[4]
Hamel R, Dejarnac O, Wichit S, et al. Biology of Zika virus infection in human skin cells. J Virology 2015; 89(17): 8880-96.
[5]
Estrela VV, Herrmann AE. Content-Based Image Retrieval (CBIR) in remote clinical diagnosis and healthcare encyclopedia of e-health and telemedicine. IGI Global 2016 2016; 495-520.
[6]
Rajinikanth V, Satapathy SC, Dey N, Fernandes SL, Manic KS. Skin melanoma assessment using kapur’s entropy and level set-a study with bat algorithm. Smart Int Comp Appl 2019; 2019: 193-202.
[19]
Gutkowicz-Krusin D, Elbaum M, Greenebaum M, Jacobs A, Bogdan A. Systems and methods for the multispectral imaging and characterization of skin tissue. Google Patents. 2000.
[28]
Ericson M. Laser Scanning microscopy targeting dermatology-insights from research and translational inertia microscopy histopathology and analytics. OSA Biophotonics Congress to Highlight Ever Increasing Role of Optics in Biology and Medicine 2018 Mar 3-6 Florida Washington The Optical Society 2018.
[44]
Fiorese M, Peserico E, Silletti A. VirtualShave: automated hair removal from digital dermatoscopic images. Conf Proc IEEE Eng Med Biol Soc 2011; 2011: 5145-8.
[52]
Zhou H, Chen M, Gass R, Rehg JM, Ferris L, Ho J. Feature-preserving artifact removal from dermoscopy images medical imaging 2008: image processing. Int Society Optic Photon 2008; 2008: 1-8.
[53]
Mahajan PR, Vyavahare MA. Artefact removal and contrast enhancement for dermoscopic images using image processing techniques. Int J Innov Res Elect Electron Instr Control Eng 2013; 1(9): 418-21.
[55]
Kechagias-Stamatis O, Aouf N, Nam D, Belloni C. Automatic x-ray image segmentation and clustering for threat detection target and background signatures III. Int Society Optic Photon 2017; 2017: 1-10.
[58]
Bhuiyan MAH, Azad I, Uddin K. Image processing for skin cancer features extraction. Int J Sci Eng Res 2013; 4(2): 1-6.
[61]
Ebrahimi SMS, Pourghassem H, Keshavarz A. Segmentation of melanoma and other pigmented skin lesions in dermoscopic images using fusion of threshoding methods based on reinforcement algorithm. J Intell Proc Electr Technol 2014; 4(16): 37-48.
[75]
Ramteke NS, Jain SV. Analysis of skin cancer using fuzzy and wavelet technique-review & proposed new algorithm. Int J Engineer Trend Technol 2013; 4(6): 2555-66.
[80]
Mukherjee S, Adhikari A, Roy M. Malignant melanoma detection using multi layer perceptron with optimized network parameter selection by PSO contemporary. Advances in innovative and applicable information technology. Berlin Springer. 2019; pp. 101-9.
[82]
Li Y. Lesion segmentation in dermoscopy images using particle swarm optimization and Markov random field. 30th International symposium on Computer-Based Medical Systems (CBMS) 2017 June 22-24 Thessaloniki, Greece. New Jeresy: IEEE 2017.
[86]
Jadhav AR, Ghontale AG, Shrivastava VK. Segmentation and border detection of melanoma lesions using convolutional neural network and SVM. Computational intelligence: theories, applications and future directions-volume I. Berlin Springer. 2019; pp. 97-108.
[88]
Mukherjee S, Adhikari A, Roy M. Melanoma identification using MLP with parameter selected by metaheuristic algorithms Intelligent innovations in multimedia data engineering and management. Pennsylvania: IGI Global 2018.
[91]
Alvarez D, Iglesias M. K-means clustering and ensemble of regressions: an algorithm for the ISIC 2017 skin lesion segmentation challenge. arXiv preprint arXiv:170207333 2017.
[93]
Mehta A, Parihar AS, Mehta N. editors. Supervised classification of dermoscopic images using optimized fuzzy clustering based multi-layer feed-forward neural network. International Conference on Computer, Communication and Control (IC4); 2015 Sept 10-12; Indore, India. New Jersey: IEEE 2016.
[95]
Razmjooy N, Mousavi BS, Sargolzaei P, Soleymani F. Image thresholding based on evolutionary algorithms. Int J Phys Sci 2011; 6(31): 7203-11.
[103]
Moallem P, Razmjooy N, Mousavi B. Robust potato color image segmentation using adaptive fuzzy inference system. Iranian J Fuzzy Systems 2014; 11(6): 47-65.
[105]
Mastorakis N. Neural network methods for image segmentation. Proceedings of 2nd International Conference on Applied Physics, System Science and Computers (APSAC2017). 2017 Sep 27-29 Dubrovnik, Croatia. Berlin: Springer. 2017.
[107]
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation International conference on medical image computing and computer-assisted intervention; 2015 Oct 5-9; Munich, Germany. Berlin: Springer 2015.
[112]
Celebi ME, Aslandogan YA, Bergstresser PR. Unsupervised border detection of skin lesion images. International conference on Information Technology: Coding and Computing (ITCC'05) - Volume II 2005 Apr 4-6 Las Vegas, NV, USA New Jersey IEEE 2005.
[114]
Barata C, Ruela M, Mendonça T, Marques JS. A bag-of-features approach for the classification of melanomas in dermoscopy images: The role of color and texture descriptors Computer vision techniques for the diagnosis of skin cancer. Berlin: Springer 2014; pp. 49-69.
[118]
Ali A-R, Vacavant A, Grand-Brochier M, Albouy-Kissi A, Boire J-Y. A fuzzy approach to liver tumor segmentation with Zernike Moments. Int J Med Health Biomed Bioengineer Pharmaceut Engineer 2015; 9(7): 559-64.
[121]
Kastl L, Kemper B, Lloyd GR, et al. Performance of mid infrared spectroscopy in skin cancer cell type identification Optical biopsy XV: toward real-time spectroscopic imaging and diagnosis. Proc SPIE 2017; 10060: 1-10.
[122]
Ruela M, Barata C, Marques JS, Rozeira J. A system for the detection of melanomas in dermoscopy images using shape and symmetry features. Comp Methods Biomech Biomed Eng Vis 2017; 5(2): 127-37.
[136]
Ballerini L, Fisher RB, Aldridge B, Rees J. A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions. Color Med Image Anal 2013; 2013: 1-26.
[142]
Sana MS, Khan S. Dermoscopy images classification based on color, texture and shape features using SVM. The 3rd International Conference on Next Generation Computing(ICNGC2017b); 2017 Dec 21-24; Kaohsiung, Taiwan.
[150]
Capdehourat G, Corez A, Bazzano A, Musé P. Pigmented skin lesions classification using dermatoscopic images. Progress in pattern recognition, image analysis, computer vision, and applications; 2009 Nov 15-18; Guadalajara, Jalisco, Mexico. Berlin: Springer 2009.
[152]
Hemanth DJ, Estrela VV. Deep learning for image processing applications. IOS Press: Amsterdam 2017.
[154]
Cruz BF, de Assis JT, Estrela VV, Khelassi A. A Compact SIFT-based strategy for visual information retrieval in large image databases. Med Techn J 2019; 3,2: 402-12.
[158]
Coelho AM, Estrela VV. Data-driven motion estimation with spatial adaptation. Intl J of Image Proc (IJIP) 2012; 6(1): 53-67.
[159]
Rivera LA, Estrela VV, Carvalho PCP. Oriented bounding boxes using multiresolution contours for fast interference detection of arbitrary geometry objects. 12th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision'2004; 2004 Feb 2-6; University of West Bohemia, Campus Bory, Plzen-Bory, Czech Republic. arXiv:1611.03666.