Flavonoids as Multi-Target Compounds: A Special Emphasis on their Potential as Chemo-adjuvants in Cancer Therapy

Author(s): Ajay G. Namdeo, Sai H.S. Boddu, Haneen Amawi, Charles R. Ashby Jr., Diwakar B. Tukaramrao, Piyush Trivedi, R. Jayachandra Babu, Amit K. Tiwari*.

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 15 , 2020

Become EABM
Become Reviewer

Abstract:

Flavonoids are low molecular weight, polyphenolic phytochemicals, obtained from secondary metabolism of various plant compounds. They have a spectrum of pharmacological efficacies, including potential anticancer efficacy. Natural flavonoids are present in fruits, vegetables, grains, bark, roots, stems, flowers, tea and wine. Flavonoids can attenuate or inhibit the initiation, promotion and progression of cancer by modulating various enzymes and receptors in diverse pathways that involve cellular proliferation, differentiation, apoptosis, inflammation, angiogenesis and metastasis. Furthermore, in vitro, flavonoids have been shown to reverse multidrug resistance when used as chemo-adjuvants. Flavonoids (both natural and synthetic analogues) interact with several oncogenic targets through dependent and independent mechanisms to mediate their anticancer efficacy in different types of cancer cells.

Keywords: Flavonoids, secondary metabolism, anti-cancer therapies, multi-targeted agents, drug resistance, cancer cells.

[1]
Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 2001; 74(4): 418-25.
[http://dx.doi.org/10.1093/ajcn/74.4.418] [PMID: 11566638]
[2]
Tapas AR, Sakarkar D, Kakde R. Flavonoids as nutraceuticals: a review. Trop J Pharm Res 2008; 7: 1089-99.
[http://dx.doi.org/10.4314/tjpr.v7i3.14693]
[3]
Batra P, Sharma AK. Anti-cancer potential of flavonoids: recent trends and future perspectives. Biotech 2013; 3: 439-59.
[4]
Lewandowska H, Kalinowska M, Lewandowski W, Stępkowski TM, Brzóska K. The role of natural polyphenols in cell signaling and cytoprotection against cancer development. J Nutr Biochem 2016; 32: 1-19.
[http://dx.doi.org/10.1016/j.jnutbio.2015.11.006] [PMID: 27142731]
[5]
Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 2000; 52(4): 673-751.
[PMID: 11121513]
[6]
Raffa D, Maggio B, Raimondi MV, Plescia F, Daidone G. Recent discoveries of anticancer flavonoids. Eur J Med Chem 2017; 142: 213-28.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.034] [PMID: 28793973]
[7]
Abotaleb M, Samuel SM, Varghese E, et al. Flavonoids in cancer and apoptosis. Cancers (Basel) 2018; 11(1): 28.
[http://dx.doi.org/10.3390/cancers11010028] [PMID: 30597838]
[8]
Lin C-H, Chang C-Y, Lee K-R, Lin H-J, Chen T-H, Wan L. Flavones inhibit breast cancer proliferation through the Akt/FOXO3a signaling pathway. BMC Cancer 2015; 15: 958.
[http://dx.doi.org/10.1186/s12885-015-1965-7] [PMID: 26675309]
[9]
Wang L-S, Stoner GD. Anthocyanins and their role in cancer prevention. Cancer Lett 2008; 269(2): 281-90.
[http://dx.doi.org/10.1016/j.canlet.2008.05.020] [PMID: 18571839]
[10]
Miadoková E. Isoflavonoids - an overview of their biological activities and potential health benefits. Interdiscip Toxicol 2009; 2(4): 211-8.
[http://dx.doi.org/10.2478/v10102-009-0021-3] [PMID: 21217857]
[11]
Stoclet J-C, Chataigneau T, Ndiaye M, et al. Vascular protection by dietary polyphenols. Eur J Pharmacol 2004; 500(1-3): 299-313.
[http://dx.doi.org/10.1016/j.ejphar.2004.07.034] [PMID: 15464042]
[12]
Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 2011; 11(4): 298-344.
[http://dx.doi.org/10.2174/138955711795305335] [PMID: 21428901]
[13]
D. P P. V. Flavonoids:a powerful and abundant source of antioxidants. Int J Pharm Pharm Sci 2013; 5: 95-8.
[14]
K.I. A. M.A. M. Flavonoids:chemistry, biochemistry and antioxidant activity. J Pharm Res 2012; 5: 4013-20.
[15]
Jennings A, MacGregor A, Spector T, Cassidy A. Higher dietary flavonoid intakes are associated with lower objectively measured body composition in women: evidence from discordant monozygotic twins. Am J Clin Nutr 2017; 105(3): 626-34.
[http://dx.doi.org/10.3945/ajcn.116.144394] [PMID: 28100511]
[16]
Tominaga Y, Nakagawa K, Mae T, et al. Licorice flavonoid oil reduces total body fat and visceral fat in overweight subjects: A randomized, double-blind, placebo-controlled study. Obes Res Clin Pract 2009; 3(3): 1-4.
[http://dx.doi.org/10.1016/j.orcp.2009.04.005] [PMID: 24345587]
[17]
M.J. K N. D K.H. M S. L.. Proanthocyanidins,anthocyanins and cardiovascular diseases. Food Res Int 2014; 59: 41-52.
[http://dx.doi.org/10.1016/j.foodres.2014.01.046]
[18]
Karn PR, Kim HD, Kang H, Sun BK, Jin S-E, Hwang S-J. Supercritical fluid-mediated liposomes containing cyclosporin A for the treatment of dry eye syndrome in a rabbit model: comparative study with the conventional cyclosporin A emulsion. Int J Nanomedicine 2014; 9: 3791-800.
[PMID: 25143728]
[19]
Castell M, Pérez-Cano FJ, Abril-Gil M, Franch À. Flavonoids on allergy. Curr Pharm Des 2014; 20(6): 973-87.
[http://dx.doi.org/10.2174/13816128113199990041] [PMID: 23701555]
[20]
Alqurashi RM, Galante LA, Rowland IR, Spencer JP, Commane DM. Consumption of a flavonoid-rich açai meal is associated with acute improvements in vascular function and a reduction in total oxidative status in healthy overweight men. Am J Clin Nutr 2016; 104(5): 1227-35.
[http://dx.doi.org/10.3945/ajcn.115.128728] [PMID: 27680990]
[21]
Terao J. Factors modulating bioavailability of quercetin-related flavonoids and the consequences of their vascular function. Biochem Pharmacol 2017; 139: 15-23.
[http://dx.doi.org/10.1016/j.bcp.2017.03.021] [PMID: 28377278]
[22]
National Library Of Medicine. Flavonoid based antiviral targets.United States Patent US 9626822. Sep 2013.
[23]
Amawi H, Hussein NA, Ashby CR Jr, et al. Bax/tubulin/epithelial-mesenchymal pathways determine the efficacy of silybin analog HM015k in colorectal cancer cell growth and metastasis. Front Pharmacol 2018; 9: 520.
[http://dx.doi.org/10.3389/fphar.2018.00520] [PMID: 29875662]
[24]
Peluso I, Raguzzini A, Serafini M. Effect of flavonoids on circulating levels of TNF-α and IL-6 in humans: a systematic review and meta-analysis. Mol Nutr Food Res 2013; 57(5): 784-801.
[http://dx.doi.org/10.1002/mnfr.201200721] [PMID: 23471810]
[25]
S, I P, A R M Workshop session 1: Antioxidants and the immune system flavonoids as anti-inflammatory agents. 3rd ed. International Immunonutrition 2010; pp. 273-8.
[26]
Marzocchella L, Fantini M, Benvenuto M, et al. Dietary flavonoids: molecular mechanisms of action as anti- inflammatory agents. Recent Pat Inflamm Allergy Drug Discov 2011; 5(3): 200-20.
[http://dx.doi.org/10.2174/187221311797264937] [PMID: 21827399]
[27]
Beking K, Vieira A. Flavonoid intake and disability-adjusted life years due to Alzheimer’s and related dementias: a population-based study involving twenty-three developed countries. Public Health Nutr 2010; 13(9): 1403-9.
[http://dx.doi.org/10.1017/S1368980009992990] [PMID: 20059796]
[28]
Shackelford RE. Pharmacologic manipulation of the ataxia-telangiectasia mutated gene product as an intervention in age-related disease. Med Hypotheses 2005; 65(2): 363-9.
[http://dx.doi.org/10.1016/j.mehy.2005.02.015] [PMID: 15922113]
[29]
Faggio C, Sureda A, Morabito S, et al. Flavonoids and platelet aggregation: A brief review. Eur J Pharmacol 2017; 807: 91-101.
[http://dx.doi.org/10.1016/j.ejphar.2017.04.009] [PMID: 28412372]
[30]
George VC, Dellaire G, Rupasinghe HPV. Plant flavonoids in cancer chemoprevention: role in genome stability. J Nutr Biochem 2017; 45: 1-14.
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.007] [PMID: 27951449]
[31]
Trosko JE, Kang KS. Evolution of energy metabolism, stem cells and cancer stem cells: how the warburg and barker hypotheses might be linked. Int J Stem Cells 2012; 5(1): 39-56.
[http://dx.doi.org/10.15283/ijsc.2012.5.1.39] [PMID: 24298354]
[32]
Block KI, Gyllenhaal C, Lowe L, et al. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol 2015; 35(Suppl.): S276-304.
[http://dx.doi.org/10.1016/j.semcancer.2015.09.007] [PMID: 26590477]
[33]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[34]
Albini A, Dell’Eva R, Vené R, et al. Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J 2006; 20(3): 527-9.
[http://dx.doi.org/10.1096/fj.05-5128fje] [PMID: 16403733]
[35]
Musonda CA, Chipman JK. Quercetin inhibits hydrogen peroxide (H2O2)-induced NF-kappaB DNA binding activity and DNA damage in HepG2 cells. Carcinogenesis 1998; 19(9): 1583-9.
[http://dx.doi.org/10.1093/carcin/19.9.1583] [PMID: 9771928]
[36]
Chun HS, Chang HJ, Choi EH, Kim HJ, Ku KH. Molecular and absorption properties of 12 soy isoflavones and their structure-activity relationship with selected biological activities. Biotechnol Lett 2005; 27(15): 1105-11.
[http://dx.doi.org/10.1007/s10529-005-8457-9] [PMID: 16132860]
[37]
Abalea V, Cillard J, Dubos MP, Sergent O, Cillard P, Morel I. Repair of iron-induced DNA oxidation by the flavonoid myricetin in primary rat hepatocyte cultures. Free Radic Biol Med 1999; 26(11-12): 1457-66.
[http://dx.doi.org/10.1016/S0891-5849(99)00010-6] [PMID: 10401609]
[38]
Snyder RD, Gillies PJ. Reduction of genistein clastogenicity in Chinese hamster V79 cells by daidzein and other flavonoids. Food Chem Toxicol 2003; 41(10): 1291-8.
[http://dx.doi.org/10.1016/S0278-6915(03)00117-0] [PMID: 12909261]
[39]
Yi W, Fischer J, Krewer G, Akoh CC. Phenolic compounds from blueberries can inhibit colon cancer cell proliferation and induce apoptosis. J Agric Food Chem 2005; 53(18): 7320-9.
[http://dx.doi.org/10.1021/jf051333o] [PMID: 16131149]
[40]
Gupta S, Hussain T, Mukhtar H. Molecular pathway for (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch Biochem Biophys 2003; 410(1): 177-85.
[http://dx.doi.org/10.1016/S0003-9861(02)00668-9] [PMID: 12559991]
[41]
Masuda M, Suzui M, Weinstein IB. Effects of epigallocatechin-3-gallate on growth, epidermal growth factor receptor signaling pathways, gene expression, and chemosensitivity in human head and neck squamous cell carcinoma cell lines. Clin Cancer Res 2001; 7(12): 4220-9.
