Quinoline Containing Side-chain Antimalarial Analogs: Recent Advances and Therapeutic Application

Author(s): Mukesh C. Joshi*, Timothy J. Egan

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 8 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


The side-chains of quinoline antimalarial agents are the major concern of focus to build novel and efficaciaous bioactive and clinical antimalarials. Bioative antimalarial analogs may play a critical role in pH trapping in the food vacuole of RBC’s with the help of fragmented amino acid, thus lead to β-hematin inhibition. Here, the authors tried to summarize a useful, comprehensive compilation of side-chain modified ACQs along with their synthesis, biophysical and therapeutic applications etc. of potent antiplasmodial agents and therefore, opening the door towards the potential clinical status.

Keywords: Chloroquine, P. falciparum, Antiplasmodial activity, β-HI activity, Cytotoxicity, Quinoline.

WHO World Malaria Report. 2018. World Health Organization: Geneva, 2018.
Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles, 2nd ed; Wiley-VCH: Weinheim, Germany, 2003, pp. 316-336.
[http://dx.doi.org/10.1002/352760183X ]
Ginsburg, H.; Krugliak, M. Quinoline-containing antimalarials--mode of action, drug resistance and its reversal. An update with unresolved puzzles. Biochem. Pharmacol., 1992, 43(1), 63-70.
[http://dx.doi.org/10.1016/0006-2952(92)90662-3] [PMID: 1734899]
Foley, M.; Tilley, L. Quinoline antimalarials: mechanisms of action and resistance. Int. J. Parasitol., 1997, 27(2), 231-240.
[http://dx.doi.org/10.1016/S0020-7519(96)00152-X] [PMID: 9088993]
O’Neill, P.M.; Bray, P.G.; Hawley, S.R.; Ward, S.A.; Park, B.K. 4-Aminoquinolines--past, present, and future: a chemical perspective. Pharmacol. Ther., 1998, 77(1), 29-58.
[http://dx.doi.org/10.1016/S0163-7258(97)00084-3] [PMID: 9500158]
Fitch, C.D. Ferriprotoporphyrin IX, phospholipids, and the antimalarial actions of quinoline drugs. Life Sci., 2004, 74(16), 1957-1972.
[http://dx.doi.org/10.1016/j.lfs.2003.10.003] [PMID: 14967191]
Kouznetsov, V.V.; Gómez-Barrio, A. Recent developments in the design and synthesis of hybrid molecules based on aminoquinoline ring and their antiplasmodial evaluation. Eur. J. Med. Chem., 2009, 44(8), 3091-3113.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.024] [PMID: 19361896]
Solomon, V.R.; Haq, W.; Srivastava, K.; Puri, S.K.; Katti, S.B. Synthesis and antimalarial activity of side chain modified 4-aminoquinoline derivatives. J. Med. Chem., 2007, 50(2), 394-398.
[http://dx.doi.org/10.1021/jm061002i] [PMID: 17228883]
Chiyanzu, I.; Clarkson, C.; Smith, P.J.; Lehman, J.; Gut, J.; Rosenthal, P.J.; Chibale, K. Design, synthesis and anti-plasmodial evaluation in vitro of new 4-aminoquinoline isatin derivatives. Bioorg. Med. Chem., 2005, 13(9), 3249-3261.
[http://dx.doi.org/10.1016/j.bmc.2005.02.037] [PMID: 15809160]
Gelb, M.H. Drug discovery for malaria: a very challenging and timely endeavor. Curr. Opin. Chem. Biol., 2007, 11(4), 440-445.
[http://dx.doi.org/10.1016/j.cbpa.2007.05.038] [PMID: 17761335]
Wiesner, J.; Ortmann, R.; Jomaa, H.; Schlitzer, M. New antimalarial drugs. Angew. Chem. Int. Ed. Engl., 2003, 42(43), 5274-5293.
[http://dx.doi.org/10.1002/anie.200200569] [PMID: 14613157]
Biagini, G.A.; O’Neill, P.M.; Bray, P.G.; Ward, S.A. Current drug development portfolio for antimalarial therapies. Curr. Opin. Pharmacol., 2005, 5(5), 473-478.
[http://dx.doi.org/10.1016/j.coph.2005.05.004] [PMID: 16084770]
Foley, M.; Tilley, L. Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther., 1998, 79(1), 55-87.
[http://dx.doi.org/10.1016/S0163-7258(98)00012-6] [PMID: 9719345]
Baird, J.K.; Rieckmann, K.H. Can primaquine therapy for vivax malaria be improved? Trends Parasitol., 2003, 19(3), 115-120.
[http://dx.doi.org/10.1016/S1471-4922(03)00005-9] [PMID: 12643993]
Baird, J.K.; Fryauff, D.J.; Hoffman, S.L. Primaquine for prevention of malaria in travelers. Clin. Infect. Dis., 2003, 37(12), 1659-1667.
[http://dx.doi.org/10.1086/379714] [PMID: 14689349]
Hänscheid, T.; Egan, T.J.; Grobusch, M.P. Haemozoin: from melatonin pigment to drug target, diagnostic tool, and immune modulator. Lancet Infect. Dis., 2007, 7(10), 675-685.
[http://dx.doi.org/10.1016/S1473-3099(07)70238-4] [PMID: 17897610]
Egan, T.J. Recent advances in understanding the mechanism of hemozoin (malaria pigment) formation. J. Inorg. Biochem., 2008, 102(5-6), 1288-1299.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.12.004] [PMID: 18226838]
Combrinck, J.M.; Mabotha, T.E.; Ncokazi, K.K.; Ambele, M.A.; Taylor, D.; Smith, P.J.; Hoppe, H.C.; Egan, T.J. Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem. Biol., 2013, 8(1), 133-137.
[http://dx.doi.org/10.1021/cb300454t] [PMID: 23043646]
Zishiri, V.K.; Joshi, M.C.; Hunter, R.; Chibale, K.; Smith, P.J.; Summers, R.L.; Martin, R.E.; Egan, T.J. Quinoline antimalarials containing a dibemethin group are active against chloroquinone-resistant Plasmodium falciparum and inhibit chloroquine transport via the P. falciparum chloroquine-resistance transporter (PfCRT). J. Med. Chem., 2011, 54(19), 6956-6968.
[http://dx.doi.org/10.1021/jm2009698] [PMID: 21875063]
Andrews, S.; Burgess, S.J.; Skaalrud, D.; Kelly, J.X.; Peyton, D.H. Reversal agent and linker variants of reversed chloroquines: activities against Plasmodium falciparum. J. Med. Chem., 2010, 53(2), 916-919.
[http://dx.doi.org/10.1021/jm900972u] [PMID: 20088608]
Burgess, S.J.; Selzer, A.; Kelly, J.X.; Smilkstein, M.J.; Riscoe, M.K.; Peyton, D.H. A chloroquine-like molecule designed to reverse resistance in Plasmodium falciparum. J. Med. Chem., 2006, 49(18), 5623-5625.
[http://dx.doi.org/10.1021/jm060399n] [PMID: 16942036]
Burgess, S.J.; Kelly, J.X.; Shomloo, S.; Wittlin, S.; Brun, R.; Liebmann, K.; Peyton, D.H. Synthesis, structure-activity relationship, and mode-of-action studies of antimalarial reversed chloroquine compounds. J. Med. Chem., 2010, 53(17), 6477-6489.
[http://dx.doi.org/10.1021/jm1006484] [PMID: 20684562]
Peyton, D.H.; Burgess, S.J. Quinoline derivatives & uses thereof. 2006. WO 2006/088541A2, November 15 2016.
Kelly, J.X.; Smilkstein, M.J.; Brun, R.; Wittlin, S.; Cooper, R.A.; Lane, K.D.; Janowsky, A.; Johnson, R.A.; Dodean, R.A.; Winter, R.; Hinrichs, D.J.; Riscoe, M.K. Discovery of dual function acridones as a new antimalarial chemotype. Nature, 2009, 459(7244), 270-273.
[http://dx.doi.org/10.1038/nature07937] [PMID: 19357645]
Bhattacharjee, A.K.; Kyle, D.E.; Vennerstrom, J.L.; Milhous, W.K. A 3D QSAR pharmacophore model and quantum chemical structure--activity analysis of chloroquine(CQ)-resistance reversal. J. Chem. Inf. Comput. Sci., 2002, 42(5), 1212-1220.
[http://dx.doi.org/10.1021/ci0200265] [PMID: 12377011]
Sinha, M.; Dola, V.R.; Soni, A.; Agarwal, P.; Srivastava, K.; Haq, W.; Puri, S.K.; Katti, S.B. Synthesis of chiral chloroquine and its analogues as antimalarial agents. Bioorg. Med. Chem., 2014, 22(21), 5950-5960.
[http://dx.doi.org/10.1016/j.bmc.2014.09.009] [PMID: 25284252]
Cruz, C.; Delgado, R.; Drew, M.G.B.; Félix, V. Evaluation of the binding ability of a novel dioxatetraazamacrocyclic receptor that contains two phenanthroline units: selective uptake of carboxylate anions. J. Org. Chem., 2007, 72(11), 4023-4034.
[http://dx.doi.org/10.1021/jo062653p] [PMID: 17447814]
Corbo, F.; Franchini, C.; Lentini, G.; Muraglia, M.; Ghelardini, C.; Matucci, R.; Galeotti, N.; Vivoli, E.; Tortorella, V. Synthesis and biological evaluation of chiral α-aminoanilides with central antinociceptive activity. J. Med. Chem., 2007, 50(8), 1907-1915.
[http://dx.doi.org/10.1021/jm061078e] [PMID: 17373780]
Vescovi, A.; Knoll, A.; Koert, U. Synthesis and functional studies of THF-gramicidin hybrid ion channels. Org. Biomol. Chem., 2003, 1(16), 2983-2997.
