivedi GR, Sanket AS, Pati S. Therapeutic potential of endophytic compounds: a special reference to drug transporter inhibitors. Curr Top Med Chem 2019; 19(10): 754-83.
[http://dx.doi.org/10.2174/1568026619666190412095105]
[101]
Sinha RP, Ed. New approaches in biological research. New York: Nova Science Publishers 2017; p 329 Biotechnology in agriculture, industry and medicine.
[102]
Kim J-S, Jeong H, Song S, et al. Structure of the tripartite multidrug efflux pump AcrAB-TolC suggests an alternative assembly mode. Mol Cells 2015; 38(2): 180-6.
[http://dx.doi.org/10.14348/molcells.2015.2277] [PMID: 26013259]
[103]
Goli HR, Nahaei MR, Rezaee MA, et al. Role of MexAB-OprM and MexXY-OprM efflux pumps and class 1 integrons in resistance to antibiotics in burn and Intensive Care Unit isolates of Pseudomonas aeruginosa. J Infect Public Health 2018; 11(3): 364-72.
[http://dx.doi.org/10.1016/j.jiph.2017.09.016] [PMID: 28993173]
[104]
Dwivedi GR, Tyagi R, Sanchita , et al. Antibiotics potentiating potential of catharanthine against superbug Pseudomonas aeruginosa. J Biomol Struct Dyn 2018; 36(16): 4270-84.
[http://dx.doi.org/10.1080/07391102.2017.1413424] [PMID: 29210342]
[105]
Samanta S, Bodrenko I, Acosta-Gutiérrez S, et al. Getting Drugs through Small Pores: Exploiting the Porins Pathway in Pseudomonas aeruginosa. ACS Infect Dis 2018; 4(10): 1519-28.
[http://dx.doi.org/10.1021/acsinfecdis.8b00149] [PMID: 30039960]
[106]
Hemamalini R, Khare S. A Proteomic Approach to Understand the Role of the Outer Membrane Porins in the Organic Solvent-Tolerance of Pseudomonas aeruginosa PseA. In: Battista JR, editor PLoS ONE. 2014;; 9..
[http://dx.doi.org/10.1371/journal.pone.0103788]
[107]
Yang NJ, Hinner MJ. Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol Biol 2015; 1266: 29-53.
[http://dx.doi.org/10.1007/978-1-4939-2272-7_3] [PMID: 25560066]
[108]
Fernández L, Hancock REW. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev 2012; 25(4): 661-81.
[http://dx.doi.org/10.1128/CMR.00043-12] [PMID: 23034325]
[109]
Mulcahy LR, Isabella VM, Lewis K. Pseudomonas aeruginosa biofilms in disease. Microb Ecol 2014; 68(1): 1-12.
[http://dx.doi.org/10.1007/s00248-013-0297-x] [PMID: 24096885]
[110]
Kirchner S, Power BJ, Waters AP. Recent advances in malaria genomics and epigenomics 2016.http://genomemedicine.biomedcentral.com/articles/10.1186/s13073-016-0343-7
[http://dx.doi.org/10.1186/s13073-016-0343-7]
[111]
Rich SM, Leendertz FH, Xu G, et al. The origin of malignant malaria. Proc Natl Acad Sci USA 2009; 106(35): 14902-7.
[http://dx.doi.org/10.1073/pnas.0907740106] [PMID: 19666593]
[112]
Sinha S, Medhi B, Sehgal R. Challenges of drug-resistant malaria. Parasite 2014; 21: 61.
[http://dx.doi.org/10.1051/parasite/2014059] [PMID: 25402734]
[113]
Lucius R, Loos-Frank B, Lane RP, Poulin R, Roberts CW, Grencis RK. The biology of parasites. In: Weinheim: Wiley-VCH Verlag GmbH Co KGaA. 2017;; p. 452..
[114]
Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature 2002; 415(6872): 673-9.
[http://dx.doi.org/10.1038/415673a] [PMID: 11832955]
[115]
Burrows JN, Chibale K, Wells TNC. The state of the art in anti-malarial drug discovery and development. Curr Top Med Chem 2011; 11(10): 1226-54.
[http://dx.doi.org/10.2174/156802611795429194] [PMID: 21401508]
[116]
Warhurst DC. Polymorphism in the Plasmodium falciparum chloroquine-resistance transporter protein links verapamil enhancement of chloroquine sensitivity with the clinical efficacy of amodiaquine. Malar J 2003; 2: 31.
[http://dx.doi.org/10.1186/1475-2875-2-31] [PMID: 14599295]
[117]
Olliaro P, Wells TN. The global portfolio of new antimalarial medicines under development. Clin Pharmacol Ther 2009; 85(6): 584-95.
[http://dx.doi.org/10.1038/clpt.2009.51] [PMID: 19404247]
[118]
Vennerstrom JL, Nuzum EO, Miller RE, et al. 8-Aminoquinolines active against blood stage Plasmodium falciparum in vitro inhibit hematin polymerization. Antimicrob Agents Chemother 1999; 43(3): 598-602.