[PMID: 11751523]
[42]
Kuo PL, Lin CC. Green tea constituent (-)-epigallocatechin-3-gallate inhibits Hep G2 cell proliferation and induces apoptosis through p53-dependent and Fas-mediated pathways. J Biomed Sci 2003; 10(2): 219-27.
[PMID: 12595758]
[43]
Siddiqui IA, Adhami VM, Afaq F, Ahmad N, Mukhtar H. Modulation of phosphatidylinositol-3-kinase/protein kinase B- and mitogen-activated protein kinase-pathways by tea polyphenols in human prostate cancer cells. J Cell Biochem 2004; 91(2): 232-42.
[http://dx.doi.org/10.1002/jcb.10737] [PMID: 14743383]
[44]
Shimizu M, Deguchi A, Lim JT, Moriwaki H, Kopelovich L, Weinstein IB. (-)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin Cancer Res 2005; 11(7): 2735-46.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2014] [PMID: 15814656]
[45]
Ong CS, Tran E, Nguyen TT, et al. Quercetin-induced growth inhibition and cell death in nasopharyngeal carcinoma cells are associated with increase in Bad and hypophosphorylated retinoblastoma expressions. Oncol Rep 2004; 11(3): 727-33.
[http://dx.doi.org/10.3892/or.11.3.727] [PMID: 14767529]
[46]
Spencer JP, Rice-Evans C, Williams RJ. Modulation of pro-survival Akt/protein kinase B and ERK1/2 signaling cascades by quercetin and its in vivo metabolites underlie their action on neuronal viability. J Biol Chem 2003; 278(37): 34783-93.
[http://dx.doi.org/10.1074/jbc.M305063200] [PMID: 12826665]
[47]
Lee JC, Kim J, Park JK, Chung GH, Jang YS. The antioxidant, rather than prooxidant, activities of quercetin on normal cells: quercetin protects mouse thymocytes from glucose oxidase-mediated apoptosis. Exp Cell Res 2003; 291(2): 386-97.
[http://dx.doi.org/10.1016/S0014-4827(03)00410-5] [PMID: 14644160]
[48]
Michels G, Wätjen W, Niering P, et al. Pro-apoptotic effects of the flavonoid luteolin in rat H4IIE cells. Toxicology 2005; 206(3): 337-48.
[http://dx.doi.org/10.1016/j.tox.2004.07.022] [PMID: 15588924]
[49]
Selvendiran K, Koga H, Ueno T, et al. Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: an implication for the antitumor potential of flavonoids. Cancer Res 2006; 66(9): 4826-34.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4062] [PMID: 16651438]
[50]
Lee HJ, Wang CJ, Kuo HC, Chou FP, Jean LF, Tseng TH. Induction apoptosis of luteolin in human hepatoma HepG2 cells involving mitochondria translocation of Bax/Bak and activation of JNK. Toxicol Appl Pharmacol 2005; 203(2): 124-31.
[http://dx.doi.org/10.1016/j.taap.2004.08.004] [PMID: 15710173]
[51]
Yin F, Giuliano AE, Law RE, Van Herle AJ. Apigenin inhibits growth and induces G2/M arrest by modulating cyclin-CDK regulators and ERK MAP kinase activation in breast carcinoma cells. Anticancer Res 2001; 21(1A): 413-20.
[PMID: 11299771]
[52]
Wang IK, Lin-Shiau SY, Lin JK. Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer 1999; 35(10): 1517-25.
[http://dx.doi.org/10.1016/S0959-8049(99)00168-9] [PMID: 10673981]
[53]
Frey RS, Singletary KW. Genistein activates p38 mitogen-activated protein kinase, inactivates ERK1/ERK2 and decreases Cdc25C expression in immortalized human mammary epithelial cells. J Nutr 2003; 133(1): 226-31.
[http://dx.doi.org/10.1093/jn/133.1.226] [PMID: 12514295]
[54]
Gong L, Li Y, Nedeljkovic-Kurepa A, Sarkar FH. Inactivation of NF-kappaB by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene 2003; 22(30): 4702-9.
[http://dx.doi.org/10.1038/sj.onc.1206583] [PMID: 12879015]
[55]
Lee KT, Sohn IC, Kim YK, et al. Tectorigenin, an isoflavone of Pueraria thunbergiana Benth., induces differentiation and apoptosis in human promyelocytic leukemia HL-60 cells. Biol Pharm Bull 2001; 24(10): 1117-21.
[http://dx.doi.org/10.1248/bpb.24.1117] [PMID: 11642314]
[56]
Kim ND, Mehta R, Yu W, et al. Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer. Breast Cancer Res Treat 2002; 71(3): 203-17.
[http://dx.doi.org/10.1023/A:1014405730585] [PMID: 12002340]
[57]
Toi M, Bando H, Ramachandran C, et al. Preliminary studies on the anti-angiogenic potential of pomegranate fractions in vitro and in vivo. Angiogenesis 2003; 6(2): 121-8.
[http://dx.doi.org/10.1023/B:AGEN.0000011802.81320.e4] [PMID: 14739618]
[58]
Bagchi D, Sen CK, Bagchi M, Atalay M. Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemistry (Mosc) 2004; 69: 75-80.
[http://dx.doi.org/10.1023/B:BIRY.0000016355.19999.93]
[59]
Abou-Agag LH, Aikens ML, Tabengwa EM, et al. Polyphyenolics increase t-PA and u-PA gene transcription in cultured human endothelial cells. Alcohol Clin Exp Res 2001; 25(2): 155-62.
[http://dx.doi.org/10.1111/j.1530-0277.2001.tb02193.x] [PMID: 11236827]
[60]
Trompezinski S, Denis A, Schmitt D, Viac J. Comparative effects of polyphenols from green tea (EGCG) and soybean (genistein) on VEGF and IL-8 release from normal human keratinocytes stimulated with the proinflammatory cytokine TNFalpha. Arch Dermatol Res 2003; 295(3): 112-6.
[http://dx.doi.org/10.1007/s00403-003-0402-y] [PMID: 12811578]
[61]
Singh AK, Seth P, Anthony P, et al. Green tea constituent epigallocatechin-3-gallate inhibits angiogenic differentiation of human endothelial cells. Arch Biochem Biophys 2002; 401(1): 29-37.
