Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Therapeutic Journey of Pyrazolines as EGFR Tyrosine Kinase Inhibitors: An Insight into Structure-Activity Relationship

Author(s): Navdeep Singh and Monika Gupta*

Volume 16, Issue 9, 2020

Page: [1260 - 1272] Pages: 13

DOI: 10.2174/1573407216666200128155640

Price: $65

Abstract

Background: Pyrazolines are five-membered heterocycles with two adjacent nitrogen atoms present in the ring and they have attracted many researchers all over the world to assess their potential therapeutic significance. Pyrazolines are known for their crucial role in numerous diseases like cancer via various mechanisms. Pyrazoline and its derivatives have been found to have potent anticancer activity by inhibiting EGFR (Epidermal Growth Factor Receptor Tyrosine Kinase) and other types of RTKs. Rapid advances in the understanding of cellular signaling by EGFR in normal and malignant cells have brought to light the EGFR as a selective anticancer target. The review enlists some recently developed pyrazolines as EGFR tyrosine kinase inhibitor along with their structure-activity relationships.

Methods: The structure-activity relationship of different pyrazoline derivatives was discussed along with their epidermal growth factor receptor inhibitory activity. Both review and research articles have been considered and cited in the paper.

Results: Pyrazolines have assisted medicinal chemistry by their diverse biological activities which make them a beneficial scaffold. The structure-activity relationship studies on pyrazolines revealed that the structural characteristics and different substitutions on pyrazoline ring alter the EGFR inhibitory activity.

Conclusion: In the present review, pyrazoline derivatives with EGFR kinase inhibitory activity are described based on their structure-activity relationships based on their structural substitution pattern around the pyrazoline scaffold.

Keywords: Pyrazoline, EGFR, HER-2, tyrosine kinase, SAR, synthesis.

