Recent Development of 1,2,4-triazole-containing Compounds as Anticancer Agents

Author(s): Xiaoyue Wen, Yongqin Zhou*, Junhao Zeng, Xinyue Liu

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 16 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

1,2,4-Triazole derivatives possess promising in vitro and in vivo anticancer activity, and many anticancer agents such as fluconazole, tebuconazole, triadimefon, and ribavirin bear a 1,2,4-triazole moiety, revealing their potential in the development of novel anticancer agents. This review emphasizes the recent advances in 1,2,4-triazole-containing compounds with anticancer potential, and the structureactivity relationships as well as mechanisms of action are also discussed.

Keywords: 1, 2, 4-triazole, Anticancer, Structure-activity relationship, Fluconazole, Tebuconazole, Triadimefon, Ribavirin.

[1]
Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. Available From. https://www.iarc.fr/featured-news/latest-global-cancer-data-cancer-burden-rises-to-18-1-million-new-cases-and-9-6-million-cancer-deaths-in-2018/ (Accessed 2018).
[2]
American Association for Cancer Research. Cancer progress report, 2019.Available From. http://www.cancerprogressreport.org/ (Accessed 2019).
[3]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[4]
Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med., 2002, 53, 615-627.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103929] [PMID: 11818492]
[5]
Gao, F.; Wang, T.; Xiao, J.; Huang, G. Antibacterial activity study of 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2019, 173, 274-281.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.043] [PMID: 31009913]
[6]
Küçükgüzel, Ş.G.; Çıkla-Süzgün, P. Recent advances bioactive 1,2,4-triazole-3-thiones. Eur. J. Med. Chem., 2015, 97, 830-870.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.033] [PMID: 25563511]
[7]
Ayati, A.; Emami, S.; Foroumadi, A. The importance of triazole scaffold in the development of anticonvulsant agents. Eur. J. Med. Chem., 2016, 109, 380-392.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.009] [PMID: 26826582]
[8]
Kaproń, B.; Łuszczki, J.J.; Płazińska, A.; Siwek, A.; Karcz, T.; Gryboś, A.; Nowak, G.; Makuch-Kocka, A.; Walczak, K.; Langner, E.; Szalast, K.; Marciniak, S.; Paczkowska, M.; Cielecka-Piontek, J.; Ciesla, L.M.; Plech, T. Development of the 1,2,4-triazole-based anticonvulsant drug candidates acting on the voltage-gated sodium channels. Insights from in-vivo, in-vitro, and in-silico studies. Eur. J. Pharm. Sci., 2019, 129, 42-57.
[http://dx.doi.org/10.1016/j.ejps.2018.12.018] [PMID: 30594731]
[9]
Kaur, P.; Chawla, A. 1,2,4-Triazole: A review of pharmacological activities. Int. Res. J. Pharm., 2017, 8, 10-29.
[http://dx.doi.org/10.7897/2230-8407.087112]
[10]
Peyton, L.R.; Gallagher, S.; Hashemzadeh, M. Triazole antifungals: a review. Drugs Today (Barc), 2015, 51(12), 705-718.
[PMID: 26798851]
[11]
Suleymanoğlu, N.; Ustabaş, R.; Direkel, Ş.; Alpaslan, Y.B.; Ünver, Y. 1,2,4-Triazole derivative with Schiff base; thiol-thione tautomerism, DFT study and antileishmanial activity. J. Mol. Struct., 2017, 1150, 82-87.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.075]
[12]
Suleymanoğlu, N.; Ünver, Y.; Ustabaş, R.; Direkel, Ş.; Alpaslan, Y.B. Antileishmanial activity study and theoretical calculations for 4-amino-1,2,4-triazole derivatives. J. Mol. Struct., 2017, 1144, 80-86.
[http://dx.doi.org/10.1016/j.molstruc.2017.05.017]
[13]
Seelam, N.; Shrivastava, S.P.; Prasanthi, S.; Gupta, S. Synthesis and in vitro study of some fused 1,2,4-triazole derivatives as antimycobacterial agents. J. Saudi Chem. Soc., 2016, 20, 411-418.
[http://dx.doi.org/10.1016/j.jscs.2012.11.011]
[14]
Keri, R.S.; Patil, S.A.; Budagumpi, S.; Nagaraja, B.M. Triazole: A promising antitubercular agent. Chem. Biol. Drug Des., 2015, 86(4), 410-423.
[http://dx.doi.org/10.1111/cbdd.12527] [PMID: 25643871]
[15]
Cascioferro, S.; Parrino, B.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G. An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds. Eur. J. Med. Chem., 2017, 142, 328-375.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.009] [PMID: 28851503]
[16]
Kaur, P.; Chawla, A. Recent developments on 1,2,4-triazole nucleus in anticancer compounds: A review. Int. Res. J. Pharm., 2017, 8, 10-29.
[http://dx.doi.org/10.7897/2230-8407.087112]
[17]
Meunier, B. Hybrid molecules with a dual mode of action: dream or reality? Acc. Chem. Res., 2008, 41(1), 69-77.
[http://dx.doi.org/10.1021/ar7000843] [PMID: 17665872]
[18]
Shaveta, ; Mishra, S.; Singh, P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 2016, 124, 500-536.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.039] [PMID: 27598238]
[19]
Yu, H.; Li, Y.; Ge, Y.; Song, Z.; Wang, C.; Huang, S.; Jin, Y.; Han, X.; Zhen, Y.; Liu, K.; Zhou, Y.; Ma, X. Novel 4-anilinoquinazoline derivatives featuring an 1-adamantyl moiety as potent EGFR inhibitors with enhanced activity against NSCLC cell lines. Eur. J. Med. Chem., 2016, 110, 195-203.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.045] [PMID: 26829280]
[20]
Xia, Y.; Duan, Q.; Zhao, B.H.; Li, D.F.; Hou, R.B. Design, synthesis and structure-activity relationship studies of novel 4-(1-adamantyl) phenyl analogues as hif-1α inhibitors. Med. Chem., 2016, 12(4), 338-346.
[http://dx.doi.org/10.2174/1573406412666151109113007] [PMID: 26548744]
[21]
Bao, X.; Sun, Y.; Bao, C.; Zhang, J.; Zou, S.; Yang, J.; Wu, C.; Wang, L.; Chen, G. Design, synthesis and evaluation of N-hydroxypropenamides based on adamantane to overcome resistance in NSCLC. Bioorg. Chem., 2019, 86, 696-704.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.047] [PMID: 30831531]
[22]
Cincinelli, R.; Dallavalle, S.; Nannei, R.; Carella, S.; De Zani, D.; Merlini, L.; Penco, S.; Garattini, E.; Giannini, G.; Pisano, C.; Vesci, L.; Carminati, P.; Zuco, V.; Zanchi, C.; Zunino, F. Synthesis and structure-activity relationships of a new series of retinoid-related biphenyl-4-ylacrylic acids endowed with antiproliferative and proapoptotic activity. J. Med. Chem., 2005, 48(15), 4931-4946.
[http://dx.doi.org/10.1021/jm049440h] [PMID: 16033272]
[23]
Gopalan, B.; Ponpandian, T.; Kachhadia, V.; Bharathimohan, K.; Vignesh, R.; Sivasudar, V.; Narayanan, S.; Mandar, B.; Praveen, R.; Saranya, N.; Rajagopal, S.; Rajagopal, S. Discovery of adamantane based highly potent HDAC inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(9), 2532-2537.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.002] [PMID: 23538115]
[24]
Cai, Y.; Yang, F.; Chai, X.Y.; Wang, T.; Wu, Q.Y.; Meng, Q.G. Synthesis and anti-breast cancer activity of azole derivatives. Acad. J. Sec. Mil. Med. Univ., 2016, 37, 349-354.
[25]
Milošev, M.Z.; Jakovljević, K.; Joksović, M.D.; Stanojković, T.; Matić, I.Z.; Perović, M.; Tešić, V.; Kanazir, S.; Mladenović, M.; Rodić, M.V.; Leovac, V.M.; Trifunović, S.; Marković, V. Mannich bases of 1,2,4-triazole-3-thione containing adamantane moiety: Synthesis, preliminary anticancer evaluation, and molecular modeling studies. Chem. Biol. Drug Des., 2017, 89(6), 943-952.
[http://dx.doi.org/10.1111/cbdd.12920] [PMID: 27933733]
[26]
Genc, Z.K.; Tekin, S.; Sandal, S.; Genc, M. Theoretical calculations, cytotoxic evaluation, and molecular docking studies of 4-(1-adamantyl)-5-[2-(3-hydroxynapthyl)]-2H-1,2,4-triazole-3(4H)-thione as a novel chemotherapeutic agent. Res. Chem. Intermed., 2015, 41, 6229-3244.
[http://dx.doi.org/10.1007/s11164-014-1735-1]
[27]
Zhang, S.; Xu, Z.; Gao, C.; Ren, Q.C.; Chang, L.; Lv, Z.S.; Feng, L.S. Triazole derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 138, 501-513.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.051] [PMID: 28692915]
[28]
Zhang, J.; Wang, S.; Ba, Y.; Xu, Z. Tetrazole hybrids with potential anticancer activity. Eur. J. Med. Chem., 2019, 178, 341-351.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.071] [PMID: 31200236]
[29]
Kaur, R.; Dwivedi, A.R.; Kumar, B.; Kumar, V. Recent developments on 1,2,4-triazole nucleus in anticancer compounds: A review. Anticancer. Agents Med. Chem., 2016, 16(4), 465-489.
[http://dx.doi.org/10.2174/1871520615666150819121106] [PMID: 26286663]
[30]
Subba Rao, A.V.; Swapna, K.; Shaik, S.P.; Lakshma Nayak, V.; Srinivasa Reddy, T.; Sunkari, S.; Shaik, T.B.; Bagul, C.; Kamal, A. Synthesis and biological evaluation of cis-restricted triazole/tetrazole mimics of combretastatin-benzothiazole hybrids as tubulin polymerization inhibitors and apoptosis inducers. Bioorg. Med. Chem., 2017, 25(3), 977-999.
[http://dx.doi.org/10.1016/j.bmc.2016.12.010] [PMID: 28034647]
[31]
Ye, J.; Xiao, M.W.; Xie, X.Q.; Qiu, S.Y.; Dai, M.C.; Li, W.; Hen, F.; Hu, A.X. Synthesis and cytotoxicity in vitro of N-aryl-4-(tert-butyl)-5-(1H-1,2,4-triazol-1-yl)thiazol-2-amine. J. Chin. Chem. Soc. (Taipei), 2015, 62, 627-631.
[http://dx.doi.org/10.1002/jccs.201400395]
[32]
Ostapiuk, Y.V.; Frolov, D.A.; Vasylyschyn, R.Y.; Matiychuk, V.S. Synthesis and antitumor activities of new N-(5-benzylthiazol-2-yl)-2-(heteryl-5-ylsulfanyl)-acetamides. Biopolymers Cell, 2018, 34, 59-71.
[http://dx.doi.org/10.7124/bc.000971]
[33]
Bansal, K.K.; Sharma, D.; Sharma, A.; Rajak, H.; Sharma, P.C. Novel thiazole clubbed triazole derivatives as antimicrobial, antimalarial, and cytotoxic agents. Indian J. Heterocycl. Chem., 2018, 28, 305-312.
[34]
Pogaku, V.; Eslavath, R.K.; Dayakar, G.; Singh, S.S.; Basavoju, S. Synthesis and biological evaluation of novel triazole substituted pyrazolyl-methylenehydrazinyl-5-arylidene thiazolidinone derivatives as antibacterial and cytotoxic agents. Res. Chem. Intermed., 2017, 43, 6079-6098.
[http://dx.doi.org/10.1007/s11164-017-2978-4]
[35]
Abdelazeem, A.H.; El-Saadi, M.T.; Said, E.G.; Youssif, B.G.M.; Omar, H.A.; El-Moghazy, S.M. Novel diphenylthiazole derivatives with multi-target mechanism: Synthesis, docking study, anticancer and anti-inflammatory activities. Bioorg. Chem., 2017, 75, 127-138.
[http://dx.doi.org/10.1016/j.bioorg.2017.09.009] [PMID: 28938224]
[36]
El-Sherief, H.A.M.; Youssif, B.G.M.; Abbas Bukhari, S.N.; Abdelazeem, A.H.; Abdel-Aziz, M.; Abdel-Rahman, H.M. Synthesis, anticancer activity and molecular modeling studies of 1,2,4-triazole derivatives as EGFR inhibitors. Eur. J. Med. Chem., 2018, 156, 774-789.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.024] [PMID: 30055463]
[37]
Ribeiro, C.J.A.; Kankanala, J.; Shi, K.; Kurahashi, K.; Kiselev, E.; Ravji, A.; Pommier, Y.; Aihara, H.; Wang, Z. New fluorescence-based high-throughput screening assay for small molecule inhibitors of tyrosyl-DNA phosphodiesterase 2 (TDP2). Eur. J. Pharm. Sci., 2018, 118, 67-79.
[http://dx.doi.org/10.1016/j.ejps.2018.03.021] [PMID: 29574079]
[38]
Chowrasia, D.; Karthikeyan, C.; Choure, L.; Sahabjada, M.; Arshad, M.; Trivedi, P. Synthesis, characterization and anti-cancer activity of some fluorinated 3,6-diaryl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles. Arab. J. Chem., 2017, 10, S2424-S2428.
[http://dx.doi.org/10.1016/j.arabjc.2013.08.026]
[39]
Xu, Q.; Sun, M.; Bai, Z.; Wang, Y.; Wu, Y.; Tian, H.; Zuo, D.; Guan, Q.; Bao, K.; Wu, Y.; Zhang, W. Design, synthesis and bioevaluation of antitubulin agents carrying diaryl-5,5-fused-heterocycle scaffold. Eur. J. Med. Chem., 2017, 139, 242-249.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.065] [PMID: 28802124]
[40]
Rostom, S.A.F.; Badr, M.H.; Abd El Razik, H.A.; Ashour, H.M.A. Structure-based development of novel triazoles and related thiazolotriazoles as anticancer agents and Cdc25A/B phosphatase inhibitors. Synthesis, in vitro biological evaluation, molecular docking and in silico ADME-T studies. Eur. J. Med. Chem., 2017, 139, 263-279.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.053] [PMID: 28803043]
[41]
Zhang, B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem., 2019, 168, 357-372.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.055] [PMID: 30826511]
[42]
Zhang, J.; Wang, S.; Ba, Y.; Xu, Z. 1,2,4-Triazole-quinoline/quinolone hybrids as potential anti-bacterial agents. Eur. J. Med. Chem., 2019, 174, 1-8.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.033] [PMID: 31015103]
[43]
Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183, 111700
[http://dx.doi.org/10.1016/j.ejmech.2019.111700] [PMID: 31546197]
[44]
Wu, G.; Wang, H.; Zhou, W.; Zeng, B.; Mo, W.; Zhu, K.; Liu, R.; Zhou, J.; Chen, C.; Chen, H. Synthesis and structure-activity relationship studies of MI-2 analogues as MALT1 inhibitors. Bioorg. Med. Chem., 2018, 26(12), 3321-3344.
[http://dx.doi.org/10.1016/j.bmc.2018.04.059] [PMID: 29751989]
[45]
Ren, Q.C.; Gao, C.; Xu, Z.; Feng, L.S.; Liu, M.L.; Wu, X.; Zhao, F. Bis-coumarin derivatives and their biological activities. Curr. Top. Med. Chem., 2018, 18(2), 101-113.
[http://dx.doi.org/10.2174/1568026618666180221114515] [PMID: 29473509]
[46]
Fröhlich, T.; Çapcı Karagöz, A.; Reiter, C.; Tsogoeva, S.B. Artemisinin-derived dimers: Potent antimalarial and anti-cancer agents. J. Med. Chem., 2016, 59(16), 7360-7388.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01380] [PMID: 27010926]
[47]
Ali, K.A.; Elsayed, M.A.; Elhallouty, S.M.; Mahmoud, K.; Farag, A.M. Synthesis and antitumor screening of some new 2,6-bispyridine functionalized with pyrazole-based heterocycles. Acta Pol. Pharm.-. Drug Res. (Stuttg.), 2015, 72, 1193-1200.
[48]
Azab, I.H.E.; Elkanzi, N.A.A. Synthesis and in vitro anti-tumor activity of some new sebacoyl chloride based heterocycles. Curr. Org. Synth., 2017, 14, 309-320.
[http://dx.doi.org/10.2174/1570179413666161008200206]
[49]
Utthra, P.P.; Raman, N. Probing the potency of triazole tethered Schiff base complexes and the effect of substituents on their biological attributes. Int. J. Biol. Macromol., 2018, 116, 194-207.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.009] [PMID: 29733928]
[50]
Parlak, A.E.; Tekin, S.; Karatepe, A.; Koparir, P.; Telceken, H.; Ceribası, A.O.; Karatepe, M. In vitro and histological investigation of antitumor effect of some triazole compounds in colon cancer cell line. J. Cell. Biochem., 2019, 120, e11809
[http://dx.doi.org/10.1002/jcb.28460] [PMID: 30770576]
[51]
Bae, S.H.; Park, J.H.; Choi, H.G.; Kim, H.; Kim, S.H. Imidazole antifungal drugs inhibit the cell proliferation and invasion of human breast cancer cells. Biomol. Ther. (Seoul), 2018, 26(5), 494-502.
[http://dx.doi.org/10.4062/biomolther.2018.042] [PMID: 30092625]
[52]
Wei, Z.Y.; Cui, B.R.; Cui, X.; Wu, Y.L.; Fu, Y.; Liu, L.P.; Piao, H.R. Design, synthesis, and negative inotropic evaluation of 4-phenyl-1H-1,2,4-triazol-5(4H)-one derivatives containing triazole or piperazine moieties. Chem. Biol. Drug Des., 2017, 89(1), 47-60.
[http://dx.doi.org/10.1111/cbdd.12828] [PMID: 27465664]
[53]
Pace, J.R.; DeBerardinis, A.M.; Sail, V.; Tacheva-Grigorova, S.K.; Chan, K.A.; Tran, R.; Raccuia, D.S.; Wechsler-Reya, R.J.; Hadden, M.K. Repurposing the clinically efficacious antifungal agent Itraconazole as an anticancer chemotherapeutic. J. Med. Chem., 2016, 59(8), 3635-3649.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01718] [PMID: 27014922]
[54]
Liu, J.J.; Zhao, M.Y.; Zhang, X.; Zhao, X.; Zhu, H.L. Pyrazole derivatives as antitumor, anti-inflammatory and antibacterial agents. Mini Rev. Med. Chem., 2013, 13(13), 1957-1966.
[http://dx.doi.org/10.2174/13895575113139990078] [PMID: 23937232]
[55]
Chauhan, S.; Paliwal, S.; Chauhan, R. Anticancer activity of pyrazole via different biological mechanisms. Synth. Commun., 2014, 44, 1333-1374.
[http://dx.doi.org/10.1080/00397911.2013.837186]
[56]
Gu, W.; Dai, Y.; Qiang, H.; Shi, W.; Liao, C.; Zhao, F.; Huang, W.; Qian, H. Discovery of novel 2-substituted-4-(2-fluorophenoxy) pyridine derivatives possessing pyrazolone and triazole moieties as dual c-Met/VEGFR-2 receptor tyrosine kinase inhibitors. Bioorg. Chem., 2017, 72, 116-122.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.001] [PMID: 28411406]
[57]
Sun, S.; Zhang, Z.; Pokrovskaia, N.; Chowdhury, S.; Jia, Q.; Chang, E.; Khakh, K.; Kwan, R.; McLaren, D.G.; Radomski, C.C.; Ratkay, L.G.; Fu, J.; Dales, N.A.; Winther, M.D. Discovery of triazolone derivatives as novel, potent stearoyl-CoA desaturase-1 (SCD1) inhibitors. Bioorg. Med. Chem., 2015, 23(3), 455-465.
[http://dx.doi.org/10.1016/j.bmc.2014.12.014] [PMID: 25555732]
[58]
Farghaly, T.A.; Gomha, S.M.; Mousa, E.K.; Elaasser, M. Hydrazonoyl chlorides in the synthesis of pyrazolo[5,1-c][1,2,4]triazole derivatives and their biological activities. J. Chem. Res., 2016, 40, 467-470.
[http://dx.doi.org/10.3184/174751916X14664365099510]
[59]
Zejat, R.; Mahjoub, M.A.; Hekmatian, Z.; Javidi, M.A.; Babashah, S. Zeolite-catalyzed synthesis of pyrazolo[1,2-a][1,2,4]triazole-1,3-dione derivatives as anti-breast cancer agents. J. Iran. Chem. Soc., 2018, 15, 1133-1143.
[http://dx.doi.org/10.1007/s13738-018-1310-6]
[60]
Mojzych, M.; Tarasiuk, P.; Karczmarzyk, Z.; Juszczak, M.; Rzeski, W.; Fruzinski, A.; Wozny, A. Synthesis, Structure and Antiproliferative Activity of New pyrazolo[4,3- e]triazolo[4,5-b][1,2,4]triazine Derivatives. Med. Chem., 2018, 14(1), 53-59.
[http://dx.doi.org/10.2174/1573406413666171020114924] [PMID: 29065838]
[61]
Zhang, H.Z.; Zhao, Z.L.; Zhou, C.H. Recent advance in oxazole-based medicinal chemistry. Eur. J. Med. Chem., 2018, 144, 444-492.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.044] [PMID: 29288945]
[62]
Kaur, R.; Palta, K.; Kumar, M.; Bhargava, M.; Dahiya, L. Therapeutic potential of oxazole scaffold: a patent review (2006-2017). Expert Opin. Ther. Pat., 2018, 28(11), 783-812.
[http://dx.doi.org/10.1080/13543776.2018.1526280] [PMID: 30239247]
[63]
Abu-Bakr, S.M.; Roaiah, H.M.; Fawzy, N.M.; Omar, M.A.; Youns, M.M. Design, synthesis and antitumor activities of some novel benzoxazole carbohydrazide derivatives. Res. J. Pharm. Biol. Chem. Sci., 2017, 8, 68-78.
[64]
El-Nezhawy, A.O.H.; Eweas, A.F.; Radwan, M.A.A.; El-Naggar, T.B.A. Synthesis and molecular docking studies of novel 2-phenyl-4-substituted oxazole derivatives as potential anti-cancer agents. J. Heterocycl. Chem., 2016, 53, 271-279.
[http://dx.doi.org/10.1002/jhet.2422]
[65]
Gomha, S.M.; Badry, M.G.; Abdalla, M.M. Isoxazolopyrimidinethione and isoxazolopyridopyrimidinethione derivatives: Key intermediates for synthesis of novel fused triazoles as potent 5α-Reductase inhibitors and anti-prostate cancer. J. Heterocycl. Chem., 2016, 53, 558-565.
[http://dx.doi.org/10.1002/jhet.2417]
[66]
Nassar, I.F.; Att-Allah, S.R.; Hemdan, M.M. Utility of thiophene-2-carbonyl isothiocyanate as a precursor for the synthesis of 1,2,4-triazole, 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives with evaluation of their antitumor and antimicrobial activities. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193, 630-639.
[http://dx.doi.org/10.1080/10426507.2018.1487435]
[67]
Hudson, K.; Hancox, U.J.; Trigwell, C.; McEwen, R.; Polanska, U.M.; Nikolaou, M.; Morentin Gutierrez, P.; Avivar-Valderas, A.; Delpuech, O.; Dudley, P.; Hanson, L.; Ellston, R.; Jones, A.; Cumberbatch, M.; Cosulich, S.C.; Ward, L.; Cruzalegui, F.; Green, S. Intermittent high-dose scheduling of AZD8835, a novel selective inhibitor of PI3Kα and PI3Kδ, demonstrates treatment strategies for PIK3CA-dependent breast cancers. Mol. Cancer Ther., 2016, 15(5), 877-889.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0687] [PMID: 26839307]
[68]
Avanzo, R.E.; Padrón, J.M.; D’Accorso, N.B.; Fascio, M.L. Synthesis and in vitro antiproliferative activities of (5-aryl-1,2,4-oxadiazole-3-yl) methyl d-ribofuranosides. Bioorg. Med. Chem. Lett., 2017, 27(16), 3674-3677.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.015] [PMID: 28716494]
[69]
Li, Y.; Pasunooti, K.K.; Li, R.J.; Liu, W.; Head, S.A.; Shi, W.Q.; Liu, J.O. Novel tetrazole-containing analogues of Itraconazole as potent antiangiogenic agents with reduced cytochrome P450 3A4 inhibition. J. Med. Chem., 2018, 61(24), 11158-11168.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01252] [PMID: 30481027]
[70]
Karaali, N.; Mentese, E. Synthesis and study of antitumor activity of some new 2-(4-methoxybenzyl)-1H-benzimidazole derivatives bearing triazole, oxadiazole and ethanol moiety. Rev. Roum. Chim., 2016, 61, 187-192.
[71]
Elhady, H.A.; El-Sayed, R.; Al-Nathali, H.S. Design, synthesis and evaluation of anticancer activity of novel 2-thioxoimidazolidin-4-one derivatives bearing pyrazole, triazole and benzoxazole moieties. Chem. Cent. J., 2018, 12(1), 51-63.
[http://dx.doi.org/10.1186/s13065-018-0418-1] [PMID: 29740713]
[72]
Li, B.L.; Li, B.; Zhang, R.L.; Zhao, J.J.; Wang, X.F.; Liu, Y.M.; Shi, Y.P.; Liu, J.B.; Chen, B.Q. Synthesis and antiproliferative evaluation of novel 1,2,4-triazole derivatives incorporating benzisoselenazolone scaffold. Bioorg. Med. Chem. Lett., 2016, 26(4), 1279-1281.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.017] [PMID: 26786698]
[73]
Yadav, V.R.; Prasad, S.; Sung, B.; Aggarwal, B.B. The role of chalcones in suppression of NF-κB-mediated inflammation and cancer. Int. Immunopharmacol., 2011, 11(3), 295-309.
[http://dx.doi.org/10.1016/j.intimp.2010.12.006] [PMID: 21184860]
[74]
Sharma, V.; Kumar, V.; Kumar, P. Heterocyclic chalcone analogues as potential anticancer agents. Anticancer. Agents Med. Chem., 2013, 13(3), 422-432.
[PMID: 22721390]
[75]
Ahmed, F.F.; Abd El-Hafeez, A.A.; Abbas, S.H.; Abdelhamid, D.; Abdel-Aziz, M. New 1,2,4-triazole-Chalcone hybrids induce Caspase-3 dependent apoptosis in A549 human lung adenocarcinoma cells. Eur. J. Med. Chem., 2018, 151, 705-722.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.073] [PMID: 29660690]
[76]
Li, W.; Yang, Z.H.; Hu, A.X.; Yan, X.W.; Ding, N.; Ye, J. Design, Synthesis, and Antitumor Activity of (E,Z)-1-(dihydrobenzofuran-5-yl)-3-phenyl-2-(1,2,4-triazol-1-yl)-2-propen-1-ones. Chem. Biol. Drug Des., 2015, 86(6), 1339-1350.
[http://dx.doi.org/10.1111/cbdd.12601] [PMID: 26041467]
[77]
Thakur, A.; Singla, R.; Jaitak, V. Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem., 2015, 101, 476-495.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.010] [PMID: 26188907]
[78]
Dandriyal, J.; Singla, R.; Kumar, M.; Jaitak, V. Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur. J. Med. Chem., 2016, 119, 141-168.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.087] [PMID: 27155469]
[79]
Ballazhi, L.; Imeri, F.; Jashari, A.; Popovski, E.; Stojković, G.; Dimovski, A.J.; Mikhova, B.; Mladenovska, K. Original research paper. Hydrazinyldiene-chroman-2,4-diones in inducing growth arrest and apoptosis in breast cancer cells: Synergism with doxorubicin and correlation with physicochemical properties. Acta Pharm., 2017, 67(1), 35-52.
[http://dx.doi.org/10.1515/acph-2017-0006] [PMID: 28231049]
[80]
Ballazhi, L.; Popovski, E.; Jashari, A.; Imeri, F.; Ibrahimi, I.; Mikhova, B.; Mladenovska, K. Potential antiproliferative effect of isoxazolo- and thiazolo coumarin derivatives on breast cancer mediated bone and lung metastases. Acta Pharm., 2015, 65(1), 53-63.
[http://dx.doi.org/10.1515/acph-2015-0002] [PMID: 25781704]
[81]
Fan, M.C.; Han, G.Y.; Zhang, X.J.; Xi, H.F. Studies of in vitro anti-prostate cancer potential of newer 1,2,4-triazolo-1,3,4-thiadiazines with different heteroaromatics. Bangladesh J. Pharmacol., 2015, 10, 305-315.
[http://dx.doi.org/10.3329/bjp.v10i2.22424]
[82]
Shen, Q.K.; Liu, C.F.; Zhang, H.J.; Tian, Y.S.; Quan, Z.S. Design and synthesis of new triazoles linked to xanthotoxin for potent and highly selective anti-gastric cancer agents. Bioorg. Med. Chem. Lett., 2017, 27(21), 4871-4875.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.040] [PMID: 28947149]
[83]
Achar, G.; Shahini, C.R.; Patil, S.A.; Malecki, J.G.; Budagumpi, S. Coumarin-substituted 1,2,4-triazole-derived silver(I) and gold(I) complexes: Synthesis, characterization and anticancer studies. New J. Chem., 2019, 43, 1216-1299.
[http://dx.doi.org/10.1039/C8NJ02927J]
[84]
Liu, C.F.; Shen, Q.K.; Li, J.J.; Tian, Y.S.; Quan, Z. Synthesis and biological evaluation of novel 7-hydroxy-4-phenylchromen-2-one-linked to triazole moieties as potent cytotoxic agents. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1111-1119.
[http://dx.doi.org/10.1080/14756366.2017.1344982] [PMID: 28791908]
[85]
Morsy, S.A.; Farahat, A.A.; Nasr, M.N.A.; Tantawy, A.S. Synthesis, molecular modeling and anticancer activity of new coumarin containing compounds. Saudi Pharm. J., 2017, 25(6), 873-883.
[http://dx.doi.org/10.1016/j.jsps.2017.02.003] [PMID: 28951673]
[86]
Kahveci, B.; Yılmaz, F.; Menteşe, E.; Ülker, S. Design, synthesis, and biological evaluation of coumarin-triazole hybrid molecules as potential antitumor and pancreatic lipase agents. Arch. Pharm. (Weinheim), 2017, 350(8) e1600369
[http://dx.doi.org/10.1002/ardp.201600369] [PMID: 28543820]
[87]
Shaikh, S.K.J.; Sannaikai, M.S.; Kumbar, M.N.; Bayannavar, P.K.; Kamble, R.R.; Inamdar, S.R.; Joshi, S.D. Microwave-expedited green synthesis, photophysical, computational studies of coumarin-3-yl-thiazol-3-yl-1,2,4-triazolin-3-ones and their anticancer activity. ChemistrySelect, 2018, 3, 4448-4462.
[http://dx.doi.org/10.1002/slct.201702596]
[88]
Sable, P.M.; Potey, L.C. Synthesis and antiproliferative activity of imidazole and triazole derivatives of flavonoids. Pharm. Chem. J., 2018, 52, 438-443.
[http://dx.doi.org/10.1007/s11094-018-1836-z]
[89]
Al-Wahaibi, L.H.; Abu-Melha, H.M.; Ibrahim, D.A. Synthesis of novel 1,2,4-triazolyl coumarin derivatives as potential anticancer agents. J. Chem., 2018, 2018, e5201374
[http://dx.doi.org/10.1155/2018/5201374]
[90]
Ibrar, A.; Zaib, S.; Jabeen, F.; Iqbal, J.; Saeed, A. Unraveling the alkaline phosphatase inhibition, anticancer, and antileishmanial potential of coumarin-triazolothiadiazine hybrids: Design, synthesis, and molecular docking analysis. Arch. Pharm. (Weinheim), 2016, 349(7), 553-565.
[http://dx.doi.org/10.1002/ardp.201500392] [PMID: 27214743]
[91]
Gomha, S.M.; Abdel-aziz, H.M.; Badrey, M.G.; Abdulla, M.M. Efficient synthesis of some new 1,3,4-thiadiazoles and 1,2,4-triazoles linked to pyrazolylcoumarin ring system as potent 5α-reductase inhibitors. J. Heterocycl. Chem., 2019, 56, 1275-1282.
[http://dx.doi.org/10.1002/jhet.3487]
[92]
Patil, S.A.; Patil, R.; Miller, D.D. Indole molecules as inhibitors of tubulin polymerization: potential new anticancer agents. Future Med. Chem., 2012, 4(16), 2085-2115.
[http://dx.doi.org/10.4155/fmc.12.141] [PMID: 23157240]
[93]
Hou, Y.; Shang, C.; Wang, H.; Yun, J. Isatin–azole hybrids and their anticancer activities. Arch. der Pharm., 2019. [ePub Ahead of Print]
[http://dx.doi.org/10.1002/ardp.201900272] [PMID: 31691360]
[94]
Boraei, A.T.A.; Gomaa, M.S.; El Ashry, E.S.; Duerkop, A. Design, selective alkylation and X-ray crystal structure determination of dihydro-indolyl-1,2,4-triazole-3-thione and its 3-benzylsulfanyl analogue as potent anticancer agents. Eur. J. Med. Chem., 2017, 125, 360-371.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.046] [PMID: 27688190]
[95]
Kang, H.; Xiao, X.; Huang, C.; Yuan, Y.; Tang, D.; Dai, X.; Zeng, X. Potent aromatase inhibitors and molecular mechanism of inhibitory action. Eur. J. Med. Chem., 2018, 143, 426-437.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.057] [PMID: 29202405]
[96]
Das, A.; Narayanam, M.K.; Paul, S.; Mukhnerjee, P.; Ghosh, S.; Dastidar, D.G.; Chakrabarty, S.; Ganguli, A.; Basu, B.; Pal, M.; Chatterji, U.; Banerjee, S.K.; Karmakar, P.; Kumar, D.; Chakrabarti, G. A novel triazole, NMK-T-057, induces autophagic cell death in breast cancer cells by inhibiting γ-secretase-mediated activation of Notch signaling. J. Biol. Chem., 2019, 294(17), 6733-6750.
[http://dx.doi.org/10.1074/jbc.RA119.007671] [PMID: 30824542]
[97]
Çıkla-Süzgün, P.; Kaushik-Basu, N.; Basu, A.; Arora, P.; Talele, T.T.; Durmaz, I.; Çetin-Atalay, R.; Küçükgüzel, Ş.G. Anti-cancer and anti-hepatitis C virus NS5B polymerase activity of etodolac 1,2,4-triazoles. J. Enzyme Inhib. Med. Chem., 2015, 30(5), 778-785.
[http://dx.doi.org/10.3109/14756366.2014.971780] [PMID: 25676325]
[98]
Çoruh, I.; Çevik, Ö.; Yelekçi, K.; Djikic, T.; Küçükgüzel, Ş.G. Synthesis, anticancer activity, and molecular modeling of etodolac-thioether derivatives as potent methionine aminopeptidase (type II) inhibitors. Arch. Pharm. (Weinheim), 2018, 351(3-4) e1700195
[http://dx.doi.org/10.1002/ardp.201700195] [PMID: 29575045]
[99]
Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.; Sinthupoom, N.; Prachayasittikul, V.; Ruchirawat, S.; Prachayasittikul, V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem., 2017, 17(10), 869-901.
[http://dx.doi.org/10.2174/1389557516666160923125801] [PMID: 27670581]
[100]
Goel, R.; Luxami, V.; Paul, K. Imidazo[1,2-a]pyridines: Promising drug candidate for antitumor therapy. Curr. Top. Med. Chem., 2016, 16(30), 3590-3616.
[http://dx.doi.org/10.2174/1568026616666160414122644] [PMID: 27086790]
[101]
Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 2017, 125, 143-189.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.023] [PMID: 27662031]
[102]
El-Sherief, H.A.M.; Youssif, B.G.M.; Bukhari, S.N.A.; Abdel-Aziz, M.; Abdel-Rahman, H.M. Novel 1,2,4-triazole derivatives as potential anticancer agents: Design, synthesis, molecular docking and mechanistic studies. Bioorg. Chem., 2018, 76, 314-325.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.013] [PMID: 29227915]
[103]
Romagnoli, R.; Prencipe, F.; Oliva, P.; Baraldi, S.; Baraldi, P.G.; Brancale, A.; Ferla, S.; Hamel, E.; Bortolozzi, R.; Viola, G. 3-Aryl/Heteroaryl-5-amino-1-(3′,4′,5′-trimethoxybenzoyl)-1,2,4-triazoles as antimicrotubule agents. Design, synthesis, antiproliferative activity and inhibition of tubulin polymerization. Bioorg. Chem., 2018, 80, 361-374.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.037] [PMID: 29986184]
[104]
Amr, A.E.G.E.; Abdalla, M.M. Anticancer activities of some synthesized 2,4,6-trisubstituted pyridine candidates. Biomed. Res., 2016, 27, 731-736.
[105]
El-Deen, E.M.M.; Mohamed, N.A. ZEl-Serwy, W. S.; Abdelghany, T. M.; Nossier, E. S. Synthesis, molecular docking and cytotoxicity evaluation of novel 1,2-disubstituted benzimidazole derivatives against liver and breast cancer cell lines. Res. J. Pharmaceut., 2016, 7, 1599-1614.
[106]
Hussein, E.M.; Al-Shareef, H.F.; Aboellil, A.H.; Elhady, H.A. Synthesis of some novel 6′-(4-chlorophenyl)-3,4′-bipyridine-3′-carbonitriles: Assessment of their antimicrobial and cytotoxic activity. Z. Naturforsch., 2015, 70, 783-795.
[http://dx.doi.org/10.1515/znb-2015-0065]
[107]
Megally Abdo, N.Y.; Kamel, M.M. Synthesis and anticancer evaluation of 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, 1,2,4-triazoles and Mannich bases. Chem. Pharm. Bull. (Tokyo), 2015, 63(5), 369-376.
[http://dx.doi.org/10.1248/cpb.c15-00059] [PMID: 25948330]
[108]
Feng, L.S.; Xu, Z.; Chang, L.; Li, C.; Yan, X.F.; Gao, C.; Ding, C.; Zhao, F.; Shi, F.; Wu, X. Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant Plasmodium falciparum. Med. Res. Rev., 2019. [Epub ahead of print]
[http://dx.doi.org/10.1002/med.21643] [PMID: 31692025]
[109]
Hu, Y.Q.; Zhang, S.; Xu, Z.; Lv, Z.S.; Liu, M.L.; Feng, L.S. 4-Quinolone hybrids and their antibacterial activities. Eur. J. Med. Chem., 2017, 141, 335-345.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.050] [PMID: 29031077]
[110]
Gao, F.; Zhang, X.; Wang, T.; Xiao, J. Quinolone hybrids and their anti-cancer activities: An overview. Eur. J. Med. Chem., 2019, 165, 59-79.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.017] [PMID: 30660827]
[111]
Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin. Drug Discov., 2017, 12(6), 583-597.
[http://dx.doi.org/10.1080/17460441.2017.1319357] [PMID: 28399679]
[112]
Anantacharya, R.; Satyanarayan, N.D.; Sukhlal Kalal, B.; Pai, V.R. Cytotoxic, DNA cleavage and pharmacokinetic parameter study of substituted novel furan C-2 quinoline coupled 1,2,4-triazole and its analogs. Open Med. Chem. J., 2018, 12, 60-72.
[http://dx.doi.org/10.2174/1874104501812010060] [PMID: 30008962]
[113]
Santoshkumar, S.; Manjulatha, K.; Satyanarayan, N.D.; Anantacharya, R.; Harishkumar, S.; Harishkumar, H.N.; Yallappa, S.; Dhananjaya, B.L. Antiproliferative, ADME and potential in silico G6PDH inhibitory activity of novel 2-(1-benzofuran-2-yl)-4-(5-phenyl-4H-1,2,4-triazol-3-yl)quinoline derivatives. Int. J. Pharm. Pharm. Sci., 2016, 8, 313-319.
[http://dx.doi.org/10.22159/ijpps.2016v8i11.14791]
[114]
Korcz, M.; Sączewski, F.; Bednarski, P.J.; Kornicka, A. Synthesis, structure, chemical stability, and in vitro cytotoxic properties of novel quinoline-3-carbaldehyde hydrazones bearing a 1,2,4-triazole or benzotriazole moiety. Molecules, 2018, 23(6) e1497
[http://dx.doi.org/10.3390/molecules23061497] [PMID: 29925826]
[115]
Hamdy, R.; Elseginy, S.A.; Ziedan, N.I.; Jones, A.T.; Westwell, A.D. New quinoline-based heterocycles as anticancer agents targeting Bcl-2. Molecules, 2019, 24(7) e1274
[http://dx.doi.org/10.3390/molecules24071274] [PMID: 30986908]
[116]
Liu, J.; Nie, M.; Wang, Y.; Hu, J.; Zhang, F.; Gao, Y.; Liu, Y.; Gong, P. Design, synthesis and structure-activity relationships of novel 4-phenoxyquinoline derivatives containing 1,2,4-triazolone moiety as c-Met kinase inhibitors. Eur. J. Med. Chem., 2016, 123, 431-446.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.059] [PMID: 27490023]
[117]
Yuan, H.; Liu, Q.; Zhang, L.; Hu, S.; Chen, T.; Li, H.; Chen, Y.; Xu, Y.; Lu, T. Discovery, optimization and biological evaluation for novel c-Met kinase inhibitors. Eur. J. Med. Chem., 2018, 143, 491-502.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.073] [PMID: 29202410]
[118]
Zhang, L.; Zhao, J.; Zhang, B.; Lu, T.; Chen, Y. Discovery of [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives as novel, potent and selective c-Met kinase inhibitors: Synthesis, SAR study, and biological activity. Eur. J. Med. Chem., 2018, 150, 809-816.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.049] [PMID: 29602036]
[119]
Zhang, H.; Wang, K.; Zhang, W.; Liu, R. Selenium dioxide-mediated synthesis of fused 1,2,4-triazoles as cytotoxic agents. Synth. Commun., 2015, 24, 2849-2856.
[http://dx.doi.org/10.1080/00397911.2015.1111384]
[120]
Reddy, B.N.; Reddy, P.V.G.; Reddy, P.S.; Reddy, S.M.; Reddy, S.R.S.; Pathak, M. Synthesis of new 4,5-dihydro-1-methyl-[1,2,4]triazolo[4,3-a]quinolin-7-amine-derived ureas and their anticancer activity. Synth. Commun., 2015, 45, 831-837.
[http://dx.doi.org/10.1080/00397911.2014.989449]
[121]
Hou, F.; Tang, N.F.; Fan, Y.Y.; Liu, S.M.; Zhang, Y. Benzaldehyde levofloxacin Schiff base induces apoptosis of human hepatocarcinoma cells. Chin. Pharmacol. Bull., 2015, 31, 821-826.
[122]
Ni, L.L.; Yan, Q.; Wu, S.M.; Xie, Y.S.; Gao, L.Z.; Liu, Y.J.; Huang, W.L.; Hu, G.Q. [Synthesis and antitumor activity of fluoroquinolon-3-yl-s-triazole sulfide ketones and their derivatives from ciprofloxacin]. Yao Xue Xue Bao, 2015, 50(10), 1258-1262.
[PMID: 26837171]
[123]
Yan, Q.; Wu, S.; Ni, L.L.; Xie, Y.; Gao, L.; Huang, W.; Liu, Y.; Hu, G. Synthesis and antitumor activity of C-3 thiazolo[3,2-b][1,2,4]triazole-substituted pefloxacin derivatives. J. Chin. Pharm. Univ., 2015, 46, 548-551.
[124]
Gupta, A.; Kumar, B.S.; Negi, A.S. Current status on development of steroids as anticancer agents. J. Steroid Biochem. Mol. Biol., 2013, 137, 242-270.
[http://dx.doi.org/10.1016/j.jsbmb.2013.05.011] [PMID: 23727548]
[125]
Njar, V.C.; Brodie, A.M. Discovery and development of Galeterone (TOK-001 or VN/124-1) for the treatment of all stages of prostate cancer. J. Med. Chem., 2015, 58(5), 2077-2087.
[http://dx.doi.org/10.1021/jm501239f] [PMID: 25591066]
[126]
Minorics, R.; Zupko, I. Steroidal anticancer agents: An overview of estradiol-related compounds. Anticancer. Agents Med. Chem., 2018, 18(5), 652-666.
[http://dx.doi.org/10.2174/1871520617666171114111721] [PMID: 29141561]
[127]
Silva-Ortiz, A.V.; Bratoeff, E.; Ramírez-Apan, M.T.; García-Becerra, R.; Ordaz-Rosado, D.; Noyola-Martínez, N.; Castillo-Bocanegra, R.; Barrera, D. Synthesis and biological activity of two pregnane derivatives with a triazole or imidazole ring at C-21. J. Steroid Biochem. Mol. Biol., 2016, 159, 8-18.
[http://dx.doi.org/10.1016/j.jsbmb.2016.02.013] [PMID: 26924581]
[128]
Silva-Ortiz, A.V.; Bratoeff, E.; Ramírez-Apan, T.; Heuze, Y.; Sánchez, A.; Soriano, J.; Cabeza, M. Synthesis and activity of novel 16-dehydropregnenolone acetate derivatives as inhibitors of type 1 5α-reductase and on cancer cell line SK-LU-1. Bioorg. Med. Chem., 2015, 23(24), 7535-7542.
[http://dx.doi.org/10.1016/j.bmc.2015.10.047] [PMID: 26631442]
[129]
Huang, L.H.; Zheng, Y.F.; Lu, Y.Z.; Song, C.J.; Wang, Y.G.; Yu, B.; Liu, H.M. Synthesis and biological evaluation of novel steroidal[17,16-d][1,2,4]triazolo[1,5-a]pyrimidines. Steroids, 2012, 77(6), 710-715.
[http://dx.doi.org/10.1016/j.steroids.2012.03.002] [PMID: 22445685]
[130]
Arenas-González, A.; Mendez-Delgado, L.A.; Merino-Montiel, P.; Padrón, J.M.; Montiel-Smith, S.; Vega-Báez, J.L.; Meza-Reyes, S. Synthesis of monomeric and dimeric steroids containing [1,2,4]triazolo[1,5-a]pyrimidines. Steroids, 2016, 116, 13-19.