[http://dx.doi.org/10.1039/B303249N] [PMID: 12968351]
Breuning, A.; Degel, B.; Schulz, F.; Büchold, C.; Stempka, M.; Machon, U.; Heppner, S.; Gelhaus, C.; Leippe, M.; Leyh, M.; Kisker, C.; Rath, J.; Stich, A.; Gut, J.; Rosenthal, P.J.; Schmuck, C.; Schirmeister, T. Michael acceptor based antiplasmodial and antitrypanosomal cysteine protease inhibitors with unusual amino acids. J. Med. Chem., 2010, 53(5), 1951-1963.
[http://dx.doi.org/10.1021/jm900946n] [PMID: 20131843]
Métro, T.X.; Appenzeller, J.; Pardo, D.G.; Cossy, J. Highly enantioselective synthesis of β-amino alcohols. Org. Lett., 2006, 8(16), 3509-3512.
[http://dx.doi.org/10.1021/ol061133d] [PMID: 16869647]
Vaughan, J.R. The total synthesis of some naturally occurring steroids. J. Am. Chem. Soc., 1951, 73(7), 3547-3548.
Blauer, G.; Akkawi, M.; Fleischhacker, W.; Hiessbock, R. Synthesis and optical properties of the chloroquine enantiomers and their complexes with ferriprotoporphyrin IX in aqueous solution. Chirality, 1998, 10, 556-563.
Kenyon, R.L.; Wiesner, J.A.; Kwartler, C.E. Chloroquine manufacture. Ind. Eng. Chem., 1949, 41(4), 654-662.
Iwaniuk, D.P.; Whetmore, E.D.; Rosa, N.; Ekoue-Kovi, K.; Alumasa, J.; de Dios, A.C.; Roepe, P.D.; Wolf, C. Synthesis and antimalarial activity of new chloroquine analogues carrying a multifunctional linear side chain. Bioorg. Med. Chem., 2009, 17(18), 6560-6566.
[http://dx.doi.org/10.1016/j.bmc.2009.08.003] [PMID: 19703776]
(a)De, D.; Krogstad, F.M.; Byers, L.D.; Krogstad, D.J. Structure-activity relationships for antiplasmodial activity among 7-substituted 4-aminoquinolines. J. Med. Chem., 1998, 41(25), 4918-4926.
[http://dx.doi.org/10.1021/jm980146x] [PMID: 9836608]
(b)Musonda, C.C.; Little, S.; Yardley, V.; Chibale, K. Application of multicomponent reactions to antimalarial drug discovery. Part 3: discovery of aminoxazole 4-aminoquinolines with potent antiplasmodial activity in vitro. Bioorg. Med. Chem. Lett., 2007, 17(17), 4733-4736.
[http://dx.doi.org/10.1016/j.bmcl.2007.06.070] [PMID: 17644333]
(c)De, D.; Byers, L.D.; Krogstad, D.J. Antimalarial: Synthesis of 4-aminoquinolines that circumvent resistance in malarial parasite. J. Heterocycl. Chem., 1997, 34, 315-320.
(d)Stocks, P.A.; Raynes, K.J.; Bray, P.G.; Park, B.K.; O’Neill, P.M.; Ward, S.A. Novel short chain chloroquine analogues retain activity against chloroquine resistant K1 Plasmodium falciparum. J. Med. Chem., 2002, 45(23), 4975-4983.
[http://dx.doi.org/10.1021/jm0108707] [PMID: 12408708]
(e)Biot, C.; Daher, W.; Ndiaye, C.M.; Melnyk, P.; Pradines, B.; Chavain, N.; Pellet, A.; Fraisse, L.; Pelinski, L.; Jarry, C.; Brocard, J.; Khalife, J.; Forfar-Bares, I.; Dive, D. Probing the role of the covalent linkage of ferrocene into a chloroquine template. J. Med. Chem., 2006, 49(15), 4707-4714.
[PMID: 16854077]
Natarajan, J.K.; Alumasa, J.N.; Yearick, K.; Ekoue-Kovi, K.A.; Casabianca, L.B.; de Dios, A.C.; Wolf, C.; Roepe, P.D. 4-N-, 4-S-, and 4-O-chloroquine analogues: influence of side chain length and quinolyl nitrogen pKa on activity vs chloroquine resistant malaria. J. Med. Chem., 2008, 51(12), 3466-3479.
[http://dx.doi.org/10.1021/jm701478a] [PMID: 18512900]
Korotchenko, V.; Sathunuru, R.; Gerena, L.; Caridha, D.; Li, Q.; Kreishman-Deitrick, M.; Smith, P.L.; Lin, A.J. Antimalarial activity of 4-amidinoquinoline and 10-amidinobenzonaphthyridine derivatives. J. Med. Chem., 2015, 58(8), 3411-3431.
[http://dx.doi.org/10.1021/jm501809x] [PMID: 25654185]
Madrid, P.B.; Wilson, N.T.; DeRisi, J.L.; Guy, R.K. Parallel synthesis and antimalarial screening of a 4-aminoquinoline library. J. Comb. Chem., 2004, 6(3), 437-442.
[http://dx.doi.org/10.1021/cc0340473] [PMID: 15132606]
Pérez, B.; Teixeira, C.; Gut, J.; Rosenthal, P.J.; Gomes, J.R.B.; Gomes, P. Cinnamic acid/chloroquinoline conjugates as potent agents against chloroquine-resistant Plasmodium falciparum. ChemMedChem, 2012, 7(9), 1537-1540.
[http://dx.doi.org/10.1002/cmdc.201200257] [PMID: 22753234]
Pérez, B.C.; Teixeira, C.; Figueiras, M.; Gut, J.; Rosenthal, P.J.; Gomes, J.R.B.; Gomes, P. Novel cinnamic acid/4-aminoquinoline conjugates bearing non-proteinogenic amino acids: towards the development of potential dual action antimalarials. Eur. J. Med. Chem., 2012, 54, 887-899.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.022] [PMID: 22683112]
Vale, N.; Moreira, R.; Gomes, P. Primaquine revisited six decades after its discovery. Eur. J. Med. Chem., 2009, 44(3), 937-953.
[http://dx.doi.org/10.1016/j.ejmech.2008.08.011] [PMID: 18930565]
Charton, M. Steric effects. I. Esterification and acid-catalyzed hydrolysis of esters. J. Am. Chem. Soc., 1975, 97, 1552-1556.
Bonilla-Ramirez, L.; Rios, A.; Quiliano, M.; Ramirez-Calderon, G.; Beltrán-Hortelano, I.; Franetich, J.F.; Corcuera, L.; Bordessoulles, M.; Vettorazzi, A.; López de Cerain, A.; Aldana, I.; Mazier, D.; Pabón, A.; Galiano, S. Novel antimalarial chloroquine- and primaquine-quinoxaline 1,4-di-N-oxide hybrids: Design, synthesis, Plasmodium life cycle stage profile, and preliminary toxicity studies. Eur. J. Med. Chem., 2018, 158, 68-81.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.063] [PMID: 30199706]
Clemens, R.J. Diketene. Chem. Rev., 1986, 86(2), 241-318.
Madrid, P.B.; Liou, A.P.; DeRisi, J.L.; Guy, R.K. Incorporation of an intramolecular hydrogen-bonding motif in the side chain of 4-aminoquinolines enhances activity against drug-resistant P. falciparum. J. Med. Chem., 2006, 49(15), 4535-4543.
[http://dx.doi.org/10.1021/jm0600951] [PMID: 16854059]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
Evans, J.M.; Fake, C.S.; Hamilton, T.C.; Poyser, R.H.; Showell, G.A. Synthesis and antihypertensive activity of 6,7-disubstituted trans-4-amino-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-3-ols. J. Med. Chem., 1984, 27(9), 1127-1131.
[http://dx.doi.org/10.1021/jm00375a007] [PMID: 6471067]
Evans, J.M.; Fake, C.S.; Hamilton, T.C.; Poyser, R.H.; Watts, E.A. Synthesis and antihypertensive activity of substituted trans-4-amino-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-3-ols. J. Med. Chem., 1983, 26(11), 1582-1589.
[http://dx.doi.org/10.1021/jm00365a007] [PMID: 6631915]
De, D.; Krogstad, F.M.; Cogswell, F.B.; Krogstad, D.J. Aminoquinolines that circumvent resistance in Plasmodium falciparum in vitro. Am. J. Trop. Med. Hyg., 1996, 55(6), 579-583.
[http://dx.doi.org/10.4269/ajtmh.1996.55.579] [PMID: 9025680]
Mungthin, M.; Bray, P.G.; Ridley, R.G.; Ward, S.A. Central role of hemoglobin degradation in mechanisms of action of 4-aminoquinolines, quinoline methanols, and phenanthrene methanols. Antimicrob. Agents Chemother., 1998, 42(11), 2973-2977.
[http://dx.doi.org/10.1128/AAC.42.11.2973] [PMID: 9797235]
Fidock, D.A.; Nomura, T.; Talley, A.K.; Cooper, R.A.; Dzekunov, S.M.; Ferdig, M.T.; Ursos, L.M.; Sidhu, A.B.; Naudé, B.; Deitsch, K.W.; Su, X.Z.; Wootton, J.C.; Roepe, P.D.; Wellems, T.E. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell, 2000, 6(4), 861-871.
[http://dx.doi.org/10.1016/S1097-2765(05)00077-8] [PMID: 11090624]
Cooper, R.A.; Hartwig, C.L.; Ferdig, M.T. pfcrt is more than the Plasmodium falciparum chloroquine resistance gene: a functional and evolutionary perspective. Acta Trop., 2005, 94(3), 170-180.