[http://dx.doi.org/10.1128/AAC.43.3.598] [PMID: 10049273]
[119]
Warhurst DC, Craig JC, Adagu IS, Guy RK, Madrid PB, Fivelman QL. Activity of piperaquine and other 4-aminoquinoline antiplasmodial drugs against chloroquine-sensitive and resistant blood-stages of Plasmodium falciparum. Role of beta-haematin inhibition and drug concentration in vacuolar water- and lipid-phases. Biochem Pharmacol 2007; 73(12): 1910-26.
[http://dx.doi.org/10.1016/j.bcp.2007.03.011] [PMID: 17466277]
[120]
World Health Organization. Guidelines for the treatment of malaria 2015.
[121]
O’Neill PM, Park BK, Shone AE, et al. Candidate selection and preclinical evaluation of N-tert-butyl isoquine (GSK369796), an affordable and effective 4-aminoquinoline antimalarial for the 21st century. J Med Chem 2009; 52(5): 1408-15.
[http://dx.doi.org/10.1021/jm8012618] [PMID: 19222165]
[122]
Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S. Antimalarial drug discovery: efficacy models for compound screening. Nat Rev Drug Discov 2004; 3(6): 509-20.
[http://dx.doi.org/10.1038/nrd1416] [PMID: 15173840]
[123]
Yadav DK, Kumar S, Teli MK, Yadav R, Chaudhary S. Molecular Targets for Malarial Chemotherapy: A Review. Curr Top Med Chem 2019; 19(10): 861-73.
[http://dx.doi.org/10.2174/1568026619666190603080000] [PMID: 31161990]
[124]
Fivelman QL, Adagu IS, Warhurst DC. Modified fixed-ratio isobologram method for studying in vitro interactions between atovaquone and proguanil or dihydroartemisinin against drug-resistant strains of Plasmodium falciparum. Antimicrob Agents Chemother 2004; 48(11): 4097-102.
[http://dx.doi.org/10.1128/AAC.48.11.4097-4102.2004] [PMID: 15504827]
[125]
Eriksson B, Lebbad M, Björkman A. In vitro activity of proguanil, chlorproguanil and their main metabolites against Plasmodium falciparum. Trans R Soc Trop Med Hyg 1989; 83(4): 488.
[http://dx.doi.org/10.1016/0035-9203(89)90260-5] [PMID: 2694487]
[126]
Yuthavong Y, Vilaivan T, Chareonsethakul N, et al. Development of a lead inhibitor for the A16V+S108T mutant of dihydrofolate reductase from the cycloguanil-resistant strain (T9/94) of Plasmodium falciparum. J Med Chem 2000; 43(14): 2738-44.
[http://dx.doi.org/10.1021/jm0009181] [PMID: 10893311]
[127]
Garcia-Bustos JF, Gamo F-J. Phenotypic screens, chemical genomics, and antimalarial lead discovery. F Rall G, In: editor PLoS Pathog. 2011;; 7..((8))
[128]
[129]
Haynes RK, Fugmann B, Stetter J, et al. Artemisone--a highly active antimalarial drug of the artemisinin class. Angew Chem Int Ed Engl 2006; 45(13): 2082-8.
[http://dx.doi.org/10.1002/anie.200503071] [PMID: 16444785]
[130]
Brossi A, Venugopalan B, Dominguez Gerpe L, et al. Arteether, a new antimalarial drug: synthesis and antimalarial properties. J Med Chem 1988; 31(3): 645-50.
[http://dx.doi.org/10.1021/jm00398a026] [PMID: 3279208]
[131]
Pandey AV, Tekwani BL, Singh RL, Chauhan VS. Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. J Biol Chem 1999; 274(27): 19383-8.
[http://dx.doi.org/10.1074/jbc.274.27.19383] [PMID: 10383451]
[132]
Olliaro P. Mode of action and mechanisms of resistance for antimalarial drugs. Pharmacol Ther 2001; 89(2): 207-19.
[http://dx.doi.org/10.1016/S0163-7258(00)00115-7] [PMID: 11316521]
[133]
Eckstein-Ludwig U, Webb RJ, Van Goethem IDA, et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature 2003; 424(6951): 957-61.
[http://dx.doi.org/10.1038/nature01813] [PMID: 12931192]
[134]
Padmanaban G. Drug targets in malaria parasites. Adv Biochem Eng Biotechnol 2003; 84: 123-41.
[http://dx.doi.org/10.1007/3-540-36488-9_4] [PMID: 12934935]
[135]
Eastman RT, Fidock DA. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol 2009; 7(12): 864-74.
[http://dx.doi.org/10.1038/nrmicro2239] [PMID: 19881520]
[136]
Vennerstrom JL, Arbe-Barnes S, Brun R, et al. Identification of an antimalarial synthetic trioxolane drug development candidate. Nature 2004; 430(7002): 900-4.
[http://dx.doi.org/10.1038/nature02779] [PMID: 15318224]
[137]
Wells TNC, Hooft van Huijsduijnen R, Van Voorhis WC. Malaria medicines: a glass half full? Nat Rev Drug Discov 2015; 14(6): 424-42.
[http://dx.doi.org/10.1038/nrd4573] [PMID: 26000721]
[138]
Dahl EL, Rosenthal PJ. Multiple antibiotics exert delayed effects against the Plasmodium falciparum apicoplast. Antimicrob Agents Chemother 2007; 51(10): 3485-90.
[http://dx.doi.org/10.1128/AAC.00527-07] [PMID: 17698630]
[139]
Dahl EL, Rosenthal PJ. Apicoplast translation, transcription and genome replication: targets for antimalarial antibiotics. Trends Parasitol 2008; 24(6): 279-84.
[http://dx.doi.org/10.1016/j.pt.2008.03.007] [PMID: 18450512]
[140]
Nicolas O, Margout D, Taudon N, et al. Pharmacological properties of a new antimalarial bisthiazolium salt, T3, and a corresponding prodrug, TE3. Antimicrob Agents Chemother 2005; 49(9): 3631-9.
[http://dx.doi.org/10.1128/AAC.49.9.3631-3639.2005] [PMID: 16127032]
[141]
Coslédan F, Fraisse L, Pellet A, et al. Selection of a trioxaquine as an antimalarial drug candidate. Proc Natl Acad Sci USA 2008; 105(45): 17579-84.
[http://dx.doi.org/10.1073/pnas.0804338105] [PMID: 18987321]
[142]
Kelly JX, Smilkstein MJ, Cooper RA, et al. Design, synthesis, and evaluation of 10-N-substituted acridones as novel chemosensitizers in Plasmodium falciparum. Antimicrob Agents Chemother 2007; 51(11): 4133-40.
[http://dx.doi.org/10.1128/AAC.00669-07] [PMID: 17846138]
[143]
Schirmer RH, Coulibaly B, Stich A, et al. Methylene blue as an antimalarial agent. Redox Rep 2003; 8(5): 272-5.
[http://dx.doi.org/10.1179/135100003225002899] [PMID: 14962363]
[144]
Oz M, Lorke DE, Hasan M, Petroianu GA. Cellular and molecular actions of Methylene Blue in the nervous system. Med Res Rev 2011; 31(1): 93-117.
[http://dx.doi.org/10.1002/med.20177] [PMID: 19760660]
[145]
Rottmann M, McNamara C, Yeung BKS, et al. Spiroindolones, a potent compound class for the treatment of malaria. Science 2010; 329(5996): 1175-80.
[http://dx.doi.org/10.1126/science.1193225] [PMID: 20813948]
[146]
Angerhofer CK, Guinaudeau H, Wongpanich V, Pezzuto JM, Cordell GA. Antiplasmodial and cytotoxic activity of natural bisbenzylisoquinoline alkaloids. J Nat Prod 1999; 62(1): 59-66.
[http://dx.doi.org/10.1021/np980144f] [PMID: 9917283]
[147]
Carraz M, Jossang A, Franetich J-F, et al. A plant-derived morphinan as a novel lead compound active against malaria liver stages. PLoS Med 2006; 3(12)e513
[http://dx.doi.org/10.1371/journal.pmed.0030513] [PMID: 17194195]
[148]
Gakunju DM, Mberu EK, Dossaji SF, et al. Potent antimalarial activity of the alkaloid nitidine, isolated from a Kenyan herbal remedy. Antimicrob Agents Chemother 1995; 39(12): 2606-9.
[http://dx.doi.org/10.1128/AAC.39.12.2606] [PMID: 8592987]
[149]
Basco LK, Mitaku S, Skaltsounis AL, et al. In vitro activities of furoquinoline and acridone alkaloids against Plasmodium falciparum. Antimicrob Agents Chemother 1994; 38(5): 1169-71.
[http://dx.doi.org/10.1128/AAC.38.5.1169] [PMID: 8067758]
[150]
Jacquemond-Collet I, Benoit-Vical F, Valentin A, Stanislas E, Mallié M, Fourasté I. Antiplasmodial and cytotoxic activity of galipinine and other tetrahydroquinolines from Galipea officinalis. Planta Med 2002; 68(1): 68-9.
[http://dx.doi.org/10.1055/s-2002-19869] [PMID: 11842332]
[151]
Mahadeo K, Grondin I, Kodja H, et al. The genus Psiadia: Review of traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 2018; 210: 48-68.
[http://dx.doi.org/10.1016/j.jep.2017.08.023] [PMID: 28842341]
[152]
Jonville MC, Kodja H, Strasberg D, et al. Antiplasmodial, anti-inflammatory and cytotoxic activities of various plant extracts from the Mascarene Archipelago. J Ethnopharmacol 2011; 136(3): 525-31.