Graphical Abstract
[1]
Varghese, B.; Al-Busafi, S.N.; Suliman, F.O.; Al-Kindy, S.M.Z. Unveiling a versatile heterocycle: Pyrazoline - A review. RSC Advances, 2017, 7, 46999-47016.
[http://dx.doi.org/10.1039/C7RA08939B]
[2]
Kumar, K.A.; Jayaroopa, P. Pyrazoles: Synthetic strategies and their pharmaceutical applications - An overview. Int. J. Pharm. Tech. Res., 2013, 5(4), 1473-1486.
[3]
Kumar, K.A.; Govindaraju, M. Pyrazoline: Versatile molecule of synthetic and pharmaceutical applications - A review. Int. J. Chemtech Res., 2015, 8(1), 313-322.
[4]
Bardalai, D.; Panneerselvam, P. Pyrazole and 2-Pyrazoline derivatives: Potential anti-inflammatory and analgesic agents. Int. Res. J. Pharm. App Sci., 2012, 2(3), 1-8.
[5]
Gokhan-Keleckci, N.; Koyunoglu, S.; Yabanoglu, S.; Yelekci, K.; Ozgen, O.; Ucar, G.; Erol, K.; Kendi, E.; Yesilada, A. New pyrazoline bearing 4(3H)-quinazolinone inhibitors of monoamine oxidase: Synthesis, biological evaluation and MAO-B selectivity. Bioorg. Med. Chem., 2009, 17, 675-689.
[http://dx.doi.org/10.1016/j.bmc.2008.11.068] [PMID: 19091581]
[6]
Behr, L.C.; Fusco, R.; Jarboe, C.H. Pyrazoles, pyrazolines, pyrazolidines, indazoles and condensed rings. The chemistry of heterocyclic compounds; Wiley, R.H., Ed.; John Wiley: New York, 1967, Vol. 20, pp. 180-208.
[7]
Li, J.T.; Zhang, X.H.; Lin, Z.P. An improved synthesis of 1,3,5-triaryl-2-pyrazolines in acetic acid aqueous solution under ultrasound irradiation. Beilstein J. Org. Chem., 2007, 3(13), 13.
[http://dx.doi.org/10.1186/1860-5397-3-13] [PMID: 17374170]
[8]
Eisinger, J.; Boens, N.; Flores, J. Fluorescence polarization study of human erythrocyte membranes with 1-phenyl-3-(2-naphthyl)-2-pyrazoline as orientational probe. Biochim. Biophys. Acta, 1981, 646(2), 334-343.
[http://dx.doi.org/10.1016/0005-2736(81)90340-0] [PMID: 7295719]
[9]
Viveka, S. Dinesha; Shama, P.; Nagaraja, G.K.; Ballav, S.; Kerkar, S. Design and synthesis of some new pyrazolyl-pyrazolines as potential anti-inflammatory, analgesic and antibacterial agents. Eur. J. Med. Chem., 2015, 101, 442-451.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.002] [PMID: 26186150]
[10]
Bano, S.; Alam, M.S.; Javed, K.; Dudeja, M.; Das, A.K.; Dhulap, A. Synthesis, biological evaluation and molecular docking of some substituted pyrazolines and isoxazolines as potential antimicrobial agents. Eur. J. Med. Chem., 2015, 95, 96-103.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.031] [PMID: 25800645]
[11]
Fioravanti, R.; Bolasco, A.; Manna, F.; Rossi, F.; Orallo, F.; Ortuso, F.; Alcaro, S.; Cirilli, R. Synthesis and biological evaluation of N-substituted-3,5-diphenyl-2-pyrazoline derivatives as cyclooxygenase (COX-2) inhibitors. Eur. J. Med. Chem., 2010, 45(12), 6135-6138.
[http://dx.doi.org/10.1016/j.ejmech.2010.10.005] [PMID: 20974503]
[12]
Jadhav, S.Y.; Shirame, S.P.; Kulkarni, S.D.; Patil, S.B.; Pasale, S.K.; Bhosale, R.B. PEG mediated synthesis and pharmacological evaluation of some fluoro substituted pyrazoline derivatives as antiinflammatory and analgesic agents. Bioorg. Med. Chem. Lett., 2013, 23(9), 2575-2578.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.105] [PMID: 23541672]
[13]
Kaplancikli, Z.A.; Ozdemir, A.; Turan-Zitouni, G.; Altintop, M.D.; Can, O.D. New pyrazoline derivatives and their antidepressant activity. Eur. J. Med. Chem., 2010, 45(9), 4383-4387.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.011] [PMID: 20587366]
[14]
Fioravanti, R.; Desideri, N.; Carta, A.; Atzori, E.M.; Delogu, I.; Collu, G.; Loddo, R. Inhibitors of yellow fever virus replication based on 1,3,5-triphenyl-4,5-dihydropyrazole scaffold: Design, synthesis and antiviral evaluation. Eur. J. Med. Chem., 2017, 141, 15-25.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.060] [PMID: 29028528]