[http://dx.doi.org/10.1016/j.actatropica.2005.04.004] [PMID: 15866507]
Ray, S.; Madrid, P.B.; Catz, P.; LeValley, S.E.; Furniss, M.J.; Rausch, L.L.; Guy, R.K.; DeRisi, J.L.; Iyer, L.V.; Green, C.E.; Mirsalis, J.C. Development of a new generation of 4-aminoquinoline antimalarial compounds using predictive pharmacokinetic and toxicology models. J. Med. Chem., 2010, 53(9), 3685-3695.
[http://dx.doi.org/10.1021/jm100057h] [PMID: 20361799]
(a)Schüpbach, M.E. Mutagenicity evaluation of the two antimalarial agents chloroquine and mefloquine, using a bacterial fluctuation test. Mutat. Res., 1979, 68(1), 41-49.
[http://dx.doi.org/10.1016/0165-1218(79)90076-4] [PMID: 386109]
(b)Obaseiki-Ebor, E.E.; Obasi, E.E. Aspects of chloroquine mutagenicity. Mutat. Res., 1986, 175(2), 51-59.
[http://dx.doi.org/10.1016/0165-7992(86)90125-9] [PMID: 3531844]
Flückiger-Isler, S.; Baumeister, M.; Braun, K.; Gervais, V.; Hasler-Nguyen, N.; Reimann, R.; Van Gompel, J.; Wunderlich, H.G.; Engelhardt, G. Assessment of the performance of the Ames II assay: a collaborative study with 19 coded compounds. Mutat. Res., 2004, 558(1-2), 181-197.
[http://dx.doi.org/10.1016/j.mrgentox.2003.12.001] [PMID: 15036131]
McCann, J.; Choi, E.; Yamasaki, E.; Ames, B.N. Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci. USA, 1975, 72(12), 5135-5139.
[http://dx.doi.org/10.1073/pnas.72.12.5135] [PMID: 1061098]
Rani, A.; Singh, A.; Gut, J.; Rosenthal, P.J.; Kumar, V. Microwave-promoted facile access to 4-aminoquinoline-phthalimides: Synthesis and anti-plasmodial evaluation. Eur. J. Med. Chem., 2018, 143, 150-156.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.033] [PMID: 29174811]
Bhattacharjee, A.K.; Kyle, D.E.; Vennerstrom, J.L. Structural analysis of chloroquine resistance reversal by imipramine analogs. Antimicrob. Agents Chemother., 2001, 45(9), 2655-2657.
[http://dx.doi.org/10.1128/AAC.45.9.2655-2657.2001] [PMID: 11502547]
Menezes, C.M.; Kirchgatter, K.; Di Santi, S.M.; Savalli, C.; Monteiro, F.G.; Paula, G.A.; Ferreira, E.I. Antimalarial effect in vitro and lack of modulating effect of desipramine and imipramine. Trans. R. Soc. Trop. Med. Hyg., 1997, 91(6), 697-700.
[http://dx.doi.org/10.1016/S0035-9203(97)90529-0] [PMID: 9509183]
Miki, A.; Tanabe, K.; Nakayama, T.; Kiryon, C.; Ohsawa, K. Plasmodium chabaudi: association of reversal of chloroquine resistance with increased accumulation of chloroquine in resistant parasites. Exp. Parasitol., 1992, 74(2), 134-142.
[http://dx.doi.org/10.1016/0014-4894(92)90040-H] [PMID: 1740175]
Hunt, P.; Cravo, P.V.; Donleavy, P.; Carlton, J.M.; Walliker, D. Chloroquine resistance in Plasmodium chabaudi: are chloroquine-resistance transporter (crt) and multi-drug resistance (mdr1) orthologues involved? Mol. Biochem. Parasitol., 2004, 133(1), 27-35.
[http://dx.doi.org/10.1016/j.molbiopara.2003.08.010] [PMID: 14668009]
Abdel-Magid, A.F.; Carson, K.G.; Harris, B.D.; Maryanoff, C.A.; Shah, R.D. Reductive amination of aldehydes and ketones with sodium triacetoxyborohydride. Studies on direct and indirect reductive amination procedures. J. Org. Chem., 1996, 61(11), 3849-3862.
[http://dx.doi.org/10.1021/jo960057x] [PMID: 11667239]
Hofheinz, W.; Jaquet, C.; Jolidon, S. Aminochinoline derivates useful in the treatment of malaria. Patent: EP0656353 1995.
Ridley, R.G.; Hofheinz, W.; Matile, H.; Jaquet, C.; Dorn, A.; Masciadri, R.; Jolidon, S.; Richter, W.F.; Guenzi, A.; Girometta, M.A.; Urwyler, H.; Huber, W.; Thaithong, S.; Peters, W. 4-aminoquinoline analogs of chloroquine with shortened side chains retain activity against chloroquine-resistant Plasmodium falciparum. Antimicrob. Agents Chemother., 1996, 40(8), 1846-1854.
[http://dx.doi.org/10.1128/AAC.40.8.1846] [PMID: 8843292]
Sinha, M.; Dola, V.R.; Agarwal, P.; Srivastava, K.; Haq, W.; Puri, S.K.; Katti, S.B. Antiplasmodial activity of new 4-aminoquinoline derivatives against chloroquine resistant strain. Bioorg. Med. Chem., 2014, 22(14), 3573-3586.
[http://dx.doi.org/10.1016/j.bmc.2014.05.024] [PMID: 24906512]
Montalbetti, C.A.G.N.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron, 2005, 61, 10827-10852.
Gemma, S.; Kukreja, G.; Campiani, G.; Butini, S.; Bernetti, M.; Joshi, B.P.; Savini, L.; Basilico, N.; Taramelli, D.; Yardley, V.; Bertamino, A.; Novellino, E.; Persico, M.; Catalanotti, B.; Fattorusso, C. Development of piperazine-tethered heterodimers as potent antimalarials against chloroquine-resistant P. falciparum strains. Synthesis and molecular modeling. Bioorg. Med. Chem. Lett., 2007, 17(13), 3535-3539.
[http://dx.doi.org/10.1016/j.bmcl.2007.04.077] [PMID: 17493808]
Vennerstrom, J.L.; Ellis, W.Y.; Ager, A.L., Jr; Andersen, S.L.; Gerena, L.; Milhous, W.K. Bisquinolines. 1. N,N-bis(7-chloroquinolin-4-yl)alkanediamines with potential against chloroquine-resistant malaria. J. Med. Chem., 1992, 35(11), 2129-2134.
[http://dx.doi.org/10.1021/jm00089a025] [PMID: 1597862]
Kondaparla, S.; Soni, A.; Manhas, A.; Srivastava, K.; Puri, S.K.; Katti, S.B. Antimalarial activity of novel 4-aminoquinolines active against drug resistant strains. Bioorg. Chem., 2017, 70, 74-85.
[http://dx.doi.org/10.1016/j.bioorg.2016.11.010] [PMID: 27908538]
Kondaparla, S.; Agarwal, P.; Srivastava, K.; Haq, W.; Puri, S.K.; Katti, S.B. Design, synthesis, and in vitro antiplasmodial activity of 4-aminoquinolines containing modified amino acid conjugates. Med. Chem. Res., 2016, 25, 1148-1162.
Kondaparla, S.; Soni, A.; Manhas, A.; Srivastava, K.; Puri, S.K.; Katti, S.B. Synthesis and antimalarial activity of new 4-aminoquinolines active against drug resistant strains. RSC Advances, 2016, 6, 105676-105689.
Soai, K.; Oyamada, H.; Takase, M. The preparation of N-protected amino alcohols and N-protected peptide alcohol by reduction of the corresponding esters with sodium borohydride. An improved procedure involving a slow addition of a small amount of methanol. Bull. Chem. Soc. Jpn., 1984, 57(8), 2327-2328.
Rajapakse, C.S.K.; Lisai, M.; Deregnaucourt, C.; Sinou, V.; Latour, C.; Roy, D.; Schrevel, J.; Sanchez-Delgado, R.A. Synthesis of new 4-aminoquinolines and evaluation of their in vitro activity against CQS and CQRP. falciparum. PLoS One, 2015, 10(10) e0140878
[http://dx.doi.org/10.1371/journal.pone.0140878] [PMID: 26473363]
Zishiri, V.K.; Hunter, R.; Smith, P.J.; Taylor, D.; Summers, R.; Kirk, K.; Martin, R.E.; Egan, T.J. A series of structurally simple chloroquine chemosensitizing dibemethin derivatives that inhibit chloroquine transport by PfCRT. Eur. J. Med. Chem., 2011, 46(5), 1729-1742.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.026] [PMID: 21396749]
Kaschula, C.H.; Egan, T.J.; Hunter, R.; Basilico, N.; Parapini, S.; Taramelli, D.; Pasini, E.; Monti, D. Structure-activity relationships in 4-aminoquinoline antiplasmodials. The role of the group at the 7-position. J. Med. Chem., 2002, 45(16), 3531-3539.
[http://dx.doi.org/10.1021/jm020858u] [PMID: 12139464]
Martin, R.E.; Marchetti, R.V.; Cowan, A.I.; Howitt, S.M.; Bröer, S.; Kirk, K. Chloroquine transport via the malaria parasite’s chloroquine resistance transporter. Science, 2009, 325(5948), 1680-1682.
[http://dx.doi.org/10.1126/science.1175667] [PMID: 19779197]
Joshi, M.C.; Okombo, J.; Nsumiwa, S.; Ndove, J.; Taylor, D.; Wiesner, L.; Hunter, R.; Chibale, K.; Egan, T.J. 4-Aminoquinoline antimalarials containing a benzylmethylpyridylmethylamine group are active against drug resistant Plasmodium falciparum and exhibit oral activity in mice. J. Med. Chem., 2017, 60(24), 10245-10256.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01537] [PMID: 29185748]
Warhurst, D.C.; Craig, J.C.; Adagu, I.S.; Guy, R.K.; Madrid, P.B.; Fivelman, Q.L. Activity of piperaquine and other 4-aminoquinoline antiplasmodial drugs against chloroquine-sensitive and resistant blood-stages of Plasmodium falciparum. Role of β-haematin inhibition and drug concentration in vacuolar water- and lipid-phases. Biochem. Pharmacol., 2007, 73(12), 1910-1926.