[http://dx.doi.org/10.1016/S0003-9861(02)00013-9] [PMID: 12054484]
[62]
Annabi B, Lachambre MP, Bousquet-Gagnon N, Page M, Gingras D, Beliveau R. Green tea polyphenol (-)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MT1-MMP-driven migration in glioblastoma cells. Biochim Biophys Acta 2002; 1542(1-3): 209-20.
[http://dx.doi.org/10.1016/S0167-4889(01)00187-2] [PMID: 11853893]
[63]
Kaneuchi M, Sasaki M, Tanaka Y, Sakuragi N, Fujimoto S, Dahiya R. Quercetin regulates growth of Ishikawa cells through the suppression of EGF and cyclin D1. Int J Oncol 2003; 22(1): 159-64.
[http://dx.doi.org/10.3892/ijo.22.1.159] [PMID: 12469199]
[64]
Lee LT, Huang YT, Hwang JJ, et al. Transinactivation of the epidermal growth factor receptor tyrosine kinase and focal adhesion kinase phosphorylation by dietary flavonoids: effect on invasive potential of human carcinoma cells. Biochem Pharmacol 2004; 67(11): 2103-14.
[http://dx.doi.org/10.1016/j.bcp.2004.02.023] [PMID: 15135307]
[65]
Gates MA, Tworoger SS, Hecht JL, De Vivo I, Rosner B, Hankinson SE. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int J Cancer 2007; 121(10): 2225-32.
[http://dx.doi.org/10.1002/ijc.22790] [PMID: 17471564]
[66]
Pathak N, Khan S, Bhargava A, et al. Cancer chemopreventive effects of the flavonoid-rich fraction isolated from papaya seeds. Nutr Cancer 2014; 66(5): 857-71.
[http://dx.doi.org/10.1080/01635581.2014.904912] [PMID: 24820939]
[67]
Neuhouser ML. Dietary flavonoids and cancer risk: evidence from human population studies. Nutr Cancer 2004; 50(1): 1-7.
[http://dx.doi.org/10.1207/s15327914nc5001_1] [PMID: 15572291]
[68]
Woo HD, Kim J. Dietary flavonoid intake and smoking-related cancer risk: a meta-analysis. PLoS One 2013; 8(9)e75604
[http://dx.doi.org/10.1371/journal.pone.0075604] [PMID: 24069431]
[69]
Amawi H, Ashby CR, Samuel T, Peraman R, Tiwari AK. Polyphenolic nutrients in cancer chemoprevention and metastasis: role of the epithelial-to-mesenchymal (EMT) pathway. Nutrients 2017; 9(8): 9.
[http://dx.doi.org/10.3390/nu9080911] [PMID: 28825675]
[70]
Zhu WB, Xiao N, Liu XJ. Dietary flavonoid tangeretin induces reprogramming of epithelial to mesenchymal transition in prostate cancer cells by targeting the PI3K/Akt/mTOR signaling pathway. Oncol Lett 2018; 15(1): 433-40.
[PMID: 29375715]
[71]
Zhao HF, Wang G, Wu CP, et al. A Multi-targeted natural flavonoid myricetin suppresses lamellipodia and focal adhesions formation and impedes glioblastoma cell invasiveness and abnormal motility. CNS Neurol Disord Drug Targets 2018; 17(7): 557-67.
[http://dx.doi.org/10.2174/1871527317666180611090006] [PMID: 29886836]
[72]
Shi Q, Jiang Z, Yang J, et al. A flavonoid glycoside compound from murraya paniculata (l.) interrupts metastatic characteristics of A549 cells by regulating STAT3/NF-κB/COX-2 and EGFR signaling pathways. AAPS J 2017; 19(6): 1779-90.
[http://dx.doi.org/10.1208/s12248-017-0134-0] [PMID: 28842850]
[73]
Chen X, Gu N, Xue C, Li BR. Plant flavonoid taxifolin inhibits the growth, migration and invasion of human osteosarcoma cells. Mol Med Rep 2018; 17(2): 3239-45.
[PMID: 29257319]
[74]
Razak S, Afsar T, Ullah A, et al. Taxifolin, a natural flavonoid interacts with cell cycle regulators causes cell cycle arrest and causes tumor regression by activating Wnt/ β -catenin signaling pathway. BMC Cancer 2018; 18(1): 1043.
[http://dx.doi.org/10.1186/s12885-018-4959-4] [PMID: 30367624]
[75]
Al-Rimawi F, Rishmawi S, Ariqat SH, Khalid MF, Warad I, Salah Z. Anticancer activity, antioxidant activity, and phenolic and flavonoids content of wild tragopogon porrifolius plant extracts. Evid Based Complement Alternat Med 2016; 20169612490
[http://dx.doi.org/10.1155/2016/9612490] [PMID: 27999608]
[76]
A. C. O. P. S. Phytochemical studies on the medicinal herb Catharanthus Pusillus. WJPR 2016; 5: 152-71.
[77]
Ferreira. Crataegusmonogyna buds and fruits phenolic extracts: Growth inhibitory activity on human tumor cell lines and chemical characterization by HPLC -DAD-ESI/MS. Food Res Int 2012; 49: 516-23.
[http://dx.doi.org/10.1016/j.foodres.2012.07.046]
[78]
Ribeiro AFC, Telles TC, Ferraz VP. Effect of arrabidaea chica extracts on the ehrlich solid tumor development. Rev Bras Farmacogn Braz J Pharmacogn 2012; 22: 364-73.
[http://dx.doi.org/10.1590/S0102-695X2011005000225]
[79]
Barbosa WLR, Pinto LN, Quignard E. Arrabidaeachica (HBK) Verlot: phytochemical approach, antifungal and trypanocidal activities. Rev Bras Farmacogn Braz J Pharmacogn 2008; 18: 544-8.
[http://dx.doi.org/10.1590/S0102-695X2008000400008]
[80]
Ravishankar D, Rajora AK, Greco F, Osborn HM. Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol 2013; 45(12): 2821-31.
[http://dx.doi.org/10.1016/j.biocel.2013.10.004] [PMID: 24128857]
[81]
Cheriet T, Mancini I, Seghiri R, Benayache F, Benayache S. Chemical constituents and biological activities of the genus Linaria (Scrophulariaceae). Nat Prod Res 2015; 29(17): 1589-613.
[http://dx.doi.org/10.1080/14786419.2014.999243] [PMID: 25674928]
[82]
Rodríguez-Chávez JL, Egas V, Linares E, et al. Mexican Arnica (Heterotheca inuloides Cass. Asteraceae: Astereae): Ethnomedical uses, chemical constituents and biological properties. J Ethnopharmacol 2017; 195: 39-63.
[http://dx.doi.org/10.1016/j.jep.2016.11.021] [PMID: 27847336]
[83]
Chen G, Cui CB, Qi AD, Li CW, Tao ZW, Ren R. Polyanthumin, a novel cyclobutane chalcone trimmer from Memecylon polyanthum. J Asian Nat Prod Res 2015; 17(2): 170-7.
[http://dx.doi.org/10.1080/10286020.2014.945439] [PMID: 25434469]
[84]
Ibrahim A, Sobeh M, Ismail A, et al. Free-B-Ring flavonoids as potential lead compounds for colon cancer therapy. Mol Clin Oncol 2014; 2(4): 581-5.
[http://dx.doi.org/10.3892/mco.2014.278] [PMID: 24940499]
[85]
Bae JH, Kim JY, Kim MJ, et al. Quercetin enhances susceptibility to NK cell-mediated lysis of tumor cells through induction of NKG2D ligands and suppression of HSP70. J Immunother 2010; 33(4): 391-401.
[http://dx.doi.org/10.1097/CJI.0b013e3181d32f22] [PMID: 20386467]
[86]
Ng J, Fredholm BB, Jondal M. Studies on the calcium dependence of human NK cell killing. Biochem Pharmacol 1987; 36(22): 3943-9.
[http://dx.doi.org/10.1016/0006-2952(87)90462-X] [PMID: 2446626]
[87]
Yu CS, Lai KC, Yang JS, et al. Quercetin inhibited murine leukemia WEHI-3 cells in vivo and promoted immune response. Phytother Res 2010; 24(2): 163-8.
[PMID: 19449452]
[88]
Kim JH, Lee JK. Naringenin enhances NK cell lysis activity by increasing the expression of NKG2D ligands on Burkitt’s lymphoma cells. Arch Pharm Res 2015; 38(11): 2042-8.
[http://dx.doi.org/10.1007/s12272-015-0624-5] [PMID: 26100136]
[89]
Lin CC, Yu CS, Yang JS, et al. Chrysin, a natural and biologically active flavonoid, influences a murine leukemia model in vivo through enhancing populations of T-and B-cells, and promoting macrophage phagocytosis and NK cell cytotoxicity. In Vivo 2012; 26(4): 665-70.
[PMID: 22773581]
[90]
Saito T, Abe D, Nogata Y. Polymethoxylated flavones potentiate the cytolytic activity of NK leukemia cell line KHYG-1 via enhanced expression of granzyme B. Biochem Biophys Res Commun 2015; 456(3): 799-803.
[http://dx.doi.org/10.1016/j.bbrc.2014.12.027] [PMID: 25511703]
[91]
Guruvayoorappan C, Kuttan G. Amentoflavone, a biflavonoid from Biophytum sensitivum augments lymphocyte proliferation, natural killer cell and antibody dependent cellular cytotoxicity through enhanced production of IL-2 and IFN-gamma and restrains serum sialic acid and gamma glutamyl transpeptidase production in tumor - bearing animals. J Exp Ther Oncol 2007; 6(4): 285-95.
[PMID: 18038762]
[92]
Zhang Y, Song TT, Cunnick JE, Murphy PA, Hendrich S. Daidzein and genistein glucuronides in vitro are weakly estrogenic and activate human natural killer cells at nutritionally relevant concentrations. J Nutr 1999; 129(2): 399-405.
[http://dx.doi.org/10.1093/jn/129.2.399] [PMID: 10024618]
[93]
Georgaki S, Skopeliti M, Tsiatas M, et al. Phenoxodiol, an anticancer isoflavene, induces immunomodulatory effects in vitro and in vivo. J Cell Mol Med 2009; 13(9B): 3929-38.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00695.x] [PMID: 19220577]
[94]
Watson WH, Cai J, Jones DP. Diet and apoptosis. Annu Rev Nutr 2000; 20: 485-505.
[http://dx.doi.org/10.1146/annurev.nutr.20.1.485] [PMID: 10940343]
[95]
Yang CS, Landau JM, Huang MT, Newmark HL. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr 2001; 21: 381-406.
[http://dx.doi.org/10.1146/annurev.nutr.21.1.381] [PMID: 11375442]
[96]
MacFarlane M, Williams AC. Apoptosis and disease: a life or death decision. EMBO Rep 2004; 5(7): 674-8.
[http://dx.doi.org/10.1038/sj.embor.7400191] [PMID: 15218528]
[97]
Manson MM. Cancer prevention -- the potential for diet to modulate molecular signalling. Trends Mol Med 2003; 9(1): 11-8.
[http://dx.doi.org/10.1016/S1471-4914(02)00002-3] [PMID: 12524205]
[98]
Ramos S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem 2007; 18(7): 427-42.
[http://dx.doi.org/10.1016/j.jnutbio.2006.11.004] [PMID: 17321735]
[99]
Fulda S, Debatin K-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006; 25(34): 4798-811.
[http://dx.doi.org/10.1038/sj.onc.1209608] [PMID: 16892092]
[100]
Ashkenazi A. Targeting the extrinsic apoptotic pathway in cancer: lessons learned and future directions. J Clin Invest 2015; 125(2): 487-9.
[http://dx.doi.org/10.1172/JCI80420] [PMID: 25642709]
[101]
Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998; 281(5381): 1305-8.
[http://dx.doi.org/10.1126/science.281.5381.1305] [PMID: 9721089]
[102]
D’Archivio M, Santangelo C, Scazzocchio B, et al. Modulatory effects of polyphenols on apoptosis induction: relevance for cancer prevention. Int J Mol Sci 2008; 9(3): 213-28.
[http://dx.doi.org/10.3390/ijms9030213] [PMID: 19325744]
[103]
Meng S, Zhu Y, Li JF, et al. Apigenin inhibits renal cell carcinoma cell proliferation. Oncotarget 2017; 8(12): 19834-42.
[http://dx.doi.org/10.18632/oncotarget.15771] [PMID: 28423637]
[104]
Erdogan S, Turkekul K, Serttas R, Erdogan Z. The natural flavonoid apigenin sensitizes human CD44+ prostate cancer stem cells to cisplatin therapy. Biomed Pharmacother 2017; 88: 210-7.
[http://dx.doi.org/10.1016/j.biopha.2017.01.056] [PMID: 28107698]
[105]
Esmaeili MA, Farimani MM, Kiaei M. Anticancer effect of calycopterin via PI3K/Akt and MAPK signaling pathways, ROS-mediated pathway and mitochondrial dysfunction in hepatoblastoma cancer (HepG2) cells. Mol Cell Biochem 2014; 397(1-2): 17-31.
[http://dx.doi.org/10.1007/s11010-014-2166-4] [PMID: 25060910]
[106]
Zhao Z, Yin JQ, Wu MS, et al. Dihydromyricetin activates AMP-activated protein kinase and P38(MAPK) exerting antitumor potential in osteosarcoma. Cancer Prev Res (Phila) 2014; 7(9): 927-38.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0067] [PMID: 24894198]
[107]
Adan A, Baran Y. Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling. Tumour Biol 2016; 37(5): 5781-95.
[http://dx.doi.org/10.1007/s13277-015-4118-3] [PMID: 26408178]
[108]
LeJeune TM, Tsui HY, Parsons LB, et al. Mechanism of action of two flavone isomers targeting cancer cells with varying cell differentiation status. PLoS One 2015; 10(11)e0142928
[http://dx.doi.org/10.1371/journal.pone.0142928] [PMID: 26606169]
[109]
Fan C, Yang Y, Liu Y, et al. Icariin displays anticancer activity against human esophageal cancer cells via regulating endoplasmic reticulum stress-mediated apoptotic signaling. Sci Rep 2016; 6: 21145.
[http://dx.doi.org/10.1038/srep21145] [PMID: 26892033]
[110]
Meng G, Chai K, Li X, Zhu Y, Huang W. Luteolin exerts pro-apoptotic effect and anti-migration effects on A549 lung adenocarcinoma cells through the activation of MEK/ERK signaling pathway. Chem Biol Interact 2016; 257: 26-34.
[http://dx.doi.org/10.1016/j.cbi.2016.07.028] [PMID: 27474067]
[111]
Lee HJ, Seo HS, Ryu J, Yoon YP, Park SH, Lee CJ. Luteolin inhibited the gene expression, production and secretion of MUC5AC mucin via regulation of nuclear factor kappa B signaling pathway in human airway epithelial cells. Pulm Pharmacol Ther 2015; 31: 117-22.
[http://dx.doi.org/10.1016/j.pupt.2014.09.008] [PMID: 25285988]
[112]
Feng J, Chen X, Wang Y, et al. Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells. Mol Cell Biochem 2015; 408(1-2): 163-70.
[http://dx.doi.org/10.1007/s11010-015-2492-1] [PMID: 26112905]
[113]
Gándara L, Sandes E, Di Venosa G, et al. The natural flavonoid silybin improves the response to Photodynamic Therapy of bladder cancer cells. J Photochem Photobiol B 2014; 133: 55-64.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.03.006] [PMID: 24705371]
[114]
Chen XM, Bai Y, Zhong YJ, et al. Wogonin has multiple anti-cancer effects by regulating c-Myc/SKP2/Fbw7α and HDAC1/HDAC2 pathways and inducing apoptosis in human lung adenocarcinoma cell line A549. PLoS One 2013; 8(11)e79201
[http://dx.doi.org/10.1371/journal.pone.0079201] [PMID: 24265759]
[115]
Kim MS, Bak Y, Park YS, et al. Wogonin induces apoptosis by suppressing E6 and E7 expressions and activating intrinsic signaling pathways in HPV-16 cervical cancer cells. Cell Biol Toxicol 2013; 29(4): 259-72.
[http://dx.doi.org/10.1007/s10565-013-9251-4] [PMID: 23955116]
[116]
Kopecny L. Veterinary immunology. Australian veterinary journal.9th ed. St Louis: Elsevier 2013. 91: 51
[117]
Medzhitov R, Janeway C Jr. Innate immunity. N Engl J Med 2000; 343(5): 338-44.
[http://dx.doi.org/10.1056/NEJM200008033430506] [PMID: 10922424]
[118]
Cruvinel WdeM, Mesquita D Jr, Araújo JA, et al. Immune system - part I. Fundamentals of innate immunity with emphasis on molecular and cellular mechanisms of inflammatory response. Rev Bras Reumatol 2010; 50(4): 434-61.
[http://dx.doi.org/10.1590/S0482-50042010000400008] [PMID: 21125178]
[119]
Cooper MD, Alder MN. The evolution of adaptive immune systems. Cell 2006; 124(4): 815-22.
[http://dx.doi.org/10.1016/j.cell.2006.02.001] [PMID: 16497590]
[120]
Bonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin Immunol 2010; 125(2)(Suppl. 2): S33-40.
[http://dx.doi.org/10.1016/j.jaci.2009.09.017] [PMID: 20061006]
[121]
Ding S, Jiang H, Fang J. Regulation of immune function by polyphenols. J Immunol Res 2018; 2018: 1264074-4.
[http://dx.doi.org/10.1155/2018/1264074] [PMID: 29850614]
[122]
Zeinali M, Rezaee SA, Hosseinzadeh H. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed Pharmacother 2017; 92: 998-1009.