[15]
Wani, M.Y.; Bhat, A.R.; Azam, A.; Lee, D.H.; Choi, I.; Athar, F. Synthesis and in vitro evaluation of novel tetrazole embedded 1,3,5-trisubstituted pyrazoline derivatives as Entamoeba histolytica growth inhibitors. Eur. J. Med. Chem., 2012, 54, 845-854.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.049] [PMID: 22658085]
[16]
Mishra, V.K.; Mishra, M.; Kashaw, V.; Kashaw, S.K. Synthesis of 1,3,5-trisubstituted pyrazolines as potential antimalarial and antimicrobial agents. Bioorg. Med. Chem., 2017, 25(6), 1949-1962.
[http://dx.doi.org/10.1016/j.bmc.2017.02.025] [PMID: 28237557]
[17]
Vishnu Nayak, B.; Ciftci-Yabanoglu, S.; Jadav, S.S.; Jagrat, M.; Sinha, B.N.; Ucar, G.; Jayaprakash, V. Monoamine oxidase inhibitory activity of 3,5-biaryl-4,5-dihydro-1H-pyrazole-1-carboxylate derivatives. Eur. J. Med. Chem., 2013, 69, 762-767.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.010] [PMID: 24099995]
[18]
Ozdemir, Z.; Kandilci, H.B.; Gümüşel, B.; Caliş, U.; Bilgin, A.A. Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(3), 373-379.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.006] [PMID: 17069933]
[19]
Zampieri, D.; Mamolo, M.G.; Laurini, E.; Scialino, G.; Banfi, E.; Vio, L. Antifungal and antimycobacterial activity of 1-(3,5-diaryl-4,5-dihydro-1H-pyrazol-4-yl)-1H-imidazole derivatives. Bioorg. Med. Chem., 2008, 16(8), 4516-4522.
[http://dx.doi.org/10.1016/j.bmc.2008.02.055] [PMID: 18321714]
[20]
Deng, H.; Yu, Z.Y.; Shi, G.Y.; Chen, M.J.; Tao, K.; Hou, T.P. Synthesis and in vitro antifungal evaluation of 1,3,5-trisubstituted-2-pyrazoline derivatives. Chem. Biol. Drug Des., 2012, 79(3), 279-289.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01308.x] [PMID: 22181692]
[21]
Kumar, A.; Varadaraj, B.G.; Singla, R.K. Synthesis and evaluation of antioxidant activity of novel 3,5-disubstituted-2-pyrazolines. Bull. Faculty Pharm., 2013, 51, 167-173.
[http://dx.doi.org/10.1016/j.bfopcu.2013.04.002]
[22]
Shin, S.Y.; Yoon, H.; Hwang, D.; Ahn, S.; Kim, D.W.; Koh, D.; Lee, Y.H.; Lim, Y. Benzochalcones bearing pyrazoline moieties show anti-colorectal cancer activities and selective inhibitory effects on aurora kinases. Bioorg. Med. Chem., 2013, 21(22), 7018-7024.
[http://dx.doi.org/10.1016/j.bmc.2013.09.014] [PMID: 24095020]
[23]
Yohya, T.A.A.; Abdullah, J.H.; Al-Ghorafi, M.A.H.; Yassin, S.H. Synthesis and evaluation of some pyrazoline derivatives as anticancer agents. J. Chem. Pharm. Res., 2014, 6(11), 234-238.
[24]
Lu, Z-H.; Gu, X-J.; Shi, K-Z.; Li, X.; Chen, D-D.; Chen, L. Accessing anti-human lung tumor cell line (A549) potential of newer 3,5-disubstituted pyrazoline analogs. Arab. J. Chem., 2017, 10(5), 624-630.
[http://dx.doi.org/10.1016/j.arabjc.2014.11.002]
[25]
Hussaini, S.M.A.; Yedla, P.; Babu, K.S.; Shaik, T.B.; Chityal, G.K.; Kamal, A. Synthesis and biological evaluation of 1,2,3-triazole tethered pyrazoline and chalcone derivatives. Chem. Biol. Drug Des., 2016, 88(1), 97-109.
[http://dx.doi.org/10.1111/cbdd.12738] [PMID: 26854643]
[26]
Tessmann, J.W.; Buss, J.; Begnini, K.R.; Berneira, L.M.; Paula, F.R.; de Pereira, C.M.P.; Collares, T.; Seixas, F.K. Antitumor potential of 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-1H-pyrazoles in human bladder cancer cells. Biomed. Pharmacother., 2017, 94, 37-46.
[http://dx.doi.org/10.1016/j.biopha.2017.07.060] [PMID: 28750358]
[27]
Bashir, R.; Ovais, S.; Yaseen, S.; Hamid, H.; Alam, M.S.; Samim, M.; Singh, S.; Javed, K. Synthesis of some new 1,3,5-trisubstituted pyra-zolines bearing benzene sulfonamide as anticancer and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2011, 21(14), 4301-4305.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.061] [PMID: 21664130]
[28]
