Utilization of Lipid-based Nanoparticles to Improve the Therapeutic Benefits of Bortezomib

Author(s): Mitra Korani, Shahla Korani, Elham Zendehdel, Mahmoud R. Jaafari, Thozhukat Sathyapalan, Amirhossein Sahebkar*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 6 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Cancer is a condition where there is an uncontrolled growth of cells resulting in high mortality. It is the second most frequent cause of death worldwide. Bortezomib (BTZ) is a Proteasome Inhibitor (PI) that is used for the treatment of a variety of cancers. It is the first PI that has received the approval of the US Food and Drug Administration (FDA) to treat mantle cell lymphoma and multiple myeloma. High incidence of sideeffects, limited dose, low water solubility, fast clearance, and drug resistance are the significant limitations of BTZ. Therefore, various drug delivery systems have been tried to overcome these limitations of BTZ in cancer therapy. Nanotechnology can potentially enhance the aqueous solubility of BTZ, increase its bioavailability, and control the release of BTZ at the site of administration. The lipid-based nanocarriers, such as liposomes, solid lipid NPs, and microemulsions, are some of the developments in nanotechnology, which could potentially enhance the therapeutic benefits of BTZ.

Keywords: Lipid-based nanocarriers, liposomes, solid lipid nanoparticles, microemulsion, Bortezomib, a proteasome inhibitor.

[1]
Konstantinova, I.M.; Tsimokha, A.S.; Mittenberg, A.G. Role of proteasomes in cellular regulation. Int. Rev. Cell Mol. Biol., 2008, 267, 59-124.
[http://dx.doi.org/10.1016/S1937-6448(08)00602-3] [PMID: 18544497]
[2]
Elliot, P.J.; Adams, J. Recent advances in understanding proteasome function. Curr. Opin. Drug Discov. Devel., 1999, 2(5), 484-490.
[PMID: 19649975]
[3]
Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem., 2001, 70(1), 503-533.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.503] [PMID: 11395416]
[4]
Adams, J. The proteasome: a suitable antineoplastic target. Nat. Rev. Cancer, 2004, 4(5), 349-360.
[http://dx.doi.org/10.1038/nrc1361] [PMID: 15122206]
[5]
Adams, J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell, 2004, 5(5), 417-421.
[http://dx.doi.org/10.1016/S1535-6108(04)00120-5] [PMID: 15144949]
[6]
Mateos, M-V.; San Miguel, J.F. Safety and efficacy of subcutaneous formulation of bortezomib versus the conventional intravenous formulation in multiple myeloma. Ther. Adv. Hematol., 2012, 3(2), 117-124.
[http://dx.doi.org/10.1177/2040620711432020] [PMID: 23556118]
[7]
Chen, D.; Frezza, M.; Schmitt, S.; Kanwar, J.; Dou, Q.P. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr. Cancer Drug Targets, 2011, 11(3), 239-253.
[http://dx.doi.org/10.2174/156800911794519752] [PMID: 21247388]
[8]
Rodríguez-Martín, M.; Sáez-Rodríguez, M.; García-Bustínduy, M.; Martín-Herrera, A.; Noda-Cabrera, A. Bortezomib-induced cutaneous lesions in multiple myeloma patients: a case report. Dermatol. Online J., 2008, 14(11), 14.
[PMID: 19094852]
[9]
Bose, S. Nano drug delivery system in pharmacy and chemistry review article. IOSR J. Pharmacy Biol. Sci., 2015, 10, 1-6.
[10]
Sieswerda, E.; Kremer, L.C.; Caron, H.N.; van Dalen, E.C. The use of liposomal anthracycline analogues for childhood malignancies: A systematic review. Eur. J. Cancer, 2011, 47(13), 2000-2008.
[http://dx.doi.org/10.1016/j.ejca.2011.03.024] [PMID: 21514819]
[11]
Ravi Kumar, M.N.; Blanco-Prieto, M.J.; Waterhouse, D.N. Nanotheraputics. Cancer Lett., 2013, 334(2), 155-156.
[http://dx.doi.org/10.1016/j.canlet.2013.02.047] [PMID: 23523611]
[12]
Porfire, A.S.; Tomuţă, I.; Leucuţa, S.; Achim, M. Superoxide dismutase loaded liposomes. The influence of formulation factors on enzyme encapsulation and release. Farmacia, 2013, 61(5), 865-873.
[13]
Zhang, L.; Han, L.; Sun, X.; Gao, D.; Qin, J.; Wang, J. The use of PEGylated liposomes to prolong the circulation lifetime of salvianolic acid B. Fitoterapia, 2012, 83(4), 678-689.
[http://dx.doi.org/10.1016/j.fitote.2012.02.004] [PMID: 22391022]
[14]
Hîrjău, M.; Lupuliasa, D.; Rădulescu, F.; Miron, D. The study of piroxicam dissolution from eudragit rs-coated pellets. Farmacia, 2013, 61(5), 845-855.
[15]
Gillis, E.P.; Burke, M.D. A simple and modular strategy for small molecule synthesis: iterative Suzuki-Miyaura coupling of B-protected haloboronic acid building blocks. J. Am. Chem. Soc., 2007, 129(21), 6716-6717.
[http://dx.doi.org/10.1021/ja0716204] [PMID: 17488084]
[16]
Knapp, D.M.; Gillis, E.P.; Burke, M.D. A general solution for unstable boronic acids: slow-release cross-coupling from air-stable MIDA boronates. J. Am. Chem. Soc., 2009, 131(20), 6961-6963.
[http://dx.doi.org/10.1021/ja901416p] [PMID: 19405470]
[17]
Stolowitz, M.L.; Ahlem, C.; Hughes, K.A.; Kaiser, R.J.; Kesicki, E.A.; Li, G.; Lund, K.P.; Torkelson, S.M.; Wiley, J.P. Phenylboronic acid-salicylhydroxamic acid bioconjugates. 1. A novel boronic acid complex for protein immobilization. Bioconjug. Chem., 2001, 12(2), 229-239.
[http://dx.doi.org/10.1021/bc0000942] [PMID: 11312684]
[18]
Wiley, J.P.; Hughes, K.A.; Kaiser, R.J.; Kesicki, E.A.; Lund, K.P.; Stolowitz, M.L. Phenylboronic acid-salicylhydroxamic acid bioconjugates. 2. Polyvalent immobilization of protein ligands for affinity chromatography. Bioconjug. Chem., 2001, 12(2), 240-250.
[http://dx.doi.org/10.1021/bc000086l] [PMID: 11312685]
[19]
Gabizon, A.; Catane, R.; Uziely, B.; Kaufman, B.; Safra, T.; Cohen, R.; Martin, F.; Huang, A.; Barenholz, Y. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res., 1994, 54(4), 987-992.
[PMID: 8313389]
[20]
Allen, T.M.; Cheng, K.; Wilson, W.; Hare, J.I.; Laginha, K.M. Pharmacokinetics and pharmacodynamics of lipidic nano-particles in cancer. Anti-Cancer Agents Med. Chem. (Formerly Curr. Med. Chem.-Anti-Cancer Agents), 2006, 6(6), 513-523.
[http://dx.doi.org/10.2174/187152006778699121]
[21]
Allen, T.M. Liposomal drug formulations. Rationale for development and what we can expect for the future. Drugs, 1998, 56(5), 747-756.
[http://dx.doi.org/10.2165/00003495-199856050-00001] [PMID: 9829150]
[22]
Ashley, J.D.; Stefanick, J.F.; Schroeder, V.A.; Suckow, M.A.; Kiziltepe, T.; Bilgicer, B. Liposomal bortezomib nanoparticles via boronic ester prodrug formulation for improved therapeutic efficacy in vivo. J. Med. Chem., 2014, 57(12), 5282-5292.
[http://dx.doi.org/10.1021/jm500352v] [PMID: 24897555]
[23]
Butu, A.; Rodino, S.; Golea, D.; Butu, M.; Butnariu, M.; Negoescu, C.; Dinu-Pirvu, C-E. Liposomal nanodelivery system for proteasome inhibitor anticancer drug bortezomib. Farmacia, 2015, 63(2), 224-229.
[24]
Huang, A.; Luo, B.; Wang, J.; Zhang, Y. Liposome compositions for in vivo administration of boronic acid compounds. WO Patent WO2009026427A3 2009.
[25]
Zalipsky, S.; Martin, F. Liposomal formulation of bortezomib (ps-341). WO Patent WO2006052733A1 2004.
[26]
Korani, M.; Ghaffari, S.; Attar, H.; Mashreghi, M.; Jaafari, M.R. Preparation and characterization of nanoliposomal bortezomib formulations and evaluation of their anti-cancer efficacy in mice bearing C26 colon carcinoma and B16F0 melanoma. Nanomedicine (Lond.), 2019, 20, 102013
[http://dx.doi.org/10.1016/j.nano.2019.04.016] [PMID: 31103736]
[27]
Zuccari, G.; Milelli, A.; Pastorino, F.; Loi, M.; Petretto, A.; Parise, A.; Marchetti, C.; Minarini, A.; Cilli, M.; Emionite, L.; Di Paolo, D.; Brignole, C.; Piaggio, F.; Perri, P.; Tumiatti, V.; Pistoia, V.; Pagnan, G.; Ponzoni, M. Tumor vascular targeted liposomal-bortezomib minimizes side effects and increases therapeutic activity in human neuroblastoma. J. Control. Release, 2015, 211, 44-52.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.286] [PMID: 26031842]
[28]
Deshantri, A.K.; Metselaar, J.M.; Zagkou, S.; Storm, G.; Mandhane, S.N.; Fens, M.H.A.M.; Schiffelers, R.M. Development and characterization of liposomal formulation of bortezomib. Int J Pharm X, 2019, 1, 100011
[http://dx.doi.org/10.1016/j.ijpx.2019.100011] [PMID: 31517276]
[29]
Yang, X.; Pang, J.; Shen, N.; Yan, F.; Wu, L-C.; Al-Kali, A.; Litzow, M.R.; Peng, Y.; Lee, R.J.; Liu, S. Liposomal bortezomib is active against chronic myeloid leukemia by disrupting the Sp1-BCR/ABL axis. Oncotarget, 2016, 7(24), 36382-36394.
[http://dx.doi.org/10.18632/oncotarget.8871] [PMID: 27144331]
[30]
Faderl, S.; Talpaz, M.; Estrov, Z.; O’Brien, S.; Kurzrock, R.; Kantarjian, H.M. The biology of chronic myeloid leukemia. N. Engl. J. Med., 1999, 341(3), 164-172.
[http://dx.doi.org/10.1056/NEJM199907153410306] [PMID: 10403855]
[31]
Burgess, D.J. Leukaemia: targeted therapy re-enABLed? Nat. Rev. Cancer, 2011, 11(7), 460.
[http://dx.doi.org/10.1038/nrc3099] [PMID: 21677678]
[32]
Zhao, F.; Mancuso, A.; Bui, T.V.; Tong, X.; Gruber, J.J.; Swider, C.R.; Sanchez, P.V.; Lum, J.J.; Sayed, N.; Melo, J.V.; Perl, A.E.; Carroll, M.; Tuttle, S.W.; Thompson, C.B. Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1α-induced metabolic reprograming. Oncogene, 2010, 29(20), 2962-2972.
[http://dx.doi.org/10.1038/onc.2010.67] [PMID: 20228846]
[33]
Marega, M.; Piazza, R.G.; Pirola, A.; Redaelli, S.; Mogavero, A.; Iacobucci, I.; Meneghetti, I.; Parma, M.; Pogliani, E.M.; Gambacorti-Passerini, C. BCR and BCR-ABL regulation during myeloid differentiation in healthy donors and in chronic phase/blast crisis CML patients. Leukemia, 2010, 24(8), 1445-1449.
[http://dx.doi.org/10.1038/leu.2010.101] [PMID: 20520635]
[34]
Druker, B.J.; Sawyers, C.L.; Kantarjian, H.; Resta, D.J.; Reese, S.F.; Ford, J.M.; Capdeville, R.; Talpaz, M. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med., 2001, 344(14), 1038-1042.
[http://dx.doi.org/10.1056/NEJM200104053441402] [PMID: 11287973]
[35]
O’Brien, S.G.; Guilhot, F.; Larson, R.A.; Gathmann, I.; Baccarani, M.; Cervantes, F.; Cornelissen, J.J.; Fischer, T.; Hochhaus, A.; Hughes, T.; Lechner, K.; Nielsen, J.L.; Rousselot, P.; Reiffers, J.; Saglio, G.; Shepherd, J.; Simonsson, B.; Gratwohl, A.; Goldman, J.M.; Kantarjian, H.; Taylor, K.; Verhoef, G.; Bolton, A.E.; Capdeville, R.; Druker, B.J. IRIS Investigators. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med., 2003, 348(11), 994-1004.
[http://dx.doi.org/10.1056/NEJMoa022457] [PMID: 12637609]
[36]
Hughes, T.P.; Kaeda, J.; Branford, S.; Rudzki, Z.; Hochhaus, A.; Hensley, M.L.; Gathmann, I.; Bolton, A.E.; van Hoomissen, I.C.; Goldman, J.M.; Radich, J.P. International Randomised Study of Interferon versus STI571 (IRIS) Study Group. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N. Engl. J. Med., 2003, 349(15), 1423-1432.
[http://dx.doi.org/10.1056/NEJMoa030513] [PMID: 14534335]
[37]
Daub, H.; Specht, K.; Ullrich, A. Strategies to overcome resistance to targeted protein kinase inhibitors. Nat. Rev. Drug Discov., 2004, 3(12), 1001-1010.
[http://dx.doi.org/10.1038/nrd1579] [PMID: 15573099]
[38]
Bianchini, M.; De Brasi, C.; Gargallo, P.; Gonzalez, M.; Bengió, R.; Larripa, I. Specific assessment of BCR-ABL transcript overexpression and imatinib resistance in chronic myeloid leukemia patients. Eur. J. Haematol., 2009, 82(4), 292-300.
[http://dx.doi.org/10.1111/j.1600-0609.2008.01199.x] [PMID: 19191867]
[39]
Morinaga, K.; Yamauchi, T.; Kimura, S.; Maekawa, T.; Ueda, T. Overcoming imatinib resistance using Src inhibitor CGP76030, Abl inhibitor nilotinib and Abl/Lyn inhibitor INNO-406 in newly established K562 variants with BCR-ABL gene amplification. Int. J. Cancer, 2008, 122(11), 2621-2627.
[http://dx.doi.org/10.1002/ijc.23435] [PMID: 18338755]
[40]
Gorre, M.E.; Mohammed, M.; Ellwood, K.; Hsu, N.; Paquette, R.; Rao, P.N.; Sawyers, C.L. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science, 2001, 293(5531), 876-880.
[http://dx.doi.org/10.1126/science.1062538] [PMID: 11423618]
[41]
Jagani, Z.; Song, K.; Kutok, J.L.; Dewar, M.R.; Melet, A.; Santos, T.; Grassian, A.; Ghaffari, S.; Wu, C.; Yeckes-Rodin, H.; Ren, R.; Miller, K.; Khosravi-Far, R. Proteasome inhibition causes regression of leukemia and abrogates BCR-ABL-induced evasion of apoptosis in part through regulation of forkhead tumor suppressors. Cancer Res., 2009, 69(16), 6546-6555.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0605] [PMID: 19654305]
[42]
Santos, F.P.; Kantarjian, H.; McConkey, D.; O’Brien, S.; Faderl, S.; Borthakur, G.; Ferrajoli, A.; Wright, J.; Cortes, J. Pilot study of bortezomib for patients with imatinib-refractory chronic myeloid leukemia in chronic or accelerated phase. Clin. Lymphoma Myeloma Leuk., 2011, 11(4), 355-360.
[http://dx.doi.org/10.1016/j.clml.2011.06.004] [PMID: 21816374]
[43]
Loi, M.; Marchiò, S.; Becherini, P.; Di Paolo, D.; Soster, M.; Curnis, F.; Brignole, C.; Pagnan, G.; Perri, P.; Caffa, I.; Longhi, R.; Nico, B.; Bussolino, F.; Gambini, C.; Ribatti, D.; Cilli, M.; Arap, W.; Pasqualini, R.; Allen, T.M.; Corti, A.; Ponzoni, M.; Pastorino, F. Combined targeting of perivascular and endothelial tumor cells enhances anti-tumor efficacy of liposomal chemotherapy in neuroblastoma. J. Control. Release, 2010, 145(1), 66-73.
[http://dx.doi.org/10.1016/j.jconrel.2010.03.015] [PMID: 20346382]
[44]
Pastorino, F.; Brignole, C.; Marimpietri, D.; Cilli, M.; Gambini, C.; Ribatti, D.; Longhi, R.; Allen, T.M.; Corti, A.; Ponzoni, M. Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Res., 2003, 63(21), 7400-7409.
[PMID: 14612539]
[45]
Di Paolo, D.; Pastorino, F.; Zuccari, G.; Caffa, I.; Loi, M.; Marimpietri, D.; Brignole, C.; Perri, P.; Cilli, M.; Nico, B.; Ribatti, D.; Pistoia, V.; Ponzoni, M.; Pagnan, G. Enhanced anti-tumor and anti-angiogenic efficacy of a novel liposomal fenretinide on human neuroblastoma. J. Control. Release, 2013, 170(3), 445-451.
[http://dx.doi.org/10.1016/j.jconrel.2013.06.015] [PMID: 23792118]
[46]
Di Paolo, D.; Ambrogio, C.; Pastorino, F.; Brignole, C.; Martinengo, C.; Carosio, R.; Loi, M.; Pagnan, G.; Emionite, L.; Cilli, M.; Ribatti, D.; Allen, T.M.; Chiarle, R.; Ponzoni, M.; Perri, P. Selective therapeutic targeting of the anaplastic lymphoma kinase with liposomal siRNA induces apoptosis and inhibits angiogenesis in neuroblastoma. Mol. Ther., 2011, 19(12), 2201-2212.
[http://dx.doi.org/10.1038/mt.2011.142] [PMID: 21829174]
[47]
Di Paolo, D.; Brignole, C.; Pastorino, F.; Carosio, R.; Zorzoli, A.; Rossi, M.; Loi, M.; Pagnan, G.; Emionite, L.; Cilli, M.; Bruno, S.; Chiarle, R.; Allen, T.M.; Ponzoni, M.; Perri, P. Neuroblastoma-targeted nanoparticles entrapping siRNA specifically knockdown ALK. Mol. Ther., 2011, 19(6), 1131-1140.
[http://dx.doi.org/10.1038/mt.2011.54] [PMID: 21487394]
[48]
Loi, M.; Di Paolo, D.; Soster, M.; Brignole, C.; Bartolini, A.; Emionite, L.; Sun, J.; Becherini, P.; Curnis, F.; Petretto, A.; Sani, M.; Gori, A.; Milanese, M.; Gambini, C.; Longhi, R.; Cilli, M.; Allen, T.M.; Bussolino, F.; Arap, W.; Pasqualini, R.; Corti, A.; Ponzoni, M.; Marchiò, S.; Pastorino, F. Novel phage display-derived neuroblastoma-targeting peptides potentiate the effect of drug nanocarriers in preclinical settings. J. Control. Release, 2013, 170(2), 233-241.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.029] [PMID: 23714122]
[49]
Clerc, S.; Barenholz, Y. Liposome drug-loading method and composition. EP Patent 0,825,852A1 1999.
[50]
Devalapally, H.; Chakilam, A.; Amiji, M.M. Role of nanotechnology in pharmaceutical product development. J. Pharm. Sci., 2007, 96(10), 2547-2565.
[http://dx.doi.org/10.1002/jps.20875] [PMID: 17688284]
[51]
Alavizadeh, S.H.; Badiee, A.; Golmohammadzadeh, S.; Jaafari, M.R. The influence of phospholipid on the physicochemical properties and anti-tumor efficacy of liposomes encapsulating cisplatin in mice bearing C26 colon carcinoma. Int. J. Pharm., 2014, 473(1-2), 326-333.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.020] [PMID: 25051111]
[52]
Wang, L.; Shi, C.; Wright, F.A.; Guo, D.; Wang, X.; Wang, D.; Wojcikiewicz, R.J.H.; Luo, J. Multifunctional telodendrimer nanocarriers restore synergy of bortezomib and doxorubicin in ovarian cancer treatment. Cancer Res., 2017, 77(12), 3293-3305.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3119] [PMID: 28396359]
[53]
Wang, M.; Wang, Y.; Hu, K.; Shao, N.; Cheng, Y. Tumor extracellular acidity activated “off-on” release of bortezomib from a biocompatible dendrimer. Biomater. Sci., 2015, 3(3), 480-489.
[http://dx.doi.org/10.1039/C4BM00365A] [PMID: 26222291]
[54]
Xu, W.; Ding, J.; Li, L.; Xiao, C.; Zhuang, X.; Chen, X. Acid-labile boronate-bridged dextran-bortezomib conjugate with up-regulated hypoxic tumor suppression. Chem. Commun. (Camb.), 2015, 51(31), 6812-6815.
[http://dx.doi.org/10.1039/C5CC01371B] [PMID: 25787235]
[55]
Swami, A.; Reagan, M.R.; Basto, P.; Mishima, Y.; Kamaly, N.; Glavey, S.; Zhang, S.; Moschetta, M.; Seevaratnam, D.; Zhang, Y.; Liu, J.; Memarzadeh, M.; Wu, J.; Manier, S.; Shi, J.; Bertrand, N.; Lu, Z.N.; Nagano, K.; Baron, R.; Sacco, A.; Roccaro, A.M.; Farokhzad, O.C.; Ghobrial, I.M. Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc. Natl. Acad. Sci. USA, 2014, 111(28), 10287-10292.
[http://dx.doi.org/10.1073/pnas.1401337111] [PMID: 24982170]
[56]
Shen, S.; Du, X-J.; Liu, J.; Sun, R.; Zhu, Y-H.; Wang, J. Delivery of bortezomib with nanoparticles for basal-like triple-negative breast cancer therapy. J. Control. Release, 2015, 208, 14-24.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.043] [PMID: 25575864]
[57]
Thamake, S.I.; Raut, S.L.; Gryczynski, Z.; Ranjan, A.P.; Vishwanatha, J.K. Alendronate coated poly-lactic-co-glycolic acid (PLGA) nanoparticles for active targeting of metastatic breast cancer. Biomaterials, 2012, 33(29), 7164-7173.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.026] [PMID: 22795543]
[58]
Frasco, M.F.; Almeida, G.M.; Santos-Silva, F.; Pereira, Mdo.C.; Coelho, M.A. Transferrin surface-modified PLGA nanoparticles-mediated delivery of a proteasome inhibitor to human pancreatic cancer cells. J. Biomed. Mater. Res. A, 2015, 103(4), 1476-1484.
[http://dx.doi.org/10.1002/jbm.a.35286] [PMID: 25046528]
[59]
Shen, J.; Song, G.; An, M.; Li, X.; Wu, N.; Ruan, K.; Hu, J.; Hu, R. The use of hollow mesoporous silica nanospheres to encapsulate bortezomib and improve efficacy for non-small cell lung cancer therapy. Biomaterials, 2014, 35(1), 316-326.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.098] [PMID: 24125776]
[60]
Mahmoudian, M.; Valizadeh, H.; Zakeri-Milani, P. Bortezomib-loaded solid lipid nanoparticles: preparation, characterization, and intestinal permeability investigation. Drug Dev. Ind. Pharm., 2018, 44(10), 1598-1605.
[http://dx.doi.org/10.1080/03639045.2018.1483385] [PMID: 29874944]
[61]
De Gennes, P.; Taupin, C. Microemulsions and the flexibility of oil/water interfaces. J. Phys. Chem., 1982, 86(13), 2294-2304.
[http://dx.doi.org/10.1021/j100210a011]
[62]
Fanun, M. Conductivity, viscosity, NMR and diclofenac solubilization capacity studies of mixed nonionic surfactants microemulsions. J. Mol. Liq., 2007, 135(1-3), 5-13.
[http://dx.doi.org/10.1016/j.molliq.2006.09.003]
[63]
Spernath, A.; Aserin, A. Microemulsions as carriers for drugs and nutraceuticals. Adv. Colloid Interface Sci., 2006, 128-130, 47-64.
[http://dx.doi.org/10.1016/j.cis.2006.11.016] [PMID: 17229398]
[64]
Cho, H-J.; Ku, W-S.; Termsarasab, U.; Yoon, I.; Chung, C-W.; Moon, H.T.; Kim, D-D. Development of udenafil-loaded microemulsions for intranasal delivery: in vitro and in vivo evaluations. Int. J. Pharm., 2012, 423(2), 153-160.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.028] [PMID: 22209996]
[65]
Yin, Y-M.; Cui, F-D.; Mu, C-F.; Choi, M-K.; Kim, J.S.; Chung, S-J.; Shim, C-K.; Kim, D-D. Docetaxel microemulsion for enhanced oral bioavailability: preparation and in vitro and in vivo evaluation. J. Control. Release, 2009, 140(2), 86-94.
[http://dx.doi.org/10.1016/j.jconrel.2009.08.015] [PMID: 19709639]
[66]
Elshafeey, A.H.; Bendas, E.R.; Mohamed, O.H. Intranasal microemulsion of sildenafil citrate: in vitro evaluation and in vivo pharmacokinetic study in rabbits. AAPS PharmSciTech, 2009, 10(2), 361-367.
[http://dx.doi.org/10.1208/s12249-009-9213-6] [PMID: 19333762]
[67]
Bachhav, Y.G.; Patravale, V.B. Microemulsion based vaginal gel of fluconazole: formulation, in vitro and in vivo evaluation. Int. J. Pharm., 2009, 365(1-2), 175-179.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.021] [PMID: 18790032]
[68]
Bachhav, Y.G.; Patravale, V.B. Microemulsion-based vaginal gel of clotrimazole: formulation, in vitro evaluation, and stability studies. AAPS PharmSciTech, 2009, 10(2), 476-481.
[http://dx.doi.org/10.1208/s12249-009-9233-2] [PMID: 19381825]
[69]
Levêque, D.; Carvalho, M.C.M.; Maloisel, F. Review. Clinical pharmacokinetics of bortezomib. In Vivo, 2007, 21(2), 273-278.
[PMID: 17436576]
[70]
Hong, E-P.; Kim, J-Y.; Kim, S-H.; Hwang, K-M.; Park, C-W.; Lee, H-J.; Kim, D-W.; Weon, K-Y.; Jeong, S.Y.; Park, E-S. Formulation and evaluation of a self-microemulsifying drug delivery system containing bortezomib. Chem. Pharm. Bull. (Tokyo), 2016, 64(8), 1108-1117.
[http://dx.doi.org/10.1248/cpb.c16-00035] [PMID: 27477648]
[71]
Kang, B.K.; Lee, J.S.; Chon, S.K.; Jeong, S.Y.; Yuk, S.H.; Khang, G.; Lee, H.B.; Cho, S.H. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int. J. Pharm., 2004, 274(1-2), 65-73.
[http://dx.doi.org/10.1016/j.ijpharm.2003.12.028] [PMID: 15072783]
[72]
Oh, D.H.; Kang, J.H.; Kim, D.W.; Lee, B-J.; Kim, J.O.; Yong, C.S.; Choi, H-G. Comparison of solid self-microemulsifying drug delivery system (solid SMEDDS) prepared with hydrophilic and hydrophobic solid carrier. Int. J. Pharm., 2011, 420(2), 412-418.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.007] [PMID: 21944892]
[73]
Hu, L.; Wu, H.; Niu, F.; Yan, C.; Yang, X.; Jia, Y. Design of fenofibrate microemulsion for improved bioavailability. Int. J. Pharm., 2011, 420(2), 251-255.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.043] [PMID: 21907776]
[74]
Singh, A.K.; Chaurasiya, A.; Awasthi, A.; Mishra, G.; Asati, D.; Khar, R.K.; Mukherjee, R. Oral bioavailability enhancement of exemestane from self-microemulsifying drug delivery system (SMEDDS). AAPS PharmSciTech, 2009, 10(3), 906-916.
[http://dx.doi.org/10.1208/s12249-009-9281-7] [PMID: 19609837]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 6
Year: 2020
Published on: 14 June, 2020
Page: [643 - 650]
Pages: 8
DOI: 10.2174/1871520620666200127141328
Price: $65

Article Metrics

PDF: 21
HTML: 4