[http://dx.doi.org/10.1016/j.biopha.2017.06.003] [PMID: 28609844]
[123]
Shin EK, Kwon HS, Kim YH, Shin HK, Kim JK. Chrysin, a natural flavone, improves murine inflammatory bowel diseases. Biochem Biophys Res Commun 2009; 381(4): 502-7.
[http://dx.doi.org/10.1016/j.bbrc.2009.02.071] [PMID: 19233127]
[124]
Hougee S, Sanders A, Faber J, et al. Decreased pro-inflammatory cytokine production by LPS-stimulated PBMC upon in vitro incubation with the flavonoids apigenin, luteolin or chrysin, due to selective elimination of monocytes/macrophages. Biochem Pharmacol 2005; 69(2): 241-8.
[http://dx.doi.org/10.1016/j.bcp.2004.10.002] [PMID: 15627476]
[125]
Huang RY, Yu YL, Cheng WC, OuYang CN, Fu E, Chu CL. Immunosuppressive effect of quercetin on dendritic cell activation and function. J Immunol 2010; 184(12): 6815-21.
[http://dx.doi.org/10.4049/jimmunol.0903991] [PMID: 20483746]
[126]
Rogerio AP, Dora CL, Andrade EL, et al. Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharmacol Res 2010; 61(4): 288-97.
[http://dx.doi.org/10.1016/j.phrs.2009.10.005] [PMID: 19892018]
[127]
Song B, Guan S, Lu J, et al. Suppressive effects of fisetin on mice T lymphocytes in vitro and in vivo. J Surg Res 2013; 185(1): 399-409.
[http://dx.doi.org/10.1016/j.jss.2013.05.093] [PMID: 23993202]
[128]
Zeng W, Wu C, Dai Y. [Regulatory effects of luteolin on airway inflammation in asthmatic rats]. Zhonghua Yi Xue Za Zhi 2014; 94(32): 2535-9.
[PMID: 25410928]
[129]
Pietta PG. Flavonoids as antioxidants. J Nat Prod 2000; 63(7): 1035-42.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[130]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Scie World J 2013; 2013162750
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[131]
Sarian MN, Ahmed QU, Mat So’ad SZ, et al. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed Res Int 2017; 2017: 8386065-5.
[http://dx.doi.org/10.1155/2017/8386065] [PMID: 29318154]
[132]
Banjarnahor SD, Artanti N. Antioxidant properties of flavonoids. Med J Indones 2015; 23: 239-44.
[http://dx.doi.org/10.13181/mji.v23i4.1015]
[133]
Procházková D, Boušová I, Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011; 82(4): 513-23.
[http://dx.doi.org/10.1016/j.fitote.2011.01.018] [PMID: 21277359]
[134]
Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 2002; 13(10): 572-84.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5] [PMID: 12550068]
[135]
Cos P, Ying L, Calomme M, et al. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod 1998; 61(1): 71-6.
[http://dx.doi.org/10.1021/np970237h] [PMID: 9461655]
[136]
Bansal P, Paul P, Mudgal J, et al. Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high fat diet/streptozotocin-induced diabetes in mice. Exp Toxicol Pathol 2012; 64(6): 651-8.
[http://dx.doi.org/10.1016/j.etp.2010.12.009] [PMID: 21208790]
[137]
Wang W, Li J, Zhang H, Wang X, Fan J, Zhang X. Phenolic compounds and bioactivity evaluation of aqueous and methanol extracts of Allium mongolicum Regel. Food Sci Nutr 2019; 7(2): 779-87.
[http://dx.doi.org/10.1002/fsn3.926] [PMID: 30847157]
[138]
Amran N, Rani AN, Mahmud R, Yin KB. Antioxidant and cytotoxic effect of barringtonia racemosa and hibiscus sabdariffa fruit extracts in MCF-7 human breast cancer cell line. Pharmacognosy Res 2016; 8(1): 66-70.
[http://dx.doi.org/10.4103/0974-8490.171104] [PMID: 26941539]
[139]
Ghagane SC, Puranik SI, Kumbar VM, et al. In vitro antioxidant and anticancer activity of Leea indica leaf extracts on human prostate cancer cell lines. Integr Med Res 2017; 6(1): 79-87.
[http://dx.doi.org/10.1016/j.imr.2017.01.004] [PMID: 28462147]
[140]
Chen Y-W, Chou H-C, Lin S-T, et al. Cardioprotective effects of quercetin in cardiomyocyte under ischemia/reperfusion injury. Evidence- based complementary and alternative medicine: eCAM 2013; 364519-9.
[141]
Demirci N. Protective effect of prolonged quercetin supplement on oxidative stress and antioxidant enzyme activities in boxers. Stud Ethno-Med 2017; 11: 168-73.
[http://dx.doi.org/10.1080/09735070.2017.1305225]
[142]
Liu H, Guo X, Chu Y, Lu S. Heart protective effects and mechanism of quercetin preconditioning on anti-myocardial ischemia reperfusion (IR) injuries in rats. Gene 2014; 545(1): 149-55.
[http://dx.doi.org/10.1016/j.gene.2014.04.043] [PMID: 24769323]
[143]
Lee YJ, Suh KS, Choi MC, et al. Kaempferol protects HIT-T15 pancreatic beta cells from 2-deoxy-D-ribose-induced oxidative damage. Phytother Res 2010; 24(3): 419-23.
[http://dx.doi.org/10.1002/ptr.2983] [PMID: 19827031]
[144]
Weinreb O, Mandel S, Amit T, Youdim MB. Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem 2004; 15(9): 506-16.
[http://dx.doi.org/10.1016/j.jnutbio.2004.05.002] [PMID: 15350981]
[145]
Yardley DA. Drug resistance and the role of combination chemotherapy in improving patient outcomes. Int J Breast Cancer 2013; 2013: 137414-4.
[http://dx.doi.org/10.1155/2013/137414] [PMID: 23864953]
[146]
Hussain SA, Sulaiman AA, Balch C, Chauhan H, Alhadidi QM, Tiwari AK. Natural polyphenols in cancer chemoresistance. Nutr Cancer 2016; 68(6): 879-91.