Hassan, G.S.; Abou-Seri, S.M.; Kamel, G.; Ali, M.M. Celecoxib analogs bearing benzofuran moiety as cyclooxygenase-2 inhibitors: Design, synthesis and evaluation as potential anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 482-493.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.033] [PMID: 24607877]
[29]
Song, Z.H.; Zhang, N. In vitro detecting ultra-trace novalgin in medicine and human urine by chemiluminescence. Talanta, 2003, 60(1), 161-170.
[http://dx.doi.org/10.1016/S0039-9140(03)00117-6] [PMID: 18969036]
[30]
Sun, H.Y.; Ji, F.Q. A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK. Biochem. Biophys. Res. Commun., 2012, 423(2), 319-324.
[http://dx.doi.org/10.1016/j.bbrc.2012.05.120] [PMID: 22659414]
[31]
Boustany-Kari, C.M.; Jackson, V.M.; Gibbons, C.P.; Swick, A.G. Leptin potentiates the anti-obesity effects of rimonabant. Eur. J. Pharmacol., 2011, 658(2-3), 270-276.
[http://dx.doi.org/10.1016/j.ejphar.2011.02.021] [PMID: 21371466]
[32]
Kapadia, G.J.; Tokuda, H.; Sridhar, R.; Balasubramanian, V.; Takayasu, J.; Bu, P.; Enjo, F.; Takasaki, M.; Konoshima, T.; Nishino, H. Cancer chemopreventive activity of synthetic colorants used in foods, pharmaceuticals and cosmetic preparations. Cancer Lett., 1998, 129(1), 87-95.
[http://dx.doi.org/10.1016/S0304-3835(98)00087-1] [PMID: 9714339]
[33]
Wyde, P.R.; Gilbert, B.E.; Ambrose, M.W. Comparison of the anti-respiratory syncytial virus activity and toxicity of papaverine hydrochloride and pyrazofurin in vitro and in vivo. Antiviral Res., 1989, 11(1), 15-26.
[http://dx.doi.org/10.1016/0166-3542(89)90017-X] [PMID: 2653219]
[34]
Farkas, J.; Flegelova, Z.; Sorm, F. Synthesis of pyrazomycin. Tetrahedron Lett., 1972, 13, 2279-2280.
[http://dx.doi.org/10.1016/S0040-4039(01)84827-9]
[35]
Li, P.; Tian, Y.; Zhai, H.; Deng, F.; Xie, M.; Zhang, X. Studies on the inhibitory models of pyrazolines derivatives as EGFR kinase inhibitors by 3D-QSAR and molecular docking. Med. Chem. Res., 2014, 23, 2869-2879.
[http://dx.doi.org/10.1007/s00044-013-0874-z]
[36]
Lee, Y.; Kim, B.S.; Ahn, S.; Koh, D.; Lee, Y.H.; Shin, S.Y.; Lim, Y. Anticancer and structure-activity relationship evaluation of 3-(naphthalen-2-yl)-N,5-diphenyl-pyrazoline-1-carbothioamide analogs of chalcone. Bioorg. Chem., 2016, 68, 166-176.
[http://dx.doi.org/10.1016/j.bioorg.2016.08.003] [PMID: 27543822]
[37]
Alam, R.; Wahi, D.; Singh, R.; Sinha, D.; Tandon, V.; Grover, A. Rahisuddin, Design, synthesis, cytotoxicity, HuTopoIIα inhibitory activity and molecular docking studies of pyrazole derivatives as potential anticancer agents. Bioorg. Chem., 2016, 69, 77-90.
[http://dx.doi.org/10.1016/j.bioorg.2016.10.001] [PMID: 27744115]
[38]
Li, H.L.; Su, M.M.; Xu, Y.J.; Xu, C.; Yang, Y.S.; Zhu, H.L. Design and biological evaluation of novel triaryl pyrazoline derivatives with dioxane moiety for selective BRAFV600E inhibition. Eur. J. Med. Chem., 2018, 155, 725-735.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.043] [PMID: 29940463]
[39]
Qin, Y.J.; Li, Y.J.; Jiang, A.Q.; Yang, M.R.; Zhu, Q.Z.; Dong, H.; Zhu, H.L. Design, synthesis and biological evaluation of novel pyrazoline-containing derivatives as potential tubulin assembling inhibitors. Eur. J. Med. Chem., 2015, 94, 447-457.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.058] [PMID: 25828827]
[40]
Ducray, R.; Ballard, P.; Barlaam, B.C.; Hickinson, M.D.; Kettle, J.G.; Ogilvie, D.J.; Trigwell, C.B. Novel 3-alkoxy-1H-pyrazolo[3,4-d]pyrimidines as EGFR and erbB2 receptor tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(3), 959-962.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.035] [PMID: 18182285]
[41]