[http://dx.doi.org/10.1016/j.jep.2010.06.013] [PMID: 20600776]
[153]
Jonville MC, Kodja H, Humeau L, et al. Screening of medicinal plants from Reunion Island for antimalarial and cytotoxic activity. J Ethnopharmacol 2008; 120(3): 382-6.
[http://dx.doi.org/10.1016/j.jep.2008.09.005] [PMID: 18848979]
[154]
Abdel-Sattar E, Maes L, Salama MM. In vitro activities of plant extracts from Saudi Arabia against malaria, leishmaniasis, sleeping sickness and Chagas disease. Phytother Res 2010; 24(9): 1322-8.
[http://dx.doi.org/10.1002/ptr.3108] [PMID: 20127723]
[155]
Bhagya N, Chandrashekar KR. Tetrandrine--A molecule of wide bioactivity. Phytochemistry 2016; 125: 5-13.
[http://dx.doi.org/10.1016/j.phytochem.2016.02.005] [PMID: 26899361]
[156]
Nondo RSO, Moshi MJ, Erasto P, et al. Anti-plasmodial activity of Norcaesalpin D and extracts of four medicinal plants used traditionally for treatment of malaria. BMC Complement Altern Med 2017; 17(1): 167.
[http://dx.doi.org/10.1186/s12906-017-1673-8] [PMID: 28340622]
[157]
Kimani NM, Matasyoh JC, Kaiser M, Brun R, Schmidt TJ. Anti-Trypanosomatid Elemanolide Sesquiterpene Lactones from Vernonia lasiopus O. Hoffm. Molecules 2017; 22(4): 597.
[http://dx.doi.org/10.3390/molecules22040597] [PMID: 28397756]
[158]
Silveira N, Saar J, Santos ADC, Barison A, Sandjo LP, Kaiser M, et al. A new alkamide with an endoperoxide structure from acmella ciliata (asteraceae) and its in vitro antiplasmodial activity. Mol Basel Switz 2016;; 21( (6).)
[159]
Zhang J, Bowling JJ, Smithson D, et al. Diversity-oriented natural product platform identifies plant constituents targeting Plasmodium falciparum. Malar J 2016; 15(1): 270.
[http://dx.doi.org/10.1186/s12936-016-1313-7] [PMID: 27165106]
[160]
Satish PVV, Kumari DS, Sunita K. Antiplasmodial efficacy of Calotropis gigantea (L.) against Plasmodium falciparum (3D7 strain) and Plasmodium berghei (ANKA). J Vector Borne Dis 2017; 54(3): 215-25.
[http://dx.doi.org/10.4103/0972-9062.217612] [PMID: 29097636]
[161]
Rufin Marie TK, Mbetyoumoun Mfouapon H, Madiesse Kemgne EA, et al. Anti-plasmodium falciparum activity of extracts from 10 cameroonian medicinal plants. Medicines (Basel) 2018; 5(4): 115.
[http://dx.doi.org/10.3390/medicines5040115] [PMID: 30380685]
[162]
Haidara M, Haddad M, Denou A, et al. In vivo validation of anti-malarial activity of crude extracts of Terminalia macroptera, a Malian medicinal plant. Malar J 2018; 17(1): 68.
[http://dx.doi.org/10.1186/s12936-018-2223-7] [PMID: 29402267]
[163]
Jana S, Paliwal J. Novel molecular targets for antimalarial chemotherapy. Int J Antimicrob Agents 2007; 30(1): 4-10.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.01.002] [PMID: 17339102]
[164]
Kappe SHI, Vaughan AM, Boddey JA, Cowman AF. That was then but this is now: malaria research in the time of an eradication agenda. Science 2010; 328(5980): 862-6.
[http://dx.doi.org/10.1126/science.1184785] [PMID: 20466924]
[165]
Cowell AN, Istvan ES, Lukens AK, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science 2018; 359(6372): 191-9.
[http://dx.doi.org/10.1126/science.aan4472] [PMID: 29326268]
[166]
Ridley RG. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 2002; 415(6872): 686-93.
[http://dx.doi.org/10.1038/415686a] [PMID: 11832957]
[167]
Cunha-Rodrigues M, Prudêncio M, Mota MM, Haas W. Antimalarial drugs - host targets (re)visited. Biotechnol J 2006; 1(3): 321-32.
[http://dx.doi.org/10.1002/biot.200500038] [PMID: 16897712]
[168]
Wengelnik K, Vidal V, Ancelin ML, et al. A class of potent antimalarials and their specific accumulation in infected erythrocytes. Science 2002; 295(5558): 1311-4.
[http://dx.doi.org/10.1126/science.1067236] [PMID: 11847346]
[169]
Joet T, Eckstein-Ludwig U, Morin C, Krishna S. Validation of the hexose transporter of Plasmodium falciparum as a novel drug target. Proc Natl Acad Sci USA 2003; 100(13): 7476-9.
[http://dx.doi.org/10.1073/pnas.1330865100] [PMID: 12792024]
[170]
White NJ, Pukrittayakamee S, Phyo AP, et al. Spiroindolone KAE609 for falciparum and vivax malaria. N Engl J Med 2014; 371(5): 403-10.
[http://dx.doi.org/10.1056/NEJMoa1315860] [PMID: 25075833]
[171]
Rosenthal PJ. Antimalarial drug discovery: old and new approaches. J Exp Biol 2003; 206(Pt 21): 3735-44.
[http://dx.doi.org/10.1242/jeb.00589] [PMID: 14506208]
[172]
Shenai BR, Lee BJ, Alvarez-Hernandez A, et al. Structure-activity relationships for inhibition of cysteine protease activity and development of Plasmodium falciparum by peptidyl vinyl sulfones. Antimicrob Agents Chemother 2003; 47(1): 154-60.
[http://dx.doi.org/10.1128/AAC.47.1.154-160.2003] [PMID: 12499184]
[173]
Waag T, Gelhaus C, Rath J, Stich A, Leippe M, Schirmeister T. Allicin and derivates are cysteine protease inhibitors with antiparasitic activity. Bioorg Med Chem Lett 2010; 20(18): 5541-3.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.062] [PMID: 20692829]
[174]
Tekwani BL, Walker LA. Targeting the hemozoin synthesis pathway for new antimalarial drug discovery: technologies for in vitro beta-hematin formation assay. Comb Chem High Throughput Screen 2005; 8(1): 63-79.
[http://dx.doi.org/10.2174/1386207053328101] [PMID: 15720198]
[175]
Vennerstrom JL, Dong Y, Andersen SL, et al. Synthesis and antimalarial activity of sixteen dispiro-1,2,4, 5-tetraoxanes: alkyl-substituted 7,8,15,16-tetraoxadispiro[5.2.5. 2]hexadecanes. J Med Chem 2000; 43(14): 2753-8.
[http://dx.doi.org/10.1021/jm0000766] [PMID: 10893313]
[176]
Borstnik K, Paik IH, Shapiro TA, Posner GH. Antimalarial chemotherapeutic peroxides: artemisinin, yingzhaosu A and related compounds. Int J Parasitol 2002; 32(13): 1661-7.
[http://dx.doi.org/10.1016/S0020-7519(02)00195-9] [PMID: 12435451]
[177]
Nzila AM, Mberu EK, Sulo J, et al. Towards an understanding of the mechanism of pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: genotyping of dihydrofolate reductase and dihydropteroate synthase of Kenyan parasites. Antimicrob Agents Chemother 2000; 44(4): 991-6.
[http://dx.doi.org/10.1128/AAC.44.4.991-996.2000] [PMID: 10722502]
[178]
Mutabingwa T, Nzila A, Mberu E, et al. Chlorproguanil-dapsone for treatment of drug-resistant falciparum malaria in Tanzania. Lancet 2001; 358(9289): 1218-23.
[http://dx.doi.org/10.1016/S0140-6736(01)06344-9] [PMID: 11675058]
[179]
Razakantoanina V, Nguyen Kim PP, Jaureguiberry G. Antimalarial activity of new gossypol derivatives. Parasitol Res 2000; 86(8): 665-8.
[http://dx.doi.org/10.1007/PL00008549] [PMID: 10952267]
[180]
Parthasarathy S, Ravindra G, Balaram H, Balaram P, Murthy MRN. Structure of the Plasmodium falciparum triosephosphate isomerase-phosphoglycolate complex in two crystal forms: characterization of catalytic loop open and closed conformations in the ligand-bound state. Biochemistry 2002; 41(44): 13178-88.
[http://dx.doi.org/10.1021/bi025783a] [PMID: 12403619]
[181]
Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004; 119(7): 941-53.
[http://dx.doi.org/10.1016/j.cell.2004.12.012] [PMID: 15620353]
[182]
Jiang H, Medintz I, Zhang B, Michels CA. Metabolic signals trigger glucose-induced inactivation of maltose permease in Saccharomyces. J Bacteriol 2000; 182(3): 647-54.
[http://dx.doi.org/10.1128/JB.182.3.647-654.2000] [PMID: 10633097]
[183]
Robien MA, Nguyen KT, Kumar A, et al. An improved crystal form of Plasmodium falciparum peptide deformylase. Protein Sci 2004; 13(4): 1155-63.
[http://dx.doi.org/10.1110/ps.03456404] [PMID: 15010544]
[184]
Lunev S, Batista FA, Bosch SS, Wrenger C, Groves MR. Identification and validation of novel drug targets for the treatment of plasmodium falciparum malaria: New Insights. Rodriguez-Morales AJ, editor Current Topics in Malaria [Internet] InTech http://www.intechopen.com/books/current-topics-in-malaria/identification-and-validation-of-novel-drug-targets-for-the-treatment-of-plasmodium-falciparum-malar
[185]
Booker ML, Bastos CM, Kramer ML, et al. Novel inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with anti-malarial activity in the mouse model. J Biol Chem 2010; 285(43): 33054-64.
[http://dx.doi.org/10.1074/jbc.M110.162081] [PMID: 20702404]
[186]
Luth MR, Gupta P, Ottilie S, Winzeler EA. Using in vitro evolution and whole genome analysis to discover next generation targets for antimalarial drug discovery. ACS Infect Dis 2018; 4(3): 301-14.
[http://dx.doi.org/10.1021/acsinfecdis.7b00276] [PMID: 29451780]
[187]
Pallavi R, Roy N, Nageshan RK, et al. Heat shock protein 90 as a drug target against protozoan infections: biochemical characterization of hsp90 from plasmodium falciparum and trypanosoma evansi and evaluation of its inhibitor as a candidate drug. J Biol Chem 2010; 285(49): 37964-75.
[http://dx.doi.org/10.1074/jbc.M110.155317] [PMID: 20837488]
[188]
Davioud-Charvet E, Delarue S, Biot C, et al. A prodrug form of a Plasmodium falciparum glutathione reductase inhibitor conjugated with a 4-anilinoquinoline. J Med Chem 2001; 44(24): 4268-76.
[http://dx.doi.org/10.1021/jm010268g] [PMID: 11708927]
[189]
McCarty SE, Schellenberger A, Goodwin DC, Fuanta NR, Tekwani BL, Calderón AI. Plasmodium falciparum Thioredoxin Reductase (PfTrxR) and Its Role as a Target for New Antimalarial Discovery. Molecules 2015; 20(6): 11459-73.
[http://dx.doi.org/10.3390/molecules200611459] [PMID: 26111176]
[190]
Deu E, Leyva MJ, Albrow VE, Rice MJ, Ellman JA, Bogyo M. Functional studies of Plasmodium falciparum dipeptidyl aminopeptidase I using small molecule inhibitors and active site probes. Chem Biol 2010; 17(8): 808-19.
[http://dx.doi.org/10.1016/j.chembiol.2010.06.007] [PMID: 20797610]
[191]
Withers-Martinez C, Suarez C, Fulle S, et al. Plasmodium subtilisin-like protease 1 (SUB1): insights into the active-site structure, specificity and function of a pan-malaria drug target. Int J Parasitol 2012; 42(6): 597-612.
[http://dx.doi.org/10.1016/j.ijpara.2012.04.005] [PMID: 22543039]
[192]
Dvorin JD, Martyn DC, Patel SD, et al. A plant-like kinase in Plasmodium falciparum regulates parasite egress from erythrocytes. Science 2010; 328(5980): 910-2.
[http://dx.doi.org/10.1126/science.1188191] [PMID: 20466936]
[193]
Keenan SM, Geyer JA, Welsh WJ, Prigge ST, Waters NC. Rational inhibitor design and iterative screening in the identification of selective plasmodial cyclin dependent kinase inhibitors. Comb Chem High Throughput Screen 2005; 8(1): 27-38.
[http://dx.doi.org/10.2174/1386207053328183] [PMID: 15720195]
[194]
Stickles AM, de Almeida MJ, Morrisey JM, et al. Subtle changes in endochin-like quinolone structure alter the site of inhibition within the cytochrome bc1 complex of Plasmodium falciparum. Antimicrob Agents Chemother 2015; 59(4): 1977-82.
[http://dx.doi.org/10.1128/AAC.04149-14] [PMID: 25605352]
[195]
Russo I, Babbitt S, Muralidharan V, Butler T, Oksman A, Goldberg DE. Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte. Nature 2010; 463(7281): 632-6.
[http://dx.doi.org/10.1038/nature08726] [PMID: 20130644]
[196]
Waller RF, Keeling PJ, Donald RGK, et al. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci USA 1998; 95(21): 12352-7.
[http://dx.doi.org/10.1073/pnas.95.21.12352] [PMID: 9770490]
[197]
Surolia N, Surolia A. Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nat Med 2001; 7(2): 167-73.
[http://dx.doi.org/10.1038/84612] [PMID: 11175846]
[198]
McLeod R, Muench SP, Rafferty JB, et al. Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I. Int J Parasitol 2001; 31(2): 109-13.
[http://dx.doi.org/10.1016/S0020-7519(01)00111-4] [PMID: 11239932]
[199]
Tasdemir D, Kaiser M, Brun R, et al. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob Agents Chemother 2006; 50(4): 1352-64.
[http://dx.doi.org/10.1128/AAC.50.4.1352-1364.2006] [PMID: 16569852]
[200]
Kumar G, Parasuraman P, Sharma SK, et al. Discovery of a rhodanine class of compounds as inhibitors of Plasmodium falciparum enoyl-acyl carrier protein reductase. J Med Chem 2007; 50(11): 2665-75.
[http://dx.doi.org/10.1021/jm061257w] [PMID: 17477517]
[201]
Jomaa H, Wiesner J, Sanderbrand S, et al. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 1999; 285(5433): 1573-6.
[http://dx.doi.org/10.1126/science.285.5433.1573] [PMID: 10477522]
[202]
Ohkanda J, Lockman JW, Yokoyama K, et al. Peptidomimetic inhibitors of protein farnesyltransferase show potent antimalarial activity. Bioorg Med Chem Lett 2001; 11(6): 761-4.
[http://dx.doi.org/10.1016/S0960-894X(01)00055-5] [PMID: 11277514]
[203]
Chakrabarti D, Da Silva T, Barger J, et al. Protein farnesyltransferase and protein prenylation in Plasmodium falciparum. J Biol Chem 2002; 277(44): 42066-73.
[http://dx.doi.org/10.1074/jbc.M202860200] [PMID: 12194969]
[204]
Surolia N, Padmanaban G. de novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. Biochem Biophys Res Commun 1992; 187(2): 744-50.
[http://dx.doi.org/10.1016/0006-291X(92)91258-R] [PMID: 1356337]
[205]
Blackman MJ. Proteases in host cell invasion by the malaria parasite. Cell Microbiol 2004; 6(10): 893-903.
[http://dx.doi.org/10.1111/j.1462-5822.2004.00437.x] [PMID: 15339265]
[206]
Sisodia BS, Negi AS, Darokar MP, Dwivedi UN, Khanuja SPS. Antiplasmodial activity of steroidal chalcones: evaluation of their effect on hemozoin synthesis and the new permeation pathway of Plasmodium falciparum-infected erythrocyte membrane. Chem Biol Drug Des 2012; 79(4): 610-5.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01323.x] [PMID: 22248242]
[207]
Banerjee R, Liu J, Beatty W, Pelosof L, Klemba M, Goldberg DE. Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proc Natl Acad Sci USA 2002; 99(2): 990-5.
[http://dx.doi.org/10.1073/pnas.022630099] [PMID: 11782538]
[208]
Wrenger C, Müller IB, Schifferdecker AJ, Jain R, Jordanova R, Groves MR. Specific inhibition of the aspartate aminotransferase of Plasmodium falciparum. J Mol Biol 2011; 405(4): 956-71.
[http://dx.doi.org/10.1016/j.jmb.2010.11.018] [PMID: 21087616]
[209]
Wang F, Krai P, Deu E, et al. Biochemical characterization of Plasmodium falciparum dipeptidyl aminopeptidase 1. Mol Biochem Parasitol 2011; 175(1): 10-20.
[http://dx.doi.org/10.1016/j.molbiopara.2010.08.004] [PMID: 20833209]
[210]
Silmon de Monerri NC, Flynn HR, Campos MG, Hackett F, Koussis K, Withers-Martinez C, et al. Global identification of multiple substrates for plasmodium falciparum sub1, an essential malarial processing protease. Adams JH, editor Infect Immun. 2011;; 79:: pp. ( pp. (3)) 1086--97..
[211]
Lim L, McFadden GI. The evolution, metabolism and functions of the apicoplast. Philos Trans R Soc Lond B Biol Sci 2010; 365(1541): 749-63.
[http://dx.doi.org/10.1098/rstb.2009.0273] [PMID: 20124342]
[212]
Tarun AS, Vaughan AM, Kappe SHI. Redefining the role of de novo fatty acid synthesis in Plasmodium parasites. Trends Parasitol 2009; 25(12): 545-50.
[http://dx.doi.org/10.1016/j.pt.2009.09.002] [PMID: 19819758]
[213]
Yu M, Kumar TRS, Nkrumah LJ, et al. The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. Cell Host Microbe 2008; 4(6): 567-78.
[http://dx.doi.org/10.1016/j.chom.2008.11.001] [PMID: 19064257]
[214]
Vaughan AM, O’Neill MT, Tarun AS, et al. Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell Microbiol 2009; 11(3): 506-20.
[http://dx.doi.org/10.1111/j.1462-5822.2008.01270.x] [PMID: 19068099]
[215]
Kirk K, Howitt SM, Bröer S, Saliba KJ, Downie MJ. Purine uptake in Plasmodium: transport versus metabolism. Trends Parasitol 2009; 25(6): 246-9.
[http://dx.doi.org/10.1016/j.pt.2009.03.006] [PMID: 19423394]
[216]
Müller IB, Hyde JE, Wrenger C. Vitamin B metabolism in Plasmodium falciparum as a source of drug targets. Trends Parasitol 2010; 26(1): 35-43.
[http://dx.doi.org/10.1016/j.pt.2009.10.006] [PMID: 19939733]
[217]
Johnson RA, McFadden GI, Goodman CD. Characterization of two malaria parasite organelle translation elongation factor g proteins: the likely targets of the anti-malarial fusidic acid. Langsley G, editor PLoS ONE. 2011;; 6:.( p. (6):) e20633.
[218]
Wheatley NC, Andrews KT, Tran TL, Lucke AJ, Reid RC, Fairlie DP. Antimalarial histone deacetylase inhibitors containing cinnamate or NSAID components. Bioorg Med Chem Lett 2010; 20(23): 7080-4.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.096] [PMID: 20951583]
[219]
Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med 2017; 23(8): 917-28.
[http://dx.doi.org/10.1038/nm.4381] [PMID: 28777791]
[220]
Shah NK, Dhillon GP, Dash AP, Arora U, Meshnick SR, Valecha N. Antimalarial drug resistance of Plasmodium falciparum in India: changes over time and space. Lancet Infect Dis 2011; 11(1): 57-64.
[http://dx.doi.org/10.1016/S1473-3099(10)70214-0] [PMID: 21183147]
[221]
Fidock DA, Nomura T, Talley AK, et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 2000; 6(4): 861-71.
[http://dx.doi.org/10.1016/S1097-2765(05)00077-8] [PMID: 11090624]
[222]
Nomura T, Carlton JM, Baird JK, et al. Evidence for different mechanisms of chloroquine resistance in 2 Plasmodium species that cause human malaria. J Infect Dis 2001; 183(11): 1653-61.
[http://dx.doi.org/10.1086/320707] [PMID: 11343215]
[224]
Dondorp A, Nosten F, Stepniewska K, Day N, White N. South East Asian Quinine Artesunate Malaria Trial (SEAQUAMAT) group. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 2005; 366(9487): 717-25.
[http://dx.doi.org/10.1016/S0140-6736(05)67176-0] [PMID: 16125588]
[225]
Alker AP, Lim P, Sem R, et al. Pfmdr1 and in vivo resistance to artesunate-mefloquine in falciparum malaria on the Cambodian-Thai border. Am J Trop Med Hyg 2007; 76(4): 641-7.
[http://dx.doi.org/10.4269/ajtmh.2007.76.641] [PMID: 17426163]
[226]
Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 2014; 505(7481): 50-5.
[http://dx.doi.org/10.1038/nature12876] [PMID: 24352242]
[227]
Koenderink JB, Kavishe RA, Rijpma SR, Russel FGM. The ABCs of multidrug resistance in malaria. Trends Parasitol 2010; 26(9): 440-6.
[http://dx.doi.org/10.1016/j.pt.2010.05.002] [PMID: 20541973]
[228]
Challacombe JF. 2017.silico identification of metabolic enzyme drug targets in Burkholderia pseudomallei bioRxiv [Internet] http://biorxiv.org/lookup/doi/10.1101/034306
[229]
Jayaraman P, Sakharkar KR, Daniel LC, Siddiqi MI, Dhillon SK, Sakharkar MK. Hybrid-drug design targeting Pseudomonas aeruginosa dihydropteroate synthase and dihydrofolate reductase. Front Biosci (Elite Ed) 2013; 5(3): 864-82.
[PMID: 23747902]
[230]
Nzila A. Inhibitors of de novo folate enzymes in Plasmodium falciparum. Drug Discov Today 2006; 11(19-20): 939-44.
[http://dx.doi.org/10.1016/j.drudis.2006.08.003] [PMID: 16997145]
[231]
Mikuniya T, Kato Y, Kariyama R, Monden K, Hikida M, Kumon H. Synergistic effect of fosfomycin and fluoroquinolones against Pseudomonas aeruginosa growing in a biofilm. Acta Med Okayama 2005; 59(5): 209-16.
[PMID: 16286954]
[232]
Søgaard P, Gahrn-Hansen B. Population analysis of susceptibility to ciprofloxacin and nalidixic acid in Staphylococcus, Pseudomonas aeruginosa, and Enterobacteriaceae. Acta Pathol Microbiol Immunol Scand [B] 1986; 94(5): 351-6.
[http://dx.doi.org/10.1111/j.1699-0463.1986.tb03066.x] [PMID: 3098043]
[233]
Geary TG, Jensen JB. Effects of antibiotics on Plasmodium falciparum in vitro. Am J Trop Med Hyg 1983; 32(2): 221-5.
[http://dx.doi.org/10.4269/ajtmh.1983.32.221] [PMID: 6340539]
[234]
Goodman CD, Su V, McFadden GI. The effects of anti-bacterials on the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2007; 152(2): 181-91.
[http://dx.doi.org/10.1016/j.molbiopara.2007.01.005] [PMID: 17289168]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 8
Year: 2020
Published on: 28 January, 2020
Page: [736 - 775]
Pages: 40
DOI: 10.2174/1389450121666200129103618
Price: $65

Article Metrics

PDF: 36
HTML: 4