[http://dx.doi.org/10.1080/01635581.2016.1192201] [PMID: 27366999]
[147]
Chen ZS, Tiwari AK. Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J 2011; 278(18): 3226-45.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08235.x] [PMID: 21740521]
[148]
Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics 2009; 3(3): 281-90.
[http://dx.doi.org/10.1186/1479-7364-3-3-281] [PMID: 19403462]
[149]
Tiwari AK, Sodani K, Dai CL, Ashby CR Jr, Chen ZS. Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol 2011; 12(4): 570-94.
[http://dx.doi.org/10.2174/138920111795164048] [PMID: 21118094]
[150]
Konieczna A, Erdösová B, Lichnovská R, Jandl M, Cížková K, Ehrmann J. Differential expression of ABC transporters (MDR1, MRP1, BCRP) in developing human embryos. J Mol Histol 2011; 42(6): 567-74.
[http://dx.doi.org/10.1007/s10735-011-9363-1] [PMID: 22012127]
[151]
Russel FG. Transporters: importance in drug absorption, distribution, and removal Enzyme-and transporter-based drug-drug interactions. Springer 2010; pp. 27-49.
[http://dx.doi.org/10.1007/978-1-4419-0840-7_2]
[152]
Amawi H, Ashby CR Jr, Tiwari AK. Cancer chemoprevention through dietary flavonoids: what’s limiting? Chin J Cancer 2017; 36(1): 50.
[http://dx.doi.org/10.1186/s40880-017-0217-4] [PMID: 28629389]
[153]
Cui J, Liu X, Chow LMC. Flavonoids as P-gp inhibitors: a systematic review of SARs. Curr Med Chem 2019; 26(25): 4799-831.
[PMID: 30277144]
[154]
Bansal T, Jaggi M, Khar RK, Talegaonkar S. Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. J Pharm Pharm Sci 2009; 12(1): 46-78.
[http://dx.doi.org/10.18433/J3RC77] [PMID: 19470292]
[155]
Jaganathan SK. Can flavonoids from honey alter multidrug resistance? Med Hypotheses 2011; 76(4): 535-7.
[http://dx.doi.org/10.1016/j.mehy.2010.12.011] [PMID: 21247706]
[156]
Monika Stompor M, Rafał Podgórski R, Tomasz Kubrak T. Combined effect of flavonoid compounds and cytostatics in cancer treatment. Eur J Clin Exp Med 2017; pp. 157-64.
[157]
Choi J-S, Choi H-K, Shin S-C. Enhanced bioavailability of paclitaxel after oral coadministration with flavone in rats. Int J Pharm 2004; 275(1-2): 165-70.
[http://dx.doi.org/10.1016/j.ijpharm.2004.01.032] [PMID: 15081147]
[158]
Prack Mc Cormick B, Langle Y, Belgorosky D, et al. Flavonoid silybin improves the response to radiotherapy in invasive bladder cancer. J Cell Biochem 2018; 119(7): 5402-12.
[http://dx.doi.org/10.1002/jcb.26693] [PMID: 29363820]
[159]
Manivannan E, Amawi H, Hussein N, et al. Design and discovery of silybin analogues as antiproliferative compounds using a ring disjunctive - Based, natural product lead optimization approach. Eur J Med Chem 2017; 133: 365-78.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.033] [PMID: 28411546]
[160]
Amawi H, Hussein NA, Karthikeyan C, et al. HM015k, a novel silybin derivative, multi-targets metastatic ovarian cancer cells and is safe in zebrafish toxicity studies. Front Pharmacol 2017; 8: 498.
[http://dx.doi.org/10.3389/fphar.2017.00498] [PMID: 28824426]
[161]
Gui Y, Zhang J, Chen L, et al. Icariin, a flavonoid with anti-cancer effects, alleviated paclitaxel-induced neuropathic pain in a SIRT1-dependent manner. Mol Pain 2018; 141744806918768970
[http://dx.doi.org/10.1177/1744806918768970] [PMID: 29623757]
[162]
Mohana S, Ganesan M, Rajendra Prasad N, Ananthakrishnan D, Velmurugan D. Flavonoids modulate multidrug resistance through wnt signaling in P-glycoprotein overexpressing cell lines. BMC Cancer 2018; 18(1): 1168.
[http://dx.doi.org/10.1186/s12885-018-5103-1] [PMID: 30477461]
[163]
Wong ILK, Zhu X, Chan K-F, et al. Discovery of novel flavonoid dimers to reverse multidrug resistance protein 1 (MRP1, ABCC1) mediated drug resistance in cancers using a high throughput platform with “click chemistry”. J Med Chem 2018; 61(22): 9931-51.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00834] [PMID: 30351934]
[164]
Kitagawa S, Nabekura T, Takahashi T, et al. Structure-activity relationships of the inhibitory effects of flavonoids on P-glycoprotein-mediated transport in KB-C2 cells. Biol Pharm Bull 2005; 28(12): 2274-8.
[http://dx.doi.org/10.1248/bpb.28.2274] [PMID: 16327165]
[165]
Hadjeri M, Barbier M, Ronot X, Mariotte AM, Boumendjel A, Boutonnat J. Modulation of P-glycoprotein-mediated multidrug resistance by flavonoid derivatives and analogues. J Med Chem 2003; 46(11): 2125-31.
[http://dx.doi.org/10.1021/jm021099i] [PMID: 12747785]
[166]
Nikolaou M, Pavlopoulou A, Georgakilas AG, Kyrodimos E. The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metastasis 2018; 35(4): 309-18.
[http://dx.doi.org/10.1007/s10585-018-9903-0] [PMID: 29799080]
[167]
George VC, Rupasinghe HPV. Apple flavonoids suppress carcinogen-induced DNA damage in normal human bronchial epithelial cells. Oxid Med Cell Longev 2017; 2017: 1767198-8.
[http://dx.doi.org/10.1155/2017/1767198] [PMID: 28698766]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 15
Year: 2020
Page: [1712 - 1728]
Pages: 17
DOI: 10.2174/1381612826666200128095248
Price: $65

Article Metrics

PDF: 14