[http://dx.doi.org/10.1016/j.bcp.2007.03.011] [PMID: 17466277]
Warhurst, D.C.; Craig, J.C.; Adagu, I.S.; Meyer, D.J.; Lee, S.Y. The relationship of physico-chemical properties and structure to the differential antiplasmodial activity of the cinchona alkaloids. Malar. J., 2003, 2, 26.
[http://dx.doi.org/10.1186/1475-2875-2-26] [PMID: 14505493]
Peters, W.; Robinson, B.L. Handbook of Animal Models; Zak, O; Sande, M., Ed.; Academic: London, 1999, pp. 757-773.
Opsenica, I.M.; Tot, M.; Gomba, L.; Nuss, J.E.; Sciotti, R.J.; Bavari, S.; Burnett, J.C.; Solaja, B.A. 4-Amino-7-chloroquinolines: probing ligand efficiency provides botulinum neurotoxin serotype A light chain inhibitors with significant antiprotozoal activity. J. Med. Chem., 2013, 56(14), 5860-5871.
[http://dx.doi.org/10.1021/jm4006077] [PMID: 23815186]
Burnett, J.C.; Schmidt, J.J.; Stafford, R.G.; Panchal, R.G.; Nguyen, T.L.; Hermone, A.R.; Vennerstrom, J.L.; McGrath, C.F.; Lane, D.J.; Sausville, E.A.; Zaharevitz, D.W.; Gussio, R.; Bavari, S. Novel small molecule inhibitors of botulinum neurotoxin A metalloprotease activity. Biochem. Biophys. Res. Commun., 2003, 310(1), 84-93.
[http://dx.doi.org/10.1016/j.bbrc.2003.08.112] [PMID: 14511652]
Solaja, B.A.; Opsenica, D.; Smith, K.S.; Milhous, W.K.; Terzić, N.; Opsenica, I.; Burnett, J.C.; Nuss, J.; Gussio, R.; Bavari, S. Novel 4-aminoquinolines active against chloroquine-resistant and sensitive P. falciparum strains that also inhibit botulinum serotype A. J. Med. Chem., 2008, 51(15), 4388-4391.
[http://dx.doi.org/10.1021/jm800737y] [PMID: 18637666]
Opsenica, I.; Filipovic, V.; Nuss, J.E.; Gomba, L.M.; Opsenica, D.; Burnett, J.C.; Gussio, R.; Solaja, B.A.; Bavari, S. The synthesis of 2,5-bis(4-amidinophenyl)thiophene derivatives providing submicromolar-range inhibition of the botulinum neurotoxin serotype A metalloprotease. Eur. J. Med. Chem., 2012, 53, 374-379.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.043] [PMID: 22516424]
Burnett, J.C.; Opsenica, D.; Sriraghavan, K.; Panchal, R.G.; Ruthel, G.; Hermone, A.R.; Nguyen, T.L.; Kenny, T.A.; Lane, D.J.; McGrath, C.F.; Schmidt, J.J.; Vennerstrom, J.L.; Gussio, R.; Solaja, B.A.; Bavari, S. A refined pharmacophore identifies potent 4-amino-7-chloroquinoline-based inhibitors of the botulinum neurotoxin serotype A metalloprotease. J. Med. Chem., 2007, 50(9), 2127-2136.
[http://dx.doi.org/10.1021/jm061446e] [PMID: 17417831]
Vennerstrom, J.L.; Ager, A.L., Jr; Dorn, A.; Andersen, S.L.; Gerena, L.; Ridley, R.G.; Milhous, W.K. Bisquinolines. 2. Antimalarial N,N-bis(7-chloroquinolin-4-yl)heteroalkanediamines. J. Med. Chem., 1998, 41(22), 4360-4364.
[http://dx.doi.org/10.1021/jm9803828] [PMID: 9784111]
Opsenica, I.; Burnett, J.C.; Gussio, R.; Opsenica, D.; Todorović, N.; Lanteri, C.A.; Sciotti, R.J.; Gettayacamin, M.; Basilico, N.; Taramelli, D.; Nuss, J.E.; Wanner, L.; Panchal, R.G.; Solaja, B.A.; Bavari, S. A chemotype that inhibits three unrelated pathogenic targets: the botulinum neurotoxin serotype A light chain, P. falciparum malaria, and the Ebola filovirus. J. Med. Chem., 2011, 54(5), 1157-1169.
[http://dx.doi.org/10.1021/jm100938u] [PMID: 21265542]
Kumar, A.; Srivastava, K.; Kumar, S.R.; Puri, S.K.; Chauhan, P.M.S. Synthesis of new 4-aminoquinolines and quinoline-acridine hybrids as antimalarial agents. Bioorg. Med. Chem. Lett., 2010, 20(23), 7059-7063.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.107] [PMID: 20951034]
Lundt, I.; Madsen, R. Regioselective tosylation of aldonolactones. Synthe., 1992, 11, 1129-1132.
Höglund, I.P.J.; Silver, S.; Engström, M.T.; Salo, H.; Tauber, A.; Kyyrönen, H.K.; Saarenketo, P.; Hoffrén, A.M.; Kokko, K.; Pohjanoksa, K.; Sallinen, J.; Savola, J.M.; Wurster, S.; Kallatsa, O.A. Structure-activity relationship of quinoline derivatives as potent and selective alpha(2C)-adrenoceptor antagonists. J. Med. Chem., 2006, 49(21), 6351-6363.
[http://dx.doi.org/10.1021/jm060262x] [PMID: 17034141]
Andayi, W.A.; Egan, T.J.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis, antiplasmodial activity, and β-hematin inhibition of hydroxypyridone chloroquine hybrids. ACS Med. Chem. Lett., 2013, 4(7), 642-646.
[http://dx.doi.org/10.1021/ml4001084] [PMID: 24900724]
Andayi, W.A.; Egan, T.J.; Chibale, K. Kojic acid derived hydroxypyridinone-chloroquine hybrids: synthesis, crystal structure, antiplasmodial activity and β-haematin inhibition. Bioorg. Med. Chem. Lett., 2014, 24(15), 3263-3267.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.012] [PMID: 24974345]
Joshi, M.C.; Wicht, K.J.; Taylor, D.; Hunter, R.; Smith, P.J.; Egan, T.J. In vitro antimalarial activity, β-haematin inhibition and structure-activity relationships in a series of quinoline triazoles. Eur. J. Med. Chem., 2013, 69, 338-347.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.046] [PMID: 24077524]
Egan, T.J.; Hunter, R.; Kaschula, C.H.; Marques, H.M.; Misplon, A.; Walden, J. Structure-function relationships in aminoquinolines: effect of amino and chloro groups on quinoline-hematin complex formation, inhibition of β-hematin formation, and antiplasmodial activity. J. Med. Chem., 2000, 43(2), 283-291.
[http://dx.doi.org/10.1021/jm990437l] [PMID: 10649984]
Carter, M.D.; Phelan, V.V.; Sandlin, R.D.; Bachmann, B.O.; Wright, D.W. Lipophilic mediated assays for β-hematin inhibitors. Comb. Chem. High Throughput Screen., 2010, 13(3), 285-292.
[http://dx.doi.org/10.2174/138620710790980496] [PMID: 20230372]
Ncokazi, K.K.; Egan, T.J. A colorimetric high-throughput β-hematin inhibition screening assay for use in the search for antimalarial compounds. Anal. Biochem., 2005, 338(2), 306-319.
[http://dx.doi.org/10.1016/j.ab.2004.11.022] [PMID: 15745752]
Sandlin, R.D.; Carter, M.D.; Lee, P.J.; Auschwitz, J.M.; Leed, S.E.; Johnson, J.D.; Wright, D.W. Use of the NP-40 detergent-mediated assay in discovery of inhibitors of β-hematin crystallization. Antimicrob. Agents Chemother., 2011, 55(7), 3363-3369.
[http://dx.doi.org/10.1128/AAC.00121-11] [PMID: 21518844]
Manohar, S.; Khan, S.I.; Rawat, D.S. Synthesis of 4-aminoquinoline-1,2,3-triazole and 4-aminoquinoline-1,2,3-triazole-1,3,5-triazine hybrids as potential antimalarial agents. Chem. Biol. Drug Des., 2011, 78(1), 124-136.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01115.x] [PMID: 21457474]
Demuynck, C.; Bolte, J.; Lhomme, J. Synthetic models of DNA complexes with antimalarial compounds. 2. The problem of guanine specificity in chloroquine binding. J. Med. Chem., 1977, 20(1), 106-113.
[http://dx.doi.org/10.1021/jm00211a022] [PMID: 833808]
de Souza, M.V.N.; Pais, K.C.; Kaiser, C.R.; Peralta, M.A.; de L Ferreira, M.; Lourenço, M.C. Synthesis and in vitro antitubercular activity of a series of quinoline derivatives. Bioorg. Med. Chem., 2009, 17(4), 1474-1480.
[http://dx.doi.org/10.1016/j.bmc.2009.01.013] [PMID: 19188070]
Raj, R.; Singh, P.; Singh, P.; Gut, J.; Rosenthal, P.J.; Kumar, V. Azide-alkyne cycloaddition en route to 1H-1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2013, 62, 590-596.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.032] [PMID: 23434528]
Kumar, S.; Saini, A.; Gut, J.; Rosenthal, P.J.; Raj, R.; Kumar, V. 4-Aminoquinoline-chalcone/-N-acetylpyrazoline conjugates: Synthesis and antiplasmodial evaluation. Eur. J. Med. Chem., 2017, 138, 993-1001.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.041] [PMID: 28756265]
Njogu, P.M.; Gut, J.; Rosenthal, P.J.; Chibale, K. Design, synthesis, and antiplasmodial activity of hybrid compounds based on (2R,3S)-N-benzoyl-3 phenylisoserine. ACS Med. Chem. Lett., 2013, 4(7), 637-641.