[http://dx.doi.org/10.1016/j.steroids.2016.09.014] [PMID: 27692994]
[131]
Amin, L.H.T.; Shawer, T.Z.; El-Naggar, A.M.; El-Sehrawi, H.M.A. Design, synthesis, anticancer evaluation and docking studies of new pyrimidine derivatives as potent thymidylate synthase inhibitors. Bioorg. Chem., 2019, 91, 103159
[http://dx.doi.org/10.1016/j.bioorg.2019.103159] [PMID: 31382056]
[132]
Ghith, A.; Youssef, K.M.; Ismail, N.S.M.; Abouzid, K.A.M. Design, synthesis and molecular modeling study of certain VEGFR-2 inhibitors based on thienopyrimidne scaffold as cancer targeting agents. Bioorg. Chem., 2019, 83, 111-128.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.008] [PMID: 30343204]
[133]
Gilandoust, M.; Harsha, K.B.; Mohan, C.D.; Raquib, A.R.; Rangappa, S.; Pandey, V.; Lobie, P.E.; Basappa, ; Rangappa, K.S. Synthesis, characterization and cytotoxicity studies of 1,2,3-triazoles and 1,2,4-triazolo [1,5-a] pyrimidines in human breast cancer cells. Bioorg. Med. Chem. Lett., 2018, 28(13), 2314-2319.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.020] [PMID: 29789259]
[134]
Sáez-Calvo, G.; Sharma, A.; Balaguer, F.A.; Barasoain, I.; Rodríguez-Salarichs, J.; Olieric, N.; Muñoz-Hernández, H.; Berbís, M.A.; Wendeborn, S.; Peñalva, M.A.; Matesanz, R.; Canales, Á.; Prota, A.E.; Jímenez-Barbero, J.; Andreu, J.M.; Lamberth, C.; Steinmetz, M.O.; Díaz, J.F. Triazolopyrimidines are microtubule-stabilizing agents that bind the vinca inhibitor site of tubulin. Cell Chem. Biol., 2017, 24(6), 737-750.e6.
[http://dx.doi.org/10.1016/j.chembiol.2017.05.016] [PMID: 28579361]
[135]
Bilyi, A.K.; Antypenko, L.M.; Ivchuk, V.V.; Kamyshnyi, O.M.; Polishchuk, N.M.; Kovalenko, S.I. 2-Heteroaryl-[1,2,4]triazolo[1,5-c]quinazoline-5(6H)-thiones and their S-substituted derivatives: Synthesis, spectroscopic data, and biological activity. ChemPlusChem, 2018, 80, 980-990.
[http://dx.doi.org/10.1002/cplu.201500051]
[136]
Anumala, U.R.; Waaler, J.; Nkizinkiko, Y.; Ignatev, A.; Lazarow, K.; Lindemann, P.; Olsen, P.A.; Murthy, S.; Obaji, E.; Majouga, A.G.; Leonov, S.; von Kries, J.P.; Lehtiö, L.; Krauss, S.; Nazaré, M. Discovery of a novel series of tankyrase inhibitors by a hybridization approach. J. Med. Chem., 2017, 60(24), 10013-10025.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00883] [PMID: 29155568]
[137]
Yan, L.; Liang, J.; Yao, C.; Wu, P.; Zeng, X.; Cheng, K.; Yin, H. Pyrimidine triazole thioether derivatives as Toll-like receptor 5 (TLR5)/flagellin complex inhibitors. ChemMedChem, 2016, 11(8), 822-826.
[http://dx.doi.org/10.1002/cmdc.201500471] [PMID: 26634412]
[138]
Hou, Y.; Zhu, L.; Li, Z.; Shen, Q.; Xu, Q.; Li, W.; Liu, Y.; Gong, P. Design, synthesis and biological evaluation of novel 7-amino-[1,2,4]triazolo[4,3-f]pteridinone, and 7-aminotetrazolo[1,5-f]pteridinone derivative as potent antitumor agents. Eur. J. Med. Chem., 2019, 163, 690-709.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.009] [PMID: 30572179]
[139]
Mishra, C.B.; Mongre, R.K.; Kumari, S.; Jeong, D.K.; Tiwari, M. Novel triazole-piperazine hybrid molecules induce apoptosis via activation of the mitochondrial pathway and exhibit antitumor efficacy in Osteosarcoma Xenograft nude mice model. ACS Chem. Biol., 2017, 12(3), 753-768.
[http://dx.doi.org/10.1021/acschembio.6b01007] [PMID: 28084722]
[140]
Murty, M.S.R.; Katiki, M.R.; Nanubolu, J.B.; Garimella, S.; Polepalli, S.; Jain, N.; Buddana, S.K.; Prakasham, R.S. Synthesis and biological evaluation of novel tamoxifen-1,2,4-triazole conjugates. Mol. Divers., 2016, 20(3), 687-703.
[http://dx.doi.org/10.1007/s11030-016-9677-8] [PMID: 27278444]
[141]
Wang, X.F.; Zhang, S.; Li, B.L.; Zhao, J.J.; Liu, Y.M.; Zhang, R.L.; Li, B.; Chen, B.Q. Synthesis and biological evaluation of disulfides bearing 1,2,4-triazole moiety as antiproliferative agents. Med. Chem. Res., 2017, 26, 3367-3374.
[http://dx.doi.org/10.1007/s00044-017-2029-0]
[142]
Qin, M.; Yan, S.; Wang, L.; Zhang, H.; Zhao, Y.; Wu, S.; Wu, D.; Gong, P. Discovery of novel diaryl urea derivatives bearing a triazole moiety as potential antitumor agents. Eur. J. Med. Chem., 2016, 115, 1-13.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.071] [PMID: 26991938]
[143]
Tokala, R.; Bale, S.; Janrao, I.P.; Vennela, A.; Kumar, N.P.; Senwar, K.R.; Godugu, C.; Shankaraiah, N. Synthesis of 1,2,4-triazole-linked urea/thiourea conjugates as cytotoxic and apoptosis inducing agents. Bioorg. Med. Chem. Lett., 2018, 28(10), 1919-1924.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.074] [PMID: 29657100]
[144]
Xu, F.; Yang, Z.Z.; Jiang, J.R.; Pan, W.G.; Yang, X.L.; Wu, J.Y.; Zhu, Y.; Wang, J.; Shou, Q.Y.; Wu, H.G. Synthesis, antitumor evaluation and molecular docking studies of [1,2,4]triazolo[4,3-b][1,2,4,5]tetrazine derivatives. Bioorg. Med. Chem. Lett., 2016, 26(13), 3042-3047.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.007] [PMID: 27184766]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 16
Year: 2020
Published on: 21 July, 2020
Page: [1441 - 1460]
Pages: 20
DOI: 10.2174/1568026620666200128143230
Price: $65

Article Metrics

PDF: 28
HTML: 2