Duffey, M.O.; Adams, R.; Blackburn, C.; Chau, R.W.; Chen, S.; Galvin, K.M.; Garcia, K.; Gould, A.E.; Greenspan, P.D.; Harrison, S.; Huang, S.C.; Kim, M.S.; Kulkarni, B.; Langston, S.; Liu, J.X.; Ma, L.T.; Menon, S.; Nagayoshi, M.; Rowland, R.S.; Vos, T.J.; Xu, T.; Yang, J.J.; Yu, S.; Zhang, Q. Discovery and optimization of pyrazoline compounds as B-Raf inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(16), 4800-4804.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.113] [PMID: 20634068]
[42]
Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase - Role and significance in Cancer. Int. J. Med. Sci., 2004, 1(2), 101-115.
[http://dx.doi.org/10.7150/ijms.1.101] [PMID: 15912202]
[43]
Pytel, D.; Sliwinski, T.; Poplawski, T.; Ferriola, D.; Majsterek, I. Tyrosine kinase blockers: New hope for successful cancer therapy. Anticancer. Agents Med. Chem., 2009, 9(1), 66-76.
[http://dx.doi.org/10.2174/187152009787047752] [PMID: 19149483]
[44]
Bari, S.B.; Adhikari, S.; Surana, S.J. Tyrosine kinase receptor inhibitors: A new target for anticancer drug development. J. Pharm. Sci. Technol., 2012, 1(2), 36-45.
[45]
Abdelgawad, M.A.; Bakr, R.B.; Alkhoja, O.A.; Mohamed, W.R. Design, synthesis and antitumor activity of novel pyrazolo[3,4-d]pyrimidine derivatives as EGFR-TK inhibitors. Bioorg. Chem., 2016, 66, 88-96.
[http://dx.doi.org/10.1016/j.bioorg.2016.03.011] [PMID: 27043178]
[46]
O’Donovan, N.; Crown, J. EGFR and HER-2 antagonists in breast cancer. Anticancer Res., 2007, 27(3A), 1285-1294.
[PMID: 17593621]
[47]
Abu-Yousif, A.O.; Moor, A.C.E.; Zheng, X.; Savellano, M.D.; Yu, W.; Selbo, P.K.; Hasan, T. Epidermal growth factor receptor-targeted photosensitizer selectively inhibits EGFR signaling and induces targeted phototoxicity in ovarian cancer cells. Cancer Lett., 2012, 321(2), 120-127.
[http://dx.doi.org/10.1016/j.canlet.2012.01.014] [PMID: 22266098]
[48]
Yoshikawa, S.; Kukimoto-Niino, M.; Parker, L.; Handa, N.; Terada, T.; Fujimoto, T.; Terazawa, Y.; Wakiyama, M.; Sato, M.; Sano, S.; Kobayashi, T.; Tanaka, T.; Chen, L.; Liu, Z-J.; Wang, B-C.; Shirouzu, M.; Kawa, S.; Semba, K.; Yamamoto, T.; Yokoyama, S. Structural basis for the altered drug sensitivities of non-small cell lung cancer-associated mutants of human epidermal growth factor receptor. Oncogene, 2013, 32(1), 27-38.
[http://dx.doi.org/10.1038/onc.2012.21] [PMID: 22349823]
[49]
Miguel, F.B.; Dantas, J.A.; Amorim, S.; Andrade, G.F.S.; Costa, L.A.S.; Couri, M.R. Synthesis, spectroscopic and computational char-acterization of the tautomerism of pyrazoline derivatives from chalcones. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 152, 318-326.
[http://dx.doi.org/10.1016/j.saa.2015.07.041] [PMID: 26232575]
[50]
Lokeshwari, D.M.; Achutha, D.K.; Srinivasan, B.; Shivalingegowda, N.; Krishnappagowda, L.N.; Kariyappa, A.K. Synthesis of novel 2-pyrazoline analogues with potent anti-inflammatory effect mediated by inhibition of phospholipase A2: Crystallographic, in silico docking and QSAR analysis. Bioorg. Med. Chem. Lett., 2017, 27(16), 3806-3811.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.063] [PMID: 28676270]
[51]
Beyhan, N.; Kocyigit-Kaymakcioglu, B.; Gumru, S.; Aricioglu, F. Synthesis and anticonvulsant activity of some 2-pyrazolines derived from chalcone. Arab. J. Chem., 2013, 10, 2070-2081.
[52]
George, R.F.; Fouad, M.A.; Gomaa, I.E.O. Synthesis and cytotoxic activities of some pyrazoline derivatives bearing phenyl pyridazine core as new apoptosis inducers. Eur. J. Med. Chem., 2016, 112, 48-59.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.048] [PMID: 26874744]
[53]
Jawale, D.V.; Pratap, U.R.; Mali, J.R.; Mane, R.A. Silica chloride catalysed one-pot synthesis of fully substituted pyrazoles. Chin. Chem. Lett., 2011, 22, 1187-1190.
[54]
Wang, Y.C.; Wang, H.S.; Huang, G.B.; Huang, F.P.; Hu, K.; Pan, Y.M. A one-pot approach to 4,5-dihydropyrazoles from ketones, ary-lacetylene, and hydrazines. Tetrahedron, 2014, 70, 1621-1628.
[http://dx.doi.org/10.1016/j.tet.2014.01.021]
[55]