[http://dx.doi.org/10.1021/ml400164t] [PMID: 24900723]
Jayasinghe, L.R.; Datta, A.; Ali, S.M.; Zygmunt, J.; Vander Velde, D.G.; Georg, G.I. Structure-activity studies of antitumor taxanes: synthesis of novel C-13 side chain homologated taxol and taxotere analogs. J. Med. Chem., 1994, 37(18), 2981-2984.
[http://dx.doi.org/10.1021/jm00044a020] [PMID: 7915328]
Haynes, R.K.; Chan, H-W.; Cheung, M-K.; Lam, W-L.; Soo, M-K.; Tsang, H-W.; Voerste, A.; Williams, I.D. C-10 Ester and ether derivatives of dihydroartemisinin-10α-artesunate, preparation of authentic 10β-artesunate, and of other ester and ether derivatives bearing potential aromatic intercalating groups at C-10. Eur. J. Org. Chem., 2002, 1, 113-132.
Chopra, R.; Chibale, K.; Singh, K. Pyrimidine-chloroquinoline hybrids: Synthesis and antiplasmodial activity. Eur. J. Med. Chem., 2018, 148, 39-53.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.021] [PMID: 29454189]
Bignelli, P. Aldureids of ethylic acetoacetate and ethylic oxaloacetate. Gazz. Chim. Ital., 1893, 23, 360-416.
Singh, K.; Singh, K. An efficacious protocol for the oxidation of 3,4- dihydropyrimidin-2(1H)-ones using pyridinium chlorochromate as catalyst. Aust. J. Chem., 2008, 61, 910-913.
Singh, K.; Singh, K.; Wan, B.; Franzblau, S.; Chibale, K.; Balzarini, J. Facile transformation of Biginelli pyrimidin-2(1H)-ones to pyrimidines. In vitro evaluation as inhibitors of Mycobacterium tuberculosis and modulators of cytostatic activity. Eur. J. Med. Chem., 2011, 46(6), 2290-2294.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.010] [PMID: 21450375]
Tukulula, M.; Njoroge, M.; Abay, E.T.; Mugumbate, G.C.; Wiesner, L.; Taylor, D.; Gibhard, L.; Norman, J.; Swart, K.J.; Gut, J.; Rosenthal, P.J.; Barteau, S.; Streckfuss, J.; Kameni-Tcheudji, J.; Chibale, K. Synthesis and in vitro and in vivo pharmacological evaluation of new 4-aminoquinoline-based compounds. ACS Med. Chem. Lett., 2013, 4(12), 1198-1202.
[http://dx.doi.org/10.1021/ml400311r] [PMID: 24900630]
Tukulula, M.; Little, S.; Gut, J.; Rosenthal, P.J.; Wan, B.; Franzblau, S.G.; Chibale, K. The design, synthesis, in silico ADME profiling, antiplasmodial and antimycobacterial evaluation of new arylamino quinoline derivatives. Eur. J. Med. Chem., 2012, 57, 259-267.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.047] [PMID: 23064162]
Tukulula, M.; Njoroge, M.; Mugumbate, G.C.; Gut, J.; Rosenthal, P.J.; Barteau, S.; Streckfuss, J.; Heudi, O.; Kameni-Tcheudji, J.; Chibale, K. Tetrazole-based deoxyamodiaquines: synthesis, ADME/PK profiling and pharmacological evaluation as potential antimalarial agents. Bioorg. Med. Chem., 2013, 21(17), 4904-4913.
[http://dx.doi.org/10.1016/j.bmc.2013.06.067] [PMID: 23896611]
Medlen, C.E.; Chibale, K; de Melo, S.C. Quinoline derivatives for use in the inhibition of the growth of tumour cells PCT Int. Appl., Patent: WO2008135886, November 13th 2008.
Ostrovskii, V.A.; Koren, A.O. Alkylation and related electrophilic reactions at endocyclic nitrogen atoms in the chemistry of tetrazoles. Heterocycles, 2000, 53(6), 1421-1448.
Tukulula, M.; Sharma, R.K.; Meurillon, M.; Mahajan, A.; Naran, K.; Warner, D.; Huang, J.; Mekonnen, B.; Chibale, K. Synthesis and antiplasmodial and antimycobacterial evaluation of new nitroimidazole and nitroimidazooxazine derivatives. ACS Med. Chem. Lett., 2012, 4(1), 128-131.
[http://dx.doi.org/10.1021/ml300362a] [PMID: 24900574]
lliashevsky, O.; Amir, L.; Glaser, R.; Marks, R.S.; Lemcoff, N.G. Synthesis, characterization and protein binding properties of supported dendrons. J. Mater. Chem., 2009, 16, 6616-6622.
Denny, W.A.; Palmer, B.D. The nitroimidazooxazines (PA-824 and analogs): structure-activity relationship and mechanistic studies. Future Med. Chem., 2010, 2(8), 1295-1304.
[http://dx.doi.org/10.4155/fmc.10.207] [PMID: 21426020]
Jiricek, J.; Patel, S.; Keller, T.H.; Barry, C.E., III; Dowd, C.S. Nitroimidazole compounds. PCT Int. Appl., Patent: WO20080275035 2008.
Kondaparla, S.; Manhas, A.; Dola, V.R.; Srivastava, K.; Puri, S.K.; Katti, S.B. Design, synthesis and antiplasmodial activity of novel imidazole derivatives based on 7-chloro-4-aminoquinoline. Bioorg. Chem., 2018, 80, 204-211.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.012] [PMID: 29940342]
Musonda, C.C.; Yardley, V.; de Souza, R.C.C.; Ncokazi, K.; Egan, T.J.; Chibale, K. Antiplasmodial, β-haematin inhibition, antitrypanosomal and cytotoxic activity in vitro of novel 4-aminoquinoline 2-imidazolines. Org. Biomol. Chem., 2008, 6(23), 4446-4451.
[http://dx.doi.org/10.1039/b813007h] [PMID: 19005606]
Kihlberg, T.; Karimi, F.; Långström, B. [(11)C] Carbon monoxide in selenium-mediated synthesis of (11)C-carbamoyl compounds. J. Org. Chem., 2002, 67(11), 3687-3692.
[http://dx.doi.org/10.1021/jo016307d] [PMID: 12027681]
Bon, R.S.; Hong, C.; Bouma, M.J.; Schmitz, R.F.; de Kanter, F.J.J.; Lutz, M.; Spek, A.L.; Orru, R.V.A. Novel multicomponent reaction for the combinatorial synthesis of 2-imidazolines. Org. Lett., 2003, 5(20), 3759-3762.
[http://dx.doi.org/10.1021/ol035521g] [PMID: 14507224]
Woodland, J.G.; Hunter, R.; Smith, P.J.; Egan, T.J. Chemical proteomics and super-resolution imaging reveal that chloroquine interacts with P. falciparum PfMRP1 and lipids. ACS Chem. Biol., 2018, 13(10), 2939-2948.
[http://dx.doi.org/10.1021/acschembio.8b00583] [PMID: 30208272]
Ansari, M.; Craig, J.C. A convenient, short synthesis of desethylchloroquine [7-chloro-4-(4`-ethylamino-1`-methyl-butyl-amino)-quinoline. Synthe., 1995, 02, 147-149.
Montzka, T.A.; Matiskella, J.D.; Partyka, R.A. 2,2,2-Trichloroethyl chloroformate: A general reagent for demethylation of tertiary methylamines. Tet. Lett., 1974, 14, 1325-1327.
Lakshmanan, V.; Bray, P.G.; Verdier-Pinard, D.; Johnson, D.J.; Horrocks, P.; Muhle, R.A.; Alakpa, G.E.; Hughes, R.H.; Ward, S.A.; Krogstad, D.J.; Sidhu, A.B.; Fidock, D.A. A critical role for PfCRT K76T in Plasmodium falciparum verapamil-reversible chloroquine resistance. EMBO J., 2005, 24(13), 2294-2305.
[http://dx.doi.org/10.1038/sj.emboj.7600681] [PMID: 15944738]
Jacobs, G.H.; Oduola, A.; Kyle, D.E.; Milhous, W.K.; Martin, S.K.; Aikawa, M. Ultrastructural study of the effects of CQ and verapamil on P. falciparum. Am. J. Trop. Med. Hyg., 1988, 39, 15-20.
[http://dx.doi.org/10.4269/ajtmh.1988.39.15] [PMID: 3041853]
Sachanonta, N.; Chotivanich, K.; Chaisri, U.; Turner, G.D.H.; Ferguson, D.J.P.; Day, N.P.J.; Pongponratn, E. Ultrastructural and real-time microscopic changes in P. falciparum-infected red blood cells following treatment with antimalarial drugs. Ultrastruct. Pathol., 2011, 35(5), 214-225.
[http://dx.doi.org/10.3109/01913123.2011.601405] [PMID: 21910567]
Jida, M.; Sanchez, C.P.; Urgin, K.; Ehrhardt, K.; Mounien, S.; Geyer, A.; Elhabiri, M.; Lanzer, M.; Davioud-Charvet, E. A redox-active fluorescent pH indicator for detecting P. falciparum strains with reduced responsiveness to quinoline antimalarial drugs. ACS Infect. Dis., 2017, 3(2), 119-131.
[http://dx.doi.org/10.1021/acsinfecdis.5b00141] [PMID: 28183182]
Egan, T.J.; Mavuso, W.W.; Ncokazi, K.K. The mechanism of β-hematin formation in acetate solution. Parallels between hemozoin formation and biomineralization processes. Biochemistry, 2001, 40(1), 204-213.
[http://dx.doi.org/10.1021/bi0013501] [PMID: 11141072]
Egan, T.J. Haemozoin formation as a target for the rational design of new antimalarials. Drug Design Rev., 2004, 1, 93-110.
Egan, T.J.; Mavuso, W.W.; Ross, D.C.; Marques, H.M. Thermodynamic factors controlling the interaction of quinoline antimalarial drugs with ferriprotoporphyrin IX. J. Inorg. Biochem., 1997, 68(2), 137-145.
[http://dx.doi.org/10.1016/S0162-0134(97)00086-X] [PMID: 9336973]
Johann, L.; Lanfranchi, D.A.; Davioud-Charvet, E.; Elhabiri, M. A physicobiochemical study with redox-cyclers as drugs against blood feeding parasites. Curr. Pharm. Des., 2012, 18, 3539-3566.
[PMID: 22607146]
Muñoz-Durango, K.; Maciuk, A.; Harfouche, A.; Torijano-Gutiérrez, S.; Jullian, J.C.; Quintin, J.; Spelman, K.; Mouray, E.; Grellier, P.; Figadère, B. Detection, characterization, and screening of heme-binding molecules by mass spectrometry for malaria drug discovery. Anal. Chem., 2012, 84(7), 3324-3329.
[http://dx.doi.org/10.1021/ac300065t] [PMID: 22409647]
Reddy, P.L.; Khan, S.I.; Ponnan, P.; Tripathi, M.; Rawat, D.S. Design, synthesis and evaluation of 4-aminoquinoline-purine hybrids as potential antiplasmodial agents. Eur. J. Med. Chem., 2017, 126, 675-686.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.057] [PMID: 27936446]
Steklov, M.Y.; Tararov, V.I.; Romanov, G.A.; Mikhailov, S.N. Facile synthesis of 8-azido-6-benzylaminopurine. Nucleosides Nucleotides Nucleic Acids, 2011, 30(7-8), 503-511.
[http://dx.doi.org/10.1080/15257770.2011.602655] [PMID: 21888542]
Huy, N.T.; Mizunuma, K.; Kaur, K.; Nhien, N.T.T.; Jain, M.; Uyen, D.T.; Harada, S.; Jain, R.; Kamei, K. 2-tert-butyl-8-quinolinamines exhibit potent blood schizontocidal antimalarial activity via inhibition of heme crystallization. Antimicrob. Agents Chemother., 2007, 51(8), 2842-2847.
[http://dx.doi.org/10.1128/AAC.00288-07] [PMID: 17562796]
Xu Kelly, J.; Winter, R.; Riscoe, M.; Peyton, D.H. A spectroscopic investigation of the binding interactions between 4,5-dihydroxyxanthone and heme. J. Inorg. Biochem., 2001, 86(2-3), 617-625.
[http://dx.doi.org/10.1016/S0162-0134(01)00217-3] [PMID: 11566335]
Manohar, S.; Rajesh, U.C.; Khan, S.I.; Tekwani, B.L.; Rawat, D.S. Novel 4-aminoquinoline-pyrimidine based hybrids with improved in vitro and in vivo antimalarial activity. ACS Med. Chem. Lett., 2012, 3(7), 555-559.
[http://dx.doi.org/10.1021/ml3000808] [PMID: 24900509]
Rawat, D.S.; Manohar, S.; Rajesh, U.C. Aminoquinoline based hybrids and uses thereof. Indian Patent Application No. 661/DEL/2012 2012.
Tripathi, M.; Khan, S.I.; Thakur, A.; Ponnan, P.; Rawat, D.S. 4-Aminoquinoline-pyrimidine-aminoalkanols: synthesis, in vitro antimalarial activity, docking studies and ADME predictions. New J. Chem., 2015, 39, 3474-3483.
Kholiya, R.; Khan, S.I.; Bahuguna, A.; Tripathi, M.; Rawat, D.S. N-Piperonyl substitution on aminoquinoline-pyrimidine hybrids: Effect on the antiplasmodial potency. Eur. J. Med. Chem., 2017, 131, 126-140.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.007] [PMID: 28315598]
Kaur, H.; Balzarini, J.; de Kock, C.; Smith, P.J.; Chibale, K.; Singh, K. Synthesis, antiplasmodial activity and mechanistic studies of pyrimidine-5-carbonitrile and quinoline hybrids. Eur. J. Med. Chem., 2015, 101, 52-62.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.024] [PMID: 26114811]
Moore, S.; Jaeschke, H.; Kleinau, G.; Neumann, S.; Costanzi, S.; Jiang, J.K.; Childress, J.; Raaka, B.M.; Colson, A.; Paschke, R.; Krause, G.; Thomas, C.J.; Gershengorn, M.C. Evaluation of small-molecule modulators of the luteinizing hormone/choriogonadotropin and thyroid stimulating hormone receptors: structure-activity relationships and selective binding patterns. J. Med. Chem., 2006, 49(13), 3888-3896.
[http://dx.doi.org/10.1021/jm060247s] [PMID: 16789744]
Kappe, C.O. Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc. Chem. Res., 2000, 33(12), 879-888.
[http://dx.doi.org/10.1021/ar000048h] [PMID: 11123887]
Singh, P.; Raj, R.; Singh, P.; Gut, J.; Rosenthal, P.J.; Kumar, V. Urea/oxalamide tethered β-lactam-7-chloroquinoline conjugates: synthesis and in vitro antimalarial evaluation. Eur. J. Med. Chem., 2014, 71(7), 128-134.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.079] [PMID: 24287561]
Efferth, T.; Romero, M.R.; Wolf, D.G.; Stamminger, T.; Marin, J.J.G.; Marschall, M. The antiviral activities of artemisinin and artesunate. Clin. Infect. Dis., 2008, 47(6), 804-811.
[http://dx.doi.org/10.1086/591195] [PMID: 18699744]
Pretorius, S.I.; Breytenbach, W.J.; de Kock, C.; Smith, P.J.; N’Da, D.D. Synthesis, characterization and antimalarial activity of quinoline-pyrimidine hybrids. Bioorg. Med. Chem., 2013, 21(1), 269-277.
[http://dx.doi.org/10.1016/j.bmc.2012.10.019] [PMID: 23168082]
Tallarida, R.J.; Murray, R.B. Dunnett’s test Comparision with a control. In manual of pharmacology calculations; Springer: New York, 1987.
(a)N’Da, D.D.; Breytenbach, J.C.; Smith, P.J.; Lategan, C. Synthesis and in vitro antiplasmodial activity of quinoline-ferrocene esters. Arzneimittelforschung, 2011, 61(6), 358-365.
[http://dx.doi.org/10.1055/s-0031-1296211] [PMID: 21827047]
(b)N’Da, D.D.; Breytenbach, J.C.; Smith, P.J.; Lategan, C. Synthesis, cytotoxicity and antimalarial activity of ferrocenyl amides of 4-aminoquinolines. Arzneimittelforschung, 2010, 60(10), 627-635.
[PMID: 21125814]
Bhat, H.R.; Singh, U.P.; Yadav, P.S.; Kumar, V.; Gahtori, P.; Das, A.; Chetia, D.; Prakash, A.; Mahanta, J. Synthesis, characterization and antimalarial activity of hybrid 4-aminoquinoline-1,3,5-triazine derivatives. Arab. J. Chem., 2016, 9(1), S625-S631.
Manohar, S.; Khan, S.I.; Rawat, D.S. Synthesis, antimalarial activity and cytotoxicity of 4-aminoquinoline-triazine conjugates. Bioorg. Med. Chem. Lett., 2010, 20(1), 322-325.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.106] [PMID: 19910192]
Vijayaraghavan, S.; Mahajan, S. Docking, synthesis and antimalarial activity of novel 4-anilinoquinoline derivatives. Bioorg. Med. Chem. Lett., 2017, 27(8), 1693-1697.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.005] [PMID: 28318947]
Kumar, A.; Srivastava, K.; Kumar, S.R.; Siddiqi, M.I.; Puri, S.K.; Sexana, J.K.; Chauhan, P.M. 4-anilinoquinoline triazines: a novel class of hybrid antimalarial agents. Eur. J. Med. Chem., 2011, 46(2), 676-690.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.003] [PMID: 21194812]
Kumar, A.; Srivastava, K.; Raja Kumar, S.; Puri, S.K.; Chauhan, P.M.S. Synthesis and bioevaluation of hybrid 4-aminoquinoline triazines as a new class of antimalarial agents. Bioorg. Med. Chem. Lett., 2008, 18(24), 6530-6533.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.049] [PMID: 18951791]
Parthiban, A.; Muthukumaran, J.; Manhas, A.; Srivastava, K.; Krishna, R.; Rao, H.S.P. Synthesis, in vitro and in silico antimalarial activity of 7-chloroquinoline and 4H-chromene conjugates. Bioorg. Med. Chem. Lett., 2015, 25(20), 4657-4663.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.030] [PMID: 26338359]
Rao, H.S.P.; Geetha, K.; Kamalraj, M. Synthesis of lactones of ortho-tyrosine, DOPA isomers and tryptophan-ortho-tyrosine hybrid amino acids. RSC Advances, 2011, 1(6), 1050-1059.
Periasamy, M.; Jayakumar, K.N.; Bharathi, P. Aryltitanium species through the reaction of N,N-dialkylarylamines with TiCl(4): oxidative coupling, N-dealkylation, and reaction with electrophiles. J. Org. Chem., 2000, 65(11), 3548-3550.
[http://dx.doi.org/10.1021/jo991864+] [PMID: 10843646]
Kwong, F.Y.; Klapars, A.; Buchwald, S.L. Copper-catalyzed coupling of alkylamines and aryl iodides: an efficient system even in an air atmosphere. Org. Lett., 2002, 4(4), 581-584.
[http://dx.doi.org/10.1021/ol0171867] [PMID: 11843596]
Okano, K.; Tokuyama, H.; Fukuyama, T. Synthesis of secondary arylamines through copper-mediated intermolecular aryl amination. Org. Lett., 2003, 5(26), 4987-4990.
[http://dx.doi.org/10.1021/ol035942y] [PMID: 14682746]
Zhang, H.; Cai, Q.; Ma, D. Amino acid promoted CuI-catalyzed C-N bond formation between aryl halides and amines or N-containing heterocycles. J. Org. Chem., 2005, 70(13), 5164-5173.
[http://dx.doi.org/10.1021/jo0504464] [PMID: 15960520]
Guantai, E.M.; Ncokazi, K.; Egan, T.J.; Gut, J.; Rosenthal, P.J.; Bhampidipati, R.; Kopinathan, A.; Smith, P.J.; Chibale, K. Enone- and chalcone-chloroquinoline hybrid analogues: in silico guided design, synthesis, antiplasmodial activity, in vitro metabolism, and mechanistic studies. J. Med. Chem., 2011, 54(10), 3637-3649.
[http://dx.doi.org/10.1021/jm200149e] [PMID: 21500839]
Debaene, F.; da Silva, J.A.; Pianowski, Z.; Duran, F.J.; Winssinger, N. Expanding the scope of PNA-encoded libraries: divergent synthesis of libraries targeting cysteine, serine and metalloproteases as well as tyrosine phosphatases. Tetrahedron, 2007, 83, 6577-6586.
Smit, F.J.; N’da, D.D. Synthesis, in vitro antimalarial activity and cytotoxicity of novel 4-aminoquinolinyl-chalcone amides. Bioorg. Med. Chem., 2014, 22(3), 1128-1138.
[http://dx.doi.org/10.1016/j.bmc.2013.12.032] [PMID: 24411478]
Gayam, V.; Ravi, S. Cinnamoylated chloroquine analogues: A new structural class of antimalarial agents. Eur. J. Med. Chem., 2017, 135, 382-391.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.063] [PMID: 28460312]
Sashidhara, K.V.; Avula, S.R.; Palnati, G.R.; Singh, S.V.; Srivastava, K.; Puri, S.K.; Saxena, J.K. Synthesis and in vitro evaluation of new chloroquine-chalcone hybrids against chloroquine-resistant strain of Plasmodium falciparum. Bioorg. Med. Chem. Lett., 2012, 22(17), 5455-5459.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.028] [PMID: 22850213]
Joubert, J.; Fortuin, E.E.; Taylor, D.; Smith, P.J.; Malan, S.F. Pentacycloundecylamines and conjugates thereof as chemosensitizers and reversed chloroquine agents. Bioorg. Med. Chem. Lett., 2014, 24(23), 5516-5519.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.088] [PMID: 25451997]
Yvette, O.M.; Malan, S.F.; Taylor, D.; Kapp, E.; Joubert, J. Adamantane amine-linked chloroquinoline derivatives as chloroquine resistance modulating agents in Plasmodium falciparum. Bioorg. Med. Chem. Lett., 2018, 28(8), 1287-1291.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.026] [PMID: 29559277]
Snow, R.W.; Guerra, C.A.; Noor, A.M.; Myint, H.Y.; Hay, S.I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature, 2005, 434(7030), 214-217.
[http://dx.doi.org/10.1038/nature03342] [PMID: 15759000]
Greenwood, B.M.; Fidock, D.A.; Kyle, D.E.; Kappe, S.H.; Alonso, P.L.; Collins, F.H.; Duffy, P.E. Malaria: progress, perils, and prospects for eradication. J. Clin. Invest., 2008, 118(4), 1266-1276.
[http://dx.doi.org/10.1172/JCI33996] [PMID: 18382739]
Banister, S.D.; Yoo, D.T.; Chua, S.W.; Cui, J.; Mach, R.H.; Kassiou, M. N-Arylalkyl-2-azaadamantanes as cage-expanded polycarbocyclic sigma (σ) receptor ligands. Bioorg. Med. Chem. Lett., 2011, 21(18), 5289-5292.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.028] [PMID: 21788137]
Zalikowski, J.A.; Gilbert, K.E.; Borden, W.T. Oxidation of 7-(hydroxymethyl)bicycle [3.3.1]nonan-3-ol. Convenient synthesis of bicyclo[3.3.1]nonane-3,7-dione. J. Org. Chem., 1980, 45, 346-347.
Makler, M.T.; Hinrichs, D.J. Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia. Am. J. Trop. Med. Hyg., 1993, 48(2), 205-210.
[http://dx.doi.org/10.4269/ajtmh.1993.48.205] [PMID: 8447524]
Albert, D.; Feigel, M. β-Loop, γ-loop and helical peptide conformations in cyclopeptides containing a steroidal pseudo-amino acid. Helv. Chim. Acta, 1997, 80, 2168-2181.
Milhous, W.K.; Weatherly, N.F.; Bowdre, J.H.; Desjardins, R.E. In vitro activities of and mechanisms of resistance to antifol antimalarial drugs. Antimicrob. Agents Chemother., 1985, 27(4), 525-530.
[http://dx.doi.org/10.1128/AAC.27.4.525] [PMID: 3890727]
Videnović, M.; Opsenica, D.M.; Burnett, J.C.; Gomba, L.; Nuss, J.E.; Selaković, Z.; Konstantinović, J.; Krstić, M.; Segan, S.; Zlatović, M.; Sciotti, R.J.; Bavari, S.; Solaja, B.A. Second generation steroidal 4-aminoquinolines are potent, dual-target inhibitors of the botulinum neurotoxin serotype A metalloprotease and P. falciparum malaria. J. Med. Chem., 2014, 57(10), 4134-4153.
[http://dx.doi.org/10.1021/jm500033r] [PMID: 24742203]
Ekoue-Kovi, K.; Yearick, K.; Iwaniuk, D.P.; Natarajan, J.K.; Alumasa, J.; de Dios, A.C.; Roepe, P.D.; Wolf, C. Synthesis and antimalarial activity of new 4-amino-7-chloroquinolyl amides, sulfonamides, ureas and thioureas. Bioorg. Med. Chem., 2009, 17(1), 270-283.
[http://dx.doi.org/10.1016/j.bmc.2008.11.009] [PMID: 19041248]
Myers, M.C.; Pokorski, J.K.; Appella, D.H. Peptide nucleic acids with a flexible secondary amine in the backbone maintain oligonucleotide binding affinity. Org. Lett., 2004, 6(25), 4699-4702.
[http://dx.doi.org/10.1021/ol0480980] [PMID: 15575664]
Smilkstein, M.; Sriwilaijaroen, N.; Kelly, J.X.; Wilairat, P.; Riscoe, M. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob. Agents Chemother., 2004, 48(5), 1803-1806.
[http://dx.doi.org/10.1128/AAC.48.5.1803-1806.2004] [PMID: 15105138]
Bennett, T.N.; Paguio, M.; Gligorijevic, B.; Seudieu, C.; Kosar, A.D.; Davidson, E.; Roepe, P.D. Novel, rapid, and inexpensive cell-based quantification of antimalarial drug efficacy. Antimicrob. Agents Chemother., 2004, 48(5), 1807-1810.
[http://dx.doi.org/10.1128/AAC.48.5.1807-1810.2004] [PMID: 15105139]
Johnson, J.D.; Dennull, R.A.; Gerena, L.; Lopez-Sanchez, M.; Roncal, N.E.; Waters, N.C. Assessment and continued validation of the malaria SYBR green I-based fluorescence assay for use in malaria drug screening. Antimicrob. Agents Chemother., 2007, 51(6), 1926-1933.
[http://dx.doi.org/10.1128/AAC.01607-06] [PMID: 17371812]
Nisha, G.; Gut, J.; Rosenthal, P.J.; Kumar, V. β-amino-alcohol tethered 4-aminoquinoline-isatin conjugates: synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2014, 84, 566-573.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.064] [PMID: 25062007]
Jensen, J.B. In vitro culture of Plasmodium parasite.Malaria methods and protocols; Doolan, D.L., Ed.; Humana: Totowa, 2002, pp. 477-488.
Rojas Ruiz, F.A.; García-Sánchez, R.N.; Estupiñan, S.V.; Gómez-Barrio, A.; Torres Amado, D.F.; Pérez-Solórzano, B.M.; Nogal-Ruiz, J.J.; Martínez-Fernández, A.R.; Kouznetsov, V.V. Synthesis and antimalarial activity of new heterocyclic hybrids based on chloroquine and thiazolidinone scaffolds. Bioorg. Med. Chem., 2011, 19(15), 4562-4573.
[http://dx.doi.org/10.1016/j.bmc.2011.06.025] [PMID: 21723734]
O’Neill, P.M.; Park, B.K.; Shone, A.E.; Maggs, J.L.; Roberts, P.; Stocks, P.A.; Biagini, G.A.; Bray, P.G.; Gibbons, P.; Berry, N.; Winstanley, P.A.; Mukhtar, A.; Bonar-Law, R.; Hindley, S.; Bambal, R.B.; Davis, C.B.; Bates, M.; Hart, T.K.; Gresham, S.L.; Lawrence, R.M.; Brigandi, R.A.; Gomez-delas-Heras, F.M.; Gargallo, D.V.; Ward, S.A. Candidate selection and preclinical evaluation of N-tert-butyl isoquine (GSK369796), an affordable and effective 4-aminoquinoline antimalarial for the 21st century. J. Med. Chem., 2009, 52(5), 1408-1415.
[http://dx.doi.org/10.1021/jm8012618] [PMID: 19222165]
O’Neill, P.M.; Shone, A.E.; Stanford, D.; Nixon, G.; Asadollahy, E.; Park, B.K.; Maggs, J.L.; Roberts, P.; Stocks, P.A.; Biagini, G.; Bray, P.G.; Davies, J.; Berry, N.; Hall, C.; Rimmer, K.; Winstanley, P.A.; Hindley, S.; Bambal, R.B.; Davis, C.B.; Bates, M.; Gresham, S.L.; Brigandi, R.A.; Gomez-de-Las-Heras, F.M.; Gargallo, D.V.; Parapini, S.; Vivas, L.; Lander, H.; Taramelli, D.; Ward, S.A. Synthesis, antimalarial activity, and preclinical pharmacology of a novel series of 4′-fluoro and 4′-chloro analogues of amodiaquine. Identification of a suitable “back-up” compound for N-tert-butyl isoquine. J. Med. Chem., 2009, 52(7), 1828-1844.
[http://dx.doi.org/10.1021/jm8012757] [PMID: 19284751]
Solomon, V.R.; Haq, W.; Srivastava, K.; Puri, S.K.; Katti, S.B. Design, synthesis of 4-aminoquinoline-derived thiazolidines and their antimalarial activity and heme polymerization inhibition studies. J. Enzyme Inhib. Med. Chem., 2013, 28(3), 619-626.
[http://dx.doi.org/10.3109/14756366.2012.666537] [PMID: 22432870]
Dechy-Cabaret, O.; Benoit-Vical, F.; Loup, C.; Robert, A.; Gornitzka, H.; Bonhoure, A.; Vial, H.; Magnaval, J-F.; Séguéla, J-P.; Meunier, B. Synthesis and antimalarial activity of trioxaquine derivatives. Chemistry, 2004, 10(7), 1625-1636.
[http://dx.doi.org/10.1002/chem.200305576] [PMID: 15054749]
Meunier, B. Hybrid molecules with a dual mode of action: dream or reality? Acc. Chem. Res., 2008, 41(1), 69-77.
[http://dx.doi.org/10.1021/ar7000843] [PMID: 17665872]
Dechy-Cabaret, O.; Benoit-Vical, F.; Robert, A.; Meunier, B. Preparation and antimalarial activities of “trioxaquines”, new modular molecules with a trioxane skeleton linked to a 4-aminoquinoline. ChemBioChem, 2000, 1(4), 281-283.
[http://dx.doi.org/10.1002/1439-7633(20001117)1:4<281:AID-CBIC281>3.0.CO;2-W] [PMID: 11828420]
Vical, F.B.; Evre, J.L.; Berry, A.; Deymier, C.; Cabaret, D.D.; Cazelles, J.; Loup, C.; Robert, A.; Magnaval, J-F.; Meunier, B. Antimicrob. Agents Chemother., 2007, 51, 1463-1472.
[http://dx.doi.org/10.1128/AAC.00967-06] [PMID: 17242150]
Coslédan, F.; Fraisse, L.; Pellet, A.; Guillou, F.; Mordmüller, B.; Kremsner, P.G.; Moreno, A.; Mazier, D.; Maffrand, J-P.; Meunier, B. Selection of a trioxaquine as an antimalarial drug candidate. Proc. Natl. Acad. Sci. USA, 2008, 105(45), 17579-17584.
[http://dx.doi.org/10.1073/pnas.0804338105] [PMID: 18987321]
Cosledan, F.; Pellet, A.; Meunier, B. French Patent Application, FR06/05235 2006.
Olliaro, P.; Wells, T.N.C. The global portfolio of new antimalarial medicines under development. Clin. Pharmacol. Ther., 2009, 85(6), 584-595.
[http://dx.doi.org/10.1038/clpt.2009.51] [PMID: 19404247]
Ellis, G.L.; Amewu, R.; Sabbani, S.; Stocks, P.A.; Shone, A.; Stanford, D.; Gibbons, P.; Davies, J.; Vivas, L.; Charnaud, S.; Bongard, E.; Hall, C.; Rimmer, K.; Lozanom, S.; Jesús, M.; Gargallo, D.; Ward, S.A.; O’Neill, P.M. Two-step synthesis of achiral dispiro-1,2,4,5-tetraoxanes with outstanding antimalarial activity, low toxicity, and high-stability profiles. J. Med. Chem., 2008, 51(7), 2170-2177.
[http://dx.doi.org/10.1021/jm701435h] [PMID: 18341274]
Araújo, N.C.P.; Barton, V.; Jones, M.; Stocks, P.A.; Ward, S.A.; Davies, J.; Bray, P.G.; Shone, A.E.; Cristiano, M.L.S.; O’Neill, P.M. Semi-synthetic and synthetic 1,2,4-trioxaquines and 1,2,4-trioxolaquines: synthesis, preliminary SAR and comparison with acridine endoperoxide conjugates. Bioorg. Med. Chem. Lett., 2009, 19(7), 2038-2043.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.013] [PMID: 19251414]
Opsenica, I.; Opsenica, D.; Smith, K.S.; Milhous, W.K.; Solaja, B.A.; Smith, K.S.; Solaja, B.A. Chemical stability of the peroxide bond enables diversified synthesis of potent tetraoxane antimalarials. J. Med. Chem., 2008, 51(7), 2261-2266.
[http://dx.doi.org/10.1021/jm701417a] [PMID: 18330976]
Opsenica, I.; Opsenica, D.; Lanteri, C.A.; Anova, L.; Milhous, W.K.; Smith, K.S.; Solaja, B.A. New chimeric antimalarials with 4-aminoquinoline moiety linked to a tetraoxane skeleton. J. Med. Chem., 2008, 51(19), 6216-6219.
[http://dx.doi.org/10.1021/jm8006905] [PMID: 18774792]
Lombard, M.C.; N’Da, D.D.; Breytenbach, J.C.; Smith, P.J.; Lategan, C.A. Synthesis, in vitro antimalarial and cytotoxicity of artemisinin-aminoquinoline hybrids. Bioorg. Med. Chem. Lett., 2011, 21(6), 1683-1686.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.103] [PMID: 21316959]
Li, Y.; Zhu, Y-M.; Jiang, H-J.; Pan, J-P.; Wu, G-S.; Wu, J-M.; Shi, Y-L.; Yang, J-D.; Wu, B-A. Synthesis and antimalarial activity of artemisinin derivatives containing an amino group. J. Med. Chem., 2000, 43(8), 1635-1640.
[http://dx.doi.org/10.1021/jm990552w] [PMID: 10780920]
Lombard, M.C.; Fernandes, M.A.; Breytenbach, J.C.; N’da, D.D. 1-Bromo-2-(10β-dihydro-artemisin-oxy)ethane. Acta Crystallogr. Sect. E Struct. Rep. Online, 2010, 66(Pt 8), o2182-o2183.
[http://dx.doi.org/10.1107/S1600536810029090] [PMID: 21588460]
Perić, M.; Fajdetić, A.; Rupčić, R.; Alihodžić, S.; Ziher, D.; Bukvić Krajačić, M.; Smith, K.S.; Ivezić-Schönfeld, Z.; Padovan, J.; Landek, G.; Jelić, D.; Hutinec, A.; Mesić, M.; Ager, A.; Ellis, W.Y.; Milhous, W.K.; Ohrt, C.; Spaventi, R. Antimalarial activity of 9a-N substituted 15-membered azalides with improved in vitro and in vivo activity over azithromycin. J. Med. Chem., 2012, 55(3), 1389-1401.
[http://dx.doi.org/10.1021/jm201615t] [PMID: 22148880]
Bright, G.M.; Nagel, A.A.; Bordner, J.; Desai, K.A.; Dibrino, J.N.; Nowakowska, J.; Vincent, L.; Watrous, R.M.; Sciavolino, F.C.; English, A.R. Synthesis, in vitro and in vivo activity of novel 9-deoxo-9a-AZA-9a-homoerythromycin A derivatives; a new class of macrolide antibiotics, the azalides. J. Antibiot. , 1988, 41, 1029-1047.
Krajacić, M.B.; Kujundzić, N.; Dumić, M.; Cindrić, M.; Brajsa, K.; Metelko, B.; Novak, P. Synthesis, characterization and in vitro antimicrobial activity of novel sulfonylureas of 15-membered azalides. J. Antibiot. , 2005, 58, 380-389.
Mercep, M.; Mesic, M.; Tomaskovic, L. Compounds with antiinflamatory activity. Patent: US 7579334 B2 2009.
Carvalho, R.C.C.; Martins, W.A.; Silva, T.P.; Kaiser, C.R.; Bastos, M.M.; Pinheiro, L.C.S.; Krettli, A.U.; Boechat, N. New pentasubstituted pyrrole hybrid atorvastatin-quinoline derivatives with antiplasmodial activity. Bioorg. Med. Chem. Lett., 2016, 26(8), 1881-1884.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.027] [PMID: 26988303]
Sagyam, R.R.; Padi, P.R.; Ghanta, M.R.; Vurimidi, H. An efficient synthesis of highly substituted pyrrole and bis pyrrole derivatives. J. Heterocycl. Chem., 2007, 44, 923-926.
Chopin, N.; Iikawa, S.; Bosson, J.; Lavoignat, A.; Bonnot, G.; Bienvenu, A-L.; Picot, S.; Bouillon, J-P.; Médebielle, M. 7-Chloro-4-aminoquinoline γ-hydroxy-γ-lactam derived-tetramates as a new family of antimalarial compounds. Bioorg. Med. Chem. Lett., 2016, 26(21), 5308-5311.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.038] [PMID: 27692831]
Chopin, N.; Yanai, H.; Iikawa, S.; Pilet, G.; Bouillon, J-P.; Medebielle, M. A rapid entry to diverse γ-ylidenetetronate derivatives through regioselective bromination of tetronic acid derived γ-lactones and metal-catalyzed postfunctionalization. Eur. J. Org. Chem., 2015, 28, 6259-6269.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 25 April, 2020
Page: [617 - 697]
Pages: 81
DOI: 10.2174/1568026620666200127141550
Price: $65

Article Metrics

PDF: 32