Synthesis, Conformational Analysis, Infrared, Raman and UV-Visible Spectra of Novel Schiff Bases compiled with DFT Calculations

Author(s): Samy M. Ahmed, Ibrahim A. Shaaban, Elsayed H. El-Mossalamy, Tarek A. Mohamed*

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 23 , Issue 7 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Objective: Two novel Schiff bases named, 2-((2-Hydroxybenzylidene)amino)-4,5,6,7- tetrahydrobenzo[b] thiophene-3-carbonitrile (BESB1) and 2-((Furan-2-ylmethylene)amino)-4,5,6, 7-tetrahydro-benzo[b]thiophene-3-carbonitrile (BESB2) were synthesized.

Methods: The structures were characterized based on CHN elemental analysis, mid-infrared (400– 4000 cm-1), Raman (100-4000 cm-1), 1H NMR, mass and UV-Vis spectroscopic measurements. In addition, quantum mechanical calculations using DFT-B3LYP method at 6-31G(d) basis set were carried out for both Schiff bases. Initially, we have carried out complete geometry optimizations followed by frequency calculations for the proposed conformational isomers; BESB1 (A–E) and BESB2 (F–J) based on the orientations of both CN and OH groups against the azomethine lonepair (NLP) in addition to the 3D assumption.

Results: The computational outcomes favor conformer A for BESB1 in which the C≡N and OH moieties are cis towards the NLP while conformer G is preferred for BESB2 (the C≡N/furan-O are cis/trans towards the NLP) which was found consistent with the results of relaxed potential energy surface scan. Aided by normal coordinate analysis of the Cartesian coordinate displacements, we have suggested reliable vibrational assignments for all observed IR and Raman bands. Moreover, the electronic absorption spectra for the favored conformers were predicted in DMSO solution using TD-B3LYP/6-31G(d) calculations. Similarly, the 1H NMR chemical shifts were also estimated using GIAO approach implementing PCM including solvent effects (DMSO-d6).

Conclusion: Proper interpretations of the observed electronic transition, chemical shifts, IR and Raman bands were presented in this study.

Keywords: Thiophene azomethine derivatives, infrared, Raman and NMR spectra, vibrational assignment, DFT calculations, electronic transition.

[1]
Sathe, B.S.; Jaychandran, E.; Jagtap, V.; Sreenivasa, G. Synthesis characterization and anti-inflammatory evaluation of new fluorobenzothiazole schiff’s bases. Int. J. Pharm. Res. Dev., 2011, 3, 164-169.
[2]
Chinnasamy, R.P.; Sundararajan, R.; Govindaraj, S. Synthesis, characterization, and analgesic activity of novel schiff base of isatin derivatives. J. Adv. Pharm. Technol. Res., 2010, 1(3), 342-347.
[http://dx.doi.org/10.4103/0110-5558.72428] [PMID: 22247869]
[3]
Mounika, K.; Pragathi, A.; Gyanakumari, C. Synthesis characterization and biological activity of a Schiff base derived from 3-ethoxy salicylaldehyde and 2-amino benzoic acid and its transition metal complexes. J. Sci. Res., 2010, 2, 513.
[http://dx.doi.org/10.3329/jsr.v2i3.4899]
[4]
Chaubey, A.; Pandeya, S. Synthesis & anticonvulsant activity (Chemo Shock) of Schiff and Mannich bases of Isatin derivatives with 2-Amino pyridine (mechanism of action). Int. J. Pharm. Tech. Res., 2012, 4, 590-598.
[5]
Aboul-Fadl, T.; Mohammed, F.A-H.; Hassan, E.A-S. Synthesis, antitubercular activity and pharmacokinetic studies of some Schiff bases derived from 1-alkylisatin and isonicotinic acid hydrazide (INH). Arch. Pharm. Res., 2003, 26(10), 778-784.
[http://dx.doi.org/10.1007/BF02980020] [PMID: 14609123]
[6]
Miri, R.; Razzaghi-asl, N.; Mohammadi, M.K. QM study and conformational analysis of an isatin Schiff base as a potential cytotoxic agent. J. Mol. Model., 2013, 19(2), 727-735.
[http://dx.doi.org/10.1007/s00894-012-1586-x] [PMID: 23053004]
[7]
Wei, D.; Li, N.; Lu, G.; Yao, K. Synthesis, catalytic and biological activity of novel dinuclear copper complex with Schiff base. Sci. China Series B, 2006, 49, 225-229.
[http://dx.doi.org/10.1007/s11426-006-0225-8]
[8]
Avaji, P.G.; Kumar, C.H.; Patil, S.A.; Shivananda, K.N.; Nagaraju, C. Synthesis, spectral characterization, in-vitro microbiological evaluation and cytotoxic activities of novel macrocyclic bis hydrazone. Eur. J. Med. Chem., 2009, 44(9), 3552-3559.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.032] [PMID: 19419802]
[9]
Vashi, K.; Naik, H. Synthesis of novel Schiff base and azetidinone derivatives and their antibacterial activity. J. Chem., 2004, 1, 272-275.
[10]
Chohan, Z.H.; Praveen, M.; Ghaffar, A. Structural and biological behaviour of Co (II), Cu (II) and Ni (II) metal complexes of some amino acid derived Schiff-bases. Met. Based Drugs, 1997, 4(5), 267-272.
[http://dx.doi.org/10.1155/MBD.1997.267] [PMID: 18475798]
[11]
Tisato, F.; Refosco, F.; Bandoli, G. Structural survey of technetium complexes. Coord. Chem. Rev., 1994, 135, 325-397.
[http://dx.doi.org/10.1016/0010-8545(94)80072-3]
[12]
Dhar, D.N.; Taploo, C. Schiff-bases and their applications. J. Sci. Ind. Res. (India), 1982, 41, 501-506.
[13]
Li, S.; Chen, S.; Lei, S.; Ma, H.; Yu, R.; Liu, D. Investigation on some Schiff bases as HCl corrosioninhibitors for copper. Corros. Sci., 1999, 41, 1273-1287.
[http://dx.doi.org/10.1016/S0010-938X(98)00183-8]
[14]
Bhattacharya, A.; Purohit, V.C.; Rinaldi, F. Environmentally friendly solvent-free processes: novel dual catalyst system in Henry reaction. Org. Process Res. Dev., 2003, 7, 254-258.
[http://dx.doi.org/10.1021/op020222c]
[15]
Chen, G.; Wang, F.; Wang, Y.; Zhang, X.; Qin, H.; Zou, H.; Xu, J. Imine-linked conjugated organic polymer bearing bis(imino)pyridine ligands and its catalytic application in C–C coupling reactions. Chin. J. Catal., 2014, 35, 540-545.
[http://dx.doi.org/10.1016/S1872-2067(14)60021-8]
[16]
Sekizkardes, A.K.; Altarawneh, S.; Kahveci, Z.; İslamoğlu, T.; El-Kaderi, H.M. Highly Selective CO2 Capture by Triazine-Based Benzimidazole-Linked Polymers. Macromolecules, 2014, 47, 8328-8334.
[http://dx.doi.org/10.1021/ma502071w]
[17]
Arab, P.; Rabbani, M.G.; Sekizkardes, A.K.; İslamoğlu, T.; El-Kaderi, H.M. Copper(I)-catalyzed synthesis of nanoporous azo-linked polymers: impact of textural properties on gas storage and selective carbon dioxide capture. Chem. Mater., 2014, 26, 1385-1392.
[http://dx.doi.org/10.1021/cm403161e]
[18]
Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J., 2010, 156, 11-24.
[http://dx.doi.org/10.1016/j.cej.2009.10.029]
[19]
Koole, M.; Frisenda, R.; Petrus, M.L.; Perrin, M.L.; van der Zant, H.S.J.; Dingemans, T.J. Charge transport through conjugated azomethine-based single molecules for optoelectronic applications. Org. Electron., 2016, 34, 38-41.
[http://dx.doi.org/10.1016/j.orgel.2016.03.043]
[20]
Petrus, M.L.; Bouwer, R.K.; Lafont, U.; Athanasopoulos, S.; Greenham, N.C.; Dingemans, T.J. Small-molecule azomethines: organic photovoltaics via Schiff base condensation chemistry. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 9474-9477.
[http://dx.doi.org/10.1039/C4TA01629G]
[21]
Petrus, M.L.; Morgenstern, F.S.F.; Sadhanala, A.; Friend, R.H.; Greenham, N.C.; Dingemans, T.J. Device Performance of Small-Molecule Azomethine-Based Bulk Heterojunction Solar Cells. Chem. Mater., 2015, 27, 2990-2997.
[http://dx.doi.org/10.1021/acs.chemmater.5b00313]
[22]
Bolduc, A.; Al Ouahabi, A.; Mallet, C.; Skene, W.G. Insight into the isoelectronic character of azomethines and vinylenes using representative models: a spectroscopic and electrochemical study. J. Org. Chem., 2013, 78(18), 9258-9269.
[http://dx.doi.org/10.1021/jo401497z] [PMID: 23947394]
[23]
Bourgeaux, M.; Skene, W.G. Photophysics and electrochemistry of conjugated oligothiophenes prepared by using azomethine connections. J. Org. Chem., 2007, 72(2007), 8882-8892.
[24]
Kotowicz, S.; Siwy, M.; Filapek, M.; Malecki, J.G.; Smolarek, K.; Grzelak, J.; Mackowski, S.; Slodek, A.; Schab-Balcerzak, E. New donor-acceptor-donor molecules based on quinoline acceptor unit with Schiff base bridge: synthesis and characterization. J. Lumin., 2017, 183, 458-469.
[http://dx.doi.org/10.1016/j.jlumin.2016.11.058]
[25]
Dufresne, S.; Bolduc, A.; Skene, W.G. Towards materials with reversible oxidation and tuneable colours using heterocyclic conjugated azomethines. J. Mater. Chem., 2010, 20, 4861-4866.
[http://dx.doi.org/10.1039/c0jm00557f]
[26]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Zakrzewski, V.G.; Montgomery, J.A., Jr; Stratmann, Re. E.; Burant, J.C.; Dapprich, S.; Millam, J.M.; Daniels, A.D.; Kudin, K.N.; Strain, M.C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G.A.; Ayala, P.Y.; Cui, Q.; Morokuma, K.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Cioslowski, J.; Ortiz, J.V.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P.M.W.; Johnson, B.G.; Chen, W. Wong, M.W.; Andres, J.L.; Head-Gordon, M. Replogle, E.S.; Pople, J.A. Gaussian 98, Revision A. 7; Vol. 12, Gaussian, Inc.: Pittsburgh PA 1998.
[27]
Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A Gen. Phys., 1988, 38(6), 3098-3100.
[http://dx.doi.org/10.1103/PhysRevA.38.3098] [PMID: 9900728]
[28]
Lee, C.; Yang, W.; Parr, R.G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37, 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[29]
Ditchfield, R. Self-consistent perturbation theory of diamagnetism: I. A gauge-invariant LCAO method for NMR chemical shifts. Mol. Phys., 1974, 27, 789-807.
[http://dx.doi.org/10.1080/00268977400100711]
[30]
Chesnut, D.; Phung, C. Nuclear magnetic resonance chemical shifts using optimized geometries. J. Chem. Phys., 1989, 91, 6238-6245.
[http://dx.doi.org/10.1063/1.457390]
[31]
Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev., 2005, 105(8), 2999-3093.
[http://dx.doi.org/10.1021/cr9904009] [PMID: 16092826]
[32]
Bai, R.; Liu, P.; Yang, J.; Liu, C.; Gu, Y. Facile synthesis of 2-aminothiophenes using NaAlO2 as an eco-effective and recyclable catalyst. ACS Sustain. Chem.& Eng., 2015, 3, 1292-1297.
[http://dx.doi.org/10.1021/sc500763q]
[33]
Pulay, P. Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules. Mol. Phys., 1969, 17, 197-204.
[http://dx.doi.org/10.1080/00268976900100941]
[34]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P. A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.Jr., Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; chterski, J.W. Martin, R.L; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.
[35]
Scott, A.P.; Radom, L. Harmonic vibrational frequencies: an evaluation of Hartree− Fock, Møller− Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem., 1996, 100, 16502-16513.
[http://dx.doi.org/10.1021/jp960976r]
[36]
Borowski, P. An evaluation of scaling factors for multiparameter scaling procedures based on DFT force fields. J. Phys. Chem. A, 2012, 116(15), 3866-3880.
[http://dx.doi.org/10.1021/jp212201f] [PMID: 22372987]
[37]
Rauhut, G.; Pulay, P. Transferable scaling factors for density functional derived vibrational force fields. J. Phys. Chem., 99(1995), 3093-3100.
[38]
Morzyk-Ociepa, B.; Nowak, M.J.; Michalska, D. Vibrational spectra of 1-methylthymine: matrix isolation, solid state and theoretical studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2004, 60(8-9), 2113-2123.
[http://dx.doi.org/10.1016/j.saa.2003.11.009] [PMID: 15248994]
[39]
Shaaban, I.A.; Mohamed, T.A.; Zoghaib, W.M.; Wilson, L.D.; Farag, R.S.; Afifi, M.S.; Badr, Y.A. Tautomerism, Raman, infrared and ultraviolet–visible spectra, vibrational assignments, MP2 and B3LYP calculations of dienol 3,4-dihydroxypyridine, keto-enol 3-hydroxypyridin-4-one and keto-enol dimer. J. Mol. Struct., 2013, 1043, 52-67.
[http://dx.doi.org/10.1016/j.molstruc.2013.03.041]
[40]
Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett., 1996, 256, 454-464.
[http://dx.doi.org/10.1016/0009-2614(96)00440-X]
[41]
Furche, F.; Ahlrichs, R. Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys., 2002, 117, 7433-7447.
[http://dx.doi.org/10.1063/1.1508368]
[42]
Larsen, N.W. Microwave spectra of the six mono-13C-substituted phenols and of some monodeuterated species of phenol. Complete substitution structure and absolute dipole moment. J. Mol. Struct., 1979, 51, 175-190.
[http://dx.doi.org/10.1016/0022-2860(79)80292-6]
[43]
Portalone, G.; Schultz, G.; Domenicano, A.; Hargittai, I. Molecular structure and ring distortion of phenol. An electron diffraction study. Chem. Phys. Lett., 1992, 197, 482-488.
[http://dx.doi.org/10.1016/0009-2614(92)85804-J]
[44]
Jouaiti, A.; Al Badri, A.; Geoffroy, M.; Bernardinelli, G. Phosphaalkene derivatives of furane and thiophene: Synthesis, crystal structure, electrochemistry and EPR study of their radical anions. J. Organomet. Chem., 1997, 529, 143-149.
[http://dx.doi.org/10.1016/S0022-328X(96)06526-6]
[45]
Elerman, Y.; Elmali, A. 2-Salicylideneamino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile. Acta Crystallogr. C, 1998, 54, 529-531.
[http://dx.doi.org/10.1107/S0108270197013991]
[46]
Khan, S.A.; Obaid, A.Y.; Al-Harb, L.M.; Arshad, M.N.; Asiri, A.M.; Hursthouse, M.B. Synthesis, Spectroscopic, Physicochemical, Crystal Structure and DFT Studies of 4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile Based Azomethine Dyes. Int. J. Electrochem. Sci., 2015, 10, 2306-2323.
[47]
Yıldız, E.; Köse, M.; Tümer, M.; Purtaş, S.; Tümer, F. Thiophene based imine compounds: Structural characterization, electrochemical, photophysical and thermal properties. J. Mol. Struct., 2017, 1150, 55-60.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.042]
[48]
Bondi, A. van der Waals volumes and radii. J. Phys. Chem., 1964, 68, 441-451.
[http://dx.doi.org/10.1021/j100785a001]
[49]
Keeler, J.; Wothers, P. Chemical Structure and Reactivity: An Integrated Approach; OUP Oxford, 2013.
[50]
Dennington, R.; Keith, T.; Millam, J. Semichem Inc, Shawnee Mission KS, GaussView, Version, 5 2009.
[51]
Shaaban, I.A.; Karoyo, A.; Wilson, L.D.; Mohamed, T.A. Raman and DRIFT spectra, vibrational assignments and quantum mechanical calculations of centrosymmetric meso-2,3-Dimercaptosuccinic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 183, 275-283.
[http://dx.doi.org/10.1016/j.saa.2017.04.017] [PMID: 28458233]
[52]
Abuelela, A.M.; Farag, R.S.; Mohamed, T.A.; Prezhdo, O.V. Ab Initio study of the vibrational signatures for the covalent functionalization of graphene. J. Phys. Chem. C, 2013, 117, 19489-19498.
[http://dx.doi.org/10.1021/jp405819b]
[53]
Jawad, J.K.; Mohamed, T.A.; Soliman, U.A.; Wilson, L.D.; Abuelela, A.M. Raman and infrared spectra, crystal structure and DFT calculations of novel N-benzyl-4-(3-benzylcarbamoyl-propyldisulfanyl)-butyramide: [C6H5CH2NHC(O)(CH2)4S]2. Res. Chem. Intermed., 2015, 41, 4761-4784.
[http://dx.doi.org/10.1007/s11164-014-1566-0]
[54]
I.A.S. Tarek A. Mohamed Ahmed M. Abuelela, Usama A. Soliman, Raman spectral transitions and barriers to internal rotations of methylmethoxysilanes using MP2 and B3LYP calculations. Asian Chem. Lett., 2015, 19, 113-124.
[55]
Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.L. Spectrometric Identification of Organic Compounds; John Wiley & Sons, 2014.
[56]
Colthup, N.B.; Daly, L.H.; Wiberley, S.E. Introduction to Infrared and Raman Spectroscopy; Academic Press: Boston, 1990.
[57]
Lampert, H.; Mikenda, W.; Karpfen, A. Molecular geometries and vibrational spectra of phenol, benzaldehyde, and salicylaldehyde: experimental versus quantum chemical data. J. Phys. Chem. A, 1997, 101, 2254-2263.
[http://dx.doi.org/10.1021/jp962933g]
[58]
O’Boyle, N.M.; Tenderholt, A.L.; Langner, K.M. cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem., 2008, 29(5), 839-845.
[http://dx.doi.org/10.1002/jcc.20823] [PMID: 17849392]
[59]
Orbitals, I.F.F. Organic Chemical Reactions; John Wiley and Sons: New York, 1976.
[60]
Sajan, D.; Joseph, L.; Vijayan, N.; Karabacak, M. Natural bond orbital analysis, electronic structure, non-linear properties and vibrational spectral analysis of L-histidinium bromide monohydrate: a density functional theory. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 81(1), 85-98.
[http://dx.doi.org/10.1016/j.saa.2011.05.052] [PMID: 21775197]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 7
Year: 2020
Published on: 04 October, 2020
Page: [568 - 586]
Pages: 19
DOI: 10.2174/1386207323666200127161207
Price: $65

Article Metrics

PDF: 26
HTML: 1