Tinarelli, A.; Righi, P.; Rosini, G. Regioselective synthesis of 1,3,5 and 1,3,4,5-substituted pyrazoles via acylation of N-Boc-N-substituted hydrazones. Tetrahedron, 2011, 67, 612-617.
[http://dx.doi.org/10.1016/j.tet.2010.11.057]
[56]
Zhu, S.L.; Wu, Y.; Liu, C.J.; Wei, C.Y.; Tao, J.C.; Liu, H.M. Design and stereoselective synthesis of novel isosteviol-fused pyrazolines and pyrazoles as potential anticancer agents. Eur. J. Med. Chem., 2013, 65, 70-82.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.044] [PMID: 23693151]
[57]
Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-Activity Relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 2017, 125, 143-189.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.023] [PMID: 27662031]
[58]
Akhtar, M.J.; Khan, A.A.; Ali, Z.; Dewangan, R.P.; Rafi, M.; Hassan, M.Q.; Akhtar, M.S.; Siddiqui, A.A.; Partap, S.; Pasha, S.; Yar, M.S. Synthesis of stable benzimidazole derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors. Bioorg. Chem., 2018, 78, 158-169.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.002] [PMID: 29571113]
[59]
George, R.F.; Samir, E.M.; Abdelhamed, M.N.; Abdel-Aziz, H.A.; Abbas, S.E.S. Synthesis and anti-proliferative activity of some new quinoline based 4,5-dihydropyrazoles and their thiazole hybrids as EGFR inhibitors. Bioorg. Chem., 2019, 83, 186-197.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.038] [PMID: 30380447]
[60]
Tao, X.X.; Duan, Y.T.; Chen, L.W.; Tang, D.J.; Yang, M.R.; Wang, P.F.; Xu, C.; Zhu, H.L. Design, synthesis and biological evaluation of pyrazolyl-nitroimidazole derivatives as potential EGFR/HER-2 kinase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(2), 677-683.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.040] [PMID: 26652482]
[61]
Wang, H.C.; Yan, X.Q.; Yan, T.L.; Li, H.X.; Wang, Z.C.; Zhu, H.L. Design, synthesis and biological evaluation of benzohydrazide derivatives containing dihydropyrazoles as potential EGFR kinase inhibitors. Molecules, 2016, 21(8), 1012.
[http://dx.doi.org/10.3390/molecules21081012] [PMID: 27527130]
[62]
Yuan, J.W.; Wang, S.F.; Luo, Z.L.; Qiu, H.Y.; Wang, P.F.; Zhang, X.; Yang, Y.A.; Yin, Y.; Zhang, F.; Zhu, H.L. Synthesis and biological evaluation of compounds which contain pyrazole, thiazole and naphthalene ring as antitumor agents. Bioorg. Med. Chem. Lett., 2014, 24(10), 2324-2328.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.072] [PMID: 24731281]
[63]
Yang, W.; Hu, Y.; Yang, Y.S.; Zhang, F.; Zhang, Y.B.; Wang, X.L.; Tang, J.F.; Zhong, W.Q.; Zhu, H.L. Design, modification and 3D QSAR studies of novel naphthalin-containing pyrazoline derivatives with/without thiourea skeleton as anticancer agents. Bioorg. Med. Chem., 2013, 21(5), 1050-1063.
[http://dx.doi.org/10.1016/j.bmc.2013.01.013] [PMID: 23391364]
[64]
Wang, H.H.; Qiu, K.M.; Cui, H.E.; Yang, Y.S. Yin-Luo; Xing, M.; Qiu, X.Y.; Bai, L.F.; Zhu, H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives containing benzodioxole as potential anticancer agents. Bioorg. Med. Chem., 2013, 21(2), 448-455.
[http://dx.doi.org/10.1016/j.bmc.2012.11.020] [PMID: 23245802]
[65]
Qiu, K.M.; Wang, H.H.; Wang, L.M.; Luo, Y.; Yang, X.H.; Wang, X.M.; Zhu, H.L. Design, synthesis and biological evaluation of pyrazolyl-thiazolinone derivatives as potential EGFR and HER-2 kinase inhibitors. Bioorg. Med. Chem., 2012, 20(6), 2010-2018.
[http://dx.doi.org/10.1016/j.bmc.2012.01.051] [PMID: 22361272]
[66]
Lv, P.C.; Li, D.D.; Li, Q.S.; Lu, X.; Xiao, Z.P.; Zhu, H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives as EGFR TK inhibitors and potential anticancer agents. Bioorg. Med. Chem. Lett., 2011, 21(18), 5374-5377.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.010] [PMID: 21802290]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy