Novel Thiazole-Based Thiazolidinones as Potent Anti-infective Agents: In silico PASS and Toxicity Prediction, Synthesis, Biological Evaluation and Molecular Modelling

Author(s): Christophe Tratrat*

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 23 , Issue 2 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Aims and Objective: The infectious disease treatment remains a challenging concern owing to the increasing number of pathogenic microorganisms associated with resistance to multiple drugs. A promising approach for combating microbial infection is to combine two or more known bioactive heterocyclic pharmacophores in one molecular platform. Herein, the synthesis and biological evaluation of novel thiazole-thiazolidinone hybrids as potential antimicrobial agents were dissimilated.

Materials and Methods: The preparation of the substituted 5-benzylidene-2-thiazolyimino-4- thiazolidinones was achieved in three steps from 2-amino-5-methylthiazoline. All the compounds have been screened in PASS antibacterial activity prediction and in a panel of bacteria and fungi strains. Minimum inhibitory concentration and minimum bacterial concentration were both determined by microdilution assays. Molecular modeling was conducted using Accelrys Discovery Studio 4.0 client. ToxPredict (OPEN TOX) and ProTox were used to estimate the toxicity of the title compounds.

Results: PASS prediction revealed the potentiality antibacterial property of the designed thiazolethiazolidinone hybrids. All tested compounds were found to kill and to inhibit the growth of a vast variety of bacteria and fungi, and were more potent than the commercial drugs, streptomycin, ampicillin, bifomazole and ketoconazole. Further, in silico study was carried out for prospective molecular target identification and revealed favorable interaction with the target enzymes E. coli MurB and CYP51B of Aspergillus fumigatus. Toxicity prediction revealed that none of the active compounds was found toxic.

Conclusion: Substituted 5-benzylidene-2-thiazolyimino-4-thiazolidinones, endowing remarkable antibacterial and antifungal properties, were identified as a novel class of antimicrobial agents and may find a potential therapeutic use to eradicate infectious diseases.

Keywords: Thiazole, thiazolidinone, antibacterial, antifungal, PASS prediction, toxicity prediction, docking.

[1]
Nii-Trebi, N.I. Emerging and neglected infectious diseases: insights, advances, and challenges. BioMed Res. Int., 2017, 20175245021
[http://dx.doi.org/10.1155/2017/5245021] [PMID: 28286767 ]
[2]
Mukherjee, S. Emerging infectious diseases: epidemiological perspective. Indian J. Dermatol., 2017, 62(5), 459-467.
[PMID: 28979007]
[3]
Young, V.B. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ, 2017, 356, j831.
[http://dx.doi.org/10.1136/bmj.j831] [PMID: 28298355]
[4]
Langdon, A.; Crook, N.; Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med., 2016, 8(1), 39-39.
[http://dx.doi.org/10.1186/s13073-016-0294-z] [PMID: 27074706]
[5]
Spellberg, B.; Bartlett, J.; Wunderink, R.; Gilbert, D.N. Novel approaches are needed to develop tomorrow’s antibacterial therapies. Am. J. Respir. Crit. Care Med., 2015, 191(2), 135-140.
[http://dx.doi.org/10.1164/rccm.201410-1894OE] [PMID: 25590154]
[6]
Cataldo, M.A.; Granata, G.; Petrosillo, N. Clostridium difficile infection: new approaches to prevention, non-antimicrobial treatment, and stewardship. Expert Rev. Anti Infect. Ther., 2017, 15(11), 1027-1040.
[http://dx.doi.org/10.1080/14787210.2017.1387535] [PMID: 28980505]
[7]
Hughes, G.; Webber, M.A. Novel approaches to the treatment of bacterial biofilm infections. Br. J. Pharmacol., 2017, 174(14), 2237-2246.
[http://dx.doi.org/10.1111/bph.13706] [PMID: 28063237]
[8]
Desai, N.; Trivedi, A.; Pandit, U.; Dodiya, A.; Rao, V.K.; Desai, P. Hybrid bioactive heterocycles as potential antimicrobial agents: a review. Mini Rev. Med. Chem., 2016, 16(18), 1500-1526.
[http://dx.doi.org/10.2174/1389557516666160609075620] [PMID: 27292782]
[9]
Dawood, K.M.; Eldebss, T.M.; El-Zahabi, H.S.; Yousef, M.H. Synthesis and antiviral activity of some new bis-1,3-thiazole derivatives. Eur. J. Med. Chem., 2015, 102, 266-276.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.005] [PMID: 26291036]
[10]
Li, Z.; Chen, Y.; Zhou, Z.; Deng, L.; Xu, Y.; Hu, L.; Liu, B.; Zhang, L. Discovery of first-in-class thiazole-based dual FFA1/PPARδ agonists as potential anti-diabetic agents. Eur. J. Med. Chem.,2019, 164. Diabetes 58, 2009, 352-365.
[11]
Abu-Melha, S.; Edrees, M.M.; Salem, H.H.; Kheder, N.A.; Gomha, S.M.; Abdelaziz, M.R. Synthesis and biological evaluation of some novel thiazole-based heterocycles as potential anticancer and antimicrobial agents. Molecules, 2019, 24(3), 539.
[http://dx.doi.org/10.3390/molecules24030539] [PMID: 30717217]
[12]
Althagafi, I.; El-Metwaly, N.; Farghaly, T.A. New series of thiazole derivatives: synthesis, structural elucidation, antimicrobial activity, molecular modeling and MOE docking. Molecules, 2019, 24(9), 1741.
[http://dx.doi.org/10.3390/molecules24091741] [PMID: 31060260]
[13]
Tratrat, C.; Haroun, M.; Xenikakis, I.; Liaras, K.; Tsolaki, E.; Eleftheriou, P.; Petrou, A.; Aldhubiab, B.; Attimarad, M.; Venugopala, K.N.; Harsha, S.; Elsewedy, H.S.; Geronikaki, A.; Soković, M. Design, synthesis, evaluation of antimicrobial activity and docking studies of new thiazole-based chalcones. Curr. Top. Med. Chem., 2019, 19(5), 356-375.
[http://dx.doi.org/10.2174/1568026619666190129121933] [PMID: 30706816]
[14]
Mohareb, R.M.; Zaki, M.Y.; Abbas, N.S. Synthesis, anti-inflammatory and anti-ulcer evaluations of thiazole, thiophene, pyridine and pyran derivatives derived from androstenedione. Steroids, 2015, 98, 80-91.
[http://dx.doi.org/10.1016/j.steroids.2015.03.001] [PMID: 25759119 ]
[15]
Khamees, H.A.; Mohammed, Y.H.E.S. A.; Al-Ostoot, F. H.; Y, S.; Alghamdi, S.; Khanum, S. A.; Madegowda, M. Effect of o-difluoro and p-methyl substituents on the structure, optical properties and anti-inflammatory activity of phenoxy thiazole acetamide derivatives: theoretical and experimental studies. J. Mol. Struct., 2020, 1199127024
[http://dx.doi.org/10.1016/j.molstruc.2019.127024]
[16]
Liaras, K.; Fesatidou, M.; Geronikaki, A. Thiazoles and thiazolidinones as COX/LOX inhibitors. Molecules, 2018, 23(3), 685.
[http://dx.doi.org/10.3390/molecules23030685] [PMID: 29562646 ]
[17]
Ugwu, D.I.; Okoro, U.C.; Ukoha, P.O.; Gupta, A.; Okafor, S.N. Novel anti-inflammatory and analgesic agents: synthesis, molecular docking and in vivo studies. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 405-415.
[http://dx.doi.org/10.1080/14756366.2018.1426573] [PMID: 29372659]
[18]
Helal, M.H.; Salem, M.A.; El-Gaby, M.S.; Aljahdali, M. Synthesis and biological evaluation of some novel thiazole compounds as potential anti-inflammatory agents. Eur. J. Med. Chem., 2013, 65, 517-526.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.005] [PMID: 23787438]
[19]
Ulusoy Güzeldemirci, N.; Karaman Mayack, B. KÜÇÜKbasmaci, Ö. Antibacterial, antitubercular and antiviral activity evaluations of some arylidenehydrazide derivatives bearing imidazo[2,1-b] thiazole moiety. Turkish J. Pharma. Sci., 2017, 14, 157-163.
[http://dx.doi.org/10.4274/tjps.25743]
[20]
Kesicki, E.A.; Bailey, M.A.; Ovechkina, Y.; Early, J.V.; Alling, T.; Bowman, J.; Zuniga, E.S.; Dalai, S.; Kumar, N.; Masquelin, T.; Hipskind, P.A.; Odingo, J.O.; Parish, T. Synthesis and evaluation of the 2-aminothiazoles as anti-tubercular agents. PLoS One, 2016, 11(5)e0155209
[http://dx.doi.org/10.1371/journal.pone.0155209] [PMID: 27171280]
[21]
Geronikaki, A.; Babaev, E.; Dearden, J.; Dehaen, W.; Filimonov, D.; Galaeva, I.; Krajneva, V.; Lagunin, A.; Macaev, F.; Molodavkin, G.; Poroikov, V.; Pogrebnoi, S.; Saloutin, V.; Stepanchikova, A.; Stingaci, E.; Tkach, N.; Vlad, L.; Voronina, T. Design, synthesis, computational and biological evaluation of new anxiolytics. Bioorg. Med. Chem., 2004, 12(24), 6559-6568.
[http://dx.doi.org/10.1016/j.bmc.2004.09.016] [PMID: 15556772]
[22]
Haroun, M. Novel hybrids of pyrazolidinedione and benzothiazole as TZD analogues. rationale design, synthesis and in vivo anti-diabetic evaluation. Med. Chem., 2019, 15(6), 624-633.
[http://dx.doi.org/10.2174/1573406415666190515093657] [PMID: 31113352]
[23]
Sayed, A.R.; Gomha, S.M.; Abdelrazek, F.M.; Farghaly, M.S.; Hassan, S.A.; Metz, P. Design, efficient synthesis and molecular docking of some novel thiazolyl-pyrazole derivatives as anticancer agents. BMC Chem., 2019, 13(1), 116.
[http://dx.doi.org/10.1186/s13065-019-0632-5] [PMID: 31572983]
[24]
Gomha, S.M.; Abdelhamid, A.O.; Kandil, O.M.; Kandeel, S.M.; Abdelrehem, N.A. Synthesis and molecular docking of some novel thiazoles and thiadiazoles incorporating pyranochromene moiety as potent anticancer agents. Mini Rev. Med. Chem., 2018, 18(19), 1670-1682.
[http://dx.doi.org/10.2174/1389557518666180424113819] [PMID: 29692239]
[25]
Kouatly, O.; Geronikaki, A.; Kamoutsis, C.; Hadjipavlou-Litina, D.; Eleftheriou, P. Adamantane derivatives of thiazolyl-N-substituted amide, as possible non-steroidal anti-inflammatory agents. Eur. J. Med. Chem., 2009, 44(3), 1198-1204.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.029] [PMID: 18603333]
[26]
Hassan, F. Synthesis, characterization, anti-inflammatory, and antioxidant activities of some new thiazole derivatives. Int. J. Appl. Sci. Technol., 2012, 2(7), 180-187.
[27]
el-Sabbagh, O.I.; Baraka, M.M.; Ibrahim, S.M.; Pannecouque, C.; Andrei, G.; Snoeck, R.; Balzarini, J.; Rashad, A.A. Synthesis and antiviral activity of new pyrazole and thiazole derivatives. Eur. J. Med. Chem., 2009, 44(9), 3746-3753.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.038] [PMID: 19419804]
[28]
Jain, A.; Singla, R.K.; Shrivastava, B. Thiazole: a remarkable antimicrobial and antioxidant agents. Pharmacologyonline, 2011, 2, 1072-1084.
[29]
Shiradkar, M.R.; Murahari, K.K.; Gangadasu, H.R.; Suresh, T.; Kalyan, C.A.; Panchal, D.; Kaur, R.; Burange, P.; Ghogare, J.; Mokale, V.; Raut, M. Synthesis of new S-derivatives of clubbed triazolyl thiazole as anti-Mycobacterium tuberculosis agents. Bioorg. Med. Chem., 2007, 15(12), 3997-4008.
[http://dx.doi.org/10.1016/j.bmc.2007.04.003] [PMID: 17442576]
[30]
Li, Z.; Chen, Y.; Zhou, Z.; Deng, L.; Xu, Y.; Hu, L.; Liu, B.; Zhang, L. Discovery of first-in-class thiazole-based dual FFA1/PPARδ agonists as potential anti-diabetic agents. Eur. J. Med. Chem., 2019, 164, 352-365.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.069] [PMID: 30605833]
[31]
Khatik, G.L.; Datusalia, A.K.; Ahsan, W.; Kaur, P.; Vyas, M.; Mittal, A.; Nayak, S.K. A retrospect study on thiazole derivatives as the potential antidiabetic agents in drug discovery and developments. Curr. Drug Discov. Technol., 2018, 15(3), 163-177.
[http://dx.doi.org/10.2174/1570163814666170915134018] [PMID: 28914188]
[32]
Geronikaki, A.; Vicini, P.; Dabarakis, N.; Lagunin, A.; Poroikov, V.; Dearden, J.; Modarresi, H.; Hewitt, M.; Theophilidis, G. Evaluation of the local anaesthetic activity of 3-aminobenzo[d]isothiazole derivatives using the rat sciatic nerve model. Eur. J. Med. Chem., 2009, 44(2), 473-481.
[http://dx.doi.org/10.1016/j.ejmech.2008.04.006] [PMID: 18534720]
[33]
Bhat, M.A. Synthesis and anti-mycobacterial activity of new 4-thiazolidinone and 1,3,4-oxadiazole derivatives of isoniazid. Acta Pol. Pharm., 2014, 71(5), 763-770.
[PMID: 25362804]
[34]
Kunzler, A.; Neuenfeldt, P.D. das Neves, A.M.; Pereira, C.M.; Marques, G.H.; Nascente, P.S.; Fernandes, M.H.; Hübner, S.O.; Cunico, W. Synthesis, antifungal and cytotoxic activities of 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidinones. Eur. J. Med. Chem., 2013, 64, 74-80.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.030] [PMID: 23644190]
[35]
Marques, G.H.; Kunzler, A.; Bareño, V.D.; Drawanz, B.B.; Mastelloto, H.G.; Leite, F.R.; Nascimento, G.G.; Nascente, P.S.; Siqueira, G.M.; Cunico, W. Antifungal activity of 3-(heteroaryl-2-ylmethyl)thiazolidinone derivatives. Med. Chem., 2014, 10(4), 355-360.
[http://dx.doi.org/10.2174/15734064113099990030] [PMID: 23826891]
[36]
Chen, N.; Duan, W.; Lin, G.; Liu, L.; Zhang, R.; Li, D. Synthesis and antifungal activity of dehydroabietic acid-based 1,3,4-thiadiazole-thiazolidinone compounds. Mol. Divers., 2016, 20(4), 897-905.
[http://dx.doi.org/10.1007/s11030-016-9691-x] [PMID: 27480629]
[37]
Szychowski, K.A.; Leja, M.L.; Kaminskyy, D.V.; Binduga, U.E.; Pinyazhko, O.R.; Lesyk, R.B.; Gmiński, J. Study of novel anticancer 4-thiazolidinone derivatives. Chem. Biol. Interact., 2017, 262, 46-56.
[http://dx.doi.org/10.1016/j.cbi.2016.12.008] [PMID: 27965178]
[38]
Adiyodi, S.; Damodara, J.; Kulal, A.; Rajith, S.; Kumar Shankar, M.; Chandrashekara, R.; Kumar, V.; Punchapady-Devasya, R.; Naral, D. Synthesis, structural, biological and in silico studies of some new 5-arylidene-4-thiazolidinone derivatives as possible anticancer, antimicrobial and antitubercular agents. New J. Chem., 2019, 43, 1597-1610.
[http://dx.doi.org/10.1039/C8NJ03671C]
[39]
Angapelly, S.; Sri Ramya, P.V. SunithaRani, R.; Kumar, C.G.; Kamal, A.; Arifuddin, M. Ultrasound assisted, VOSO4 catalyzed synthesis of 4-thiazolidinones: antimicrobial evaluation of indazole-4-thiazolidinone derivatives. Tetrahedron Lett., 2017, 58(49), 4632-4637.
[http://dx.doi.org/10.1016/j.tetlet.2017.10.070]
[40]
Merlani, M.; Barbakadze, V.; Amiranashvili, L.; Gogilashvili, L.; Poroikov, V.; Petrou, A.; Geronikaki, A.; Ciric, A.; Glamoclija, J.; Sokovic, M. New caffeic acid derivatives as antimicrobial agents: design, synthesis, evaluation and docking. Curr. Top. Med. Chem., 2019, 19(4), 292-304.
[http://dx.doi.org/10.2174/1568026619666190122152957] [PMID: 30674263 ]
[41]
Fesatidou, M.; Zagaliotis, P.; Camoutsis, C.; Petrou, A.; Eleftheriou, P.; Tratrat, C.; Haroun, M.; Geronikaki, A.; Ciric, A.; Sokovic, M. 5-Adamantan thiadiazole-based thiazolidinones as antimicrobial agents. Design, synthesis, molecular docking and evaluation. Bioorg. Med. Chem., 2018, 26(16), 4664-4676.
[http://dx.doi.org/10.1016/j.bmc.2018.08.004] [PMID: 30107969]
[42]
Samadhiya, P.; Sharma, R.; Srivastava, S.K.; Srivastava, S.D. Synthesis and biological evaluation of 4-thiazolidinone derivatives as antitubercular and antimicrobial agents. Arab. J. Chem., 2014, 7(5), 657-665.
[http://dx.doi.org/10.1016/j.arabjc.2010.11.015]
[43]
Gupta, A.; Singh, R.; Sonar, P.K.; Saraf, S.K. Novel 4-thiazolidinone derivatives as anti-infective agents: synthesis, characterization, and antimicrobial evaluation. Biochem. Res. Int., 2016, 20168086762
[http://dx.doi.org/10.1155/2016/8086762] [PMID: 26925267]
[44]
Pitta, E.; Tsolaki, E.; Geronikaki, A.; Petrovic, J.; Glamoclija, J.; Soković, M.; Crespan, E.; Maga, G.; Bhunia, s.; Saxena, A. Saxena, A. 4-Thiazolidinone derivatives as potent antimicrobial agents: microwave-assisted synthesis, biological evaluation and docking studies. MedChemComm, 2015, 6, 319-326.
[http://dx.doi.org/10.1039/C4MD00399C]
[45]
Imran, M.; Yar, M.S.; Khan, S.A. Synthesis and antihyperglycemic activity of 2-(substituted phenyl)-3-[4-(1-naphthyl)-1,3-thiazol-2-yl] amino-4-oxo-1,3-thiazolidin-5-ylacetic acid derivatives. Acta Pol. Pharm., 2009, 66(1), 51-56.
[PMID: 19226969]
[46]
Geronikaki, A.A.; Lagunin, A.A.; Hadjipavlou-Litina, D.I.; Eleftheriou, P.T.; Filimonov, D.A.; Poroikov, V.V.; Alam, I.; Saxena, A.K. Computer-aided discovery of anti-inflammatory thiazolidinones with dual cyclooxygenase/lipoxygenase inhibition. J. Med. Chem., 2008, 51(6), 1601-1609.
[http://dx.doi.org/10.1021/jm701496h] [PMID: 18311898]
[47]
Apostolidis, I.; Liaras, K.; Geronikaki, A.; Hadjipavlou-Litina, D.; Gavalas, A.; Soković, M.; Glamočlija, J.; Ćirić, A. Synthesis and biological evaluation of some 5-arylidene-2-(1,3-thiazol-2-ylimino)-1,3-thiazolidin-4-ones as dual anti-inflammatory/ antimicrobial agents. Bioorg. Med. Chem., 2013, 21(2), 532-539.
[http://dx.doi.org/10.1016/j.bmc.2012.10.046] [PMID: 23219856]
[48]
Ottaná, R.; Mazzon, E.; Dugo, L.; Monforte, F.; Maccari, R.; Sautebin, L.; De Luca, G.; Vigorita, M.G.; Alcaro, S.; Ortuso, F.; Caputi, A.P.; Cuzzocrea, S. Modeling and biological evaluation of 3,3′-(1,2-ethanediyl)bis[2-(4-methoxyphenyl)-thiazolidin-4-one], a new synthetic cyclooxygenase-2 inhibitor. Eur. J. Pharmacol., 2002, 448(1), 71-80.
[http://dx.doi.org/10.1016/S0014-2999(02)01888-5] [PMID: 12126974]
[49]
Maccari, R.; Vitale, R.M.; Ottanà, R.; Rocchiccioli, M.; Marrazzo, A.; Cardile, V.; Graziano, A.C.; Amodeo, P.; Mura, U.; Del Corso, A. Structure-activity relationships and molecular modelling of new 5-arylidene-4-thiazolidinone derivatives as aldose reductase inhibitors and potential anti-inflammatory agents. Eur. J. Med. Chem., 2014, 81, 1-14.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.003] [PMID: 24819954]
[50]
Nikalje, A.P.; Ansari, A.; Bari, S.; Ugale, V. Synthesis, biological activity, and docking study of novel isatin coupled thiazolidin-4-one derivatives as anticonvulsants. Arch. Pharm. (Weinheim), 2015, 348(6), 433-445.
[http://dx.doi.org/10.1002/ardp.201500020] [PMID: 25903766]
[51]
Dwivedi, J.; Devi, K.; Asmat, Y.; Jain, S.; Sharma, S. Synthesis, characterization, antibacterial and antiepileptic studies of some novel thiazolidinone derivatives. J. Saudi Chem. Soc., 2016, 20, S16-S20.
[http://dx.doi.org/10.1016/j.jscs.2012.09.001]
[52]
Iyer, P.; Bolla, J.; Kumar, V.; Gill, M.S.; Sobhia, M.E. In silico identification of targets for a novel scaffold, 2-thiazolylimino-5-benzylidin-thiazolidin-4-one. Mol. Divers., 2015, 19(4), 855-870.
[http://dx.doi.org/10.1007/s11030-015-9578-2] [PMID: 25894361]
[53]
Desai, N.; Rajpara, K.; Joshi, V.; Vaghani, H.; Satodiya, H.M. Synthesis and characterization of some new thiazole based thiazolidinone derivatives as potent antimicrobial and antimycobacterial agents. Antiinfect. Agents, 2012, 10, 75-86.
[http://dx.doi.org/10.2174/2211362611208020075]
[54]
Vicini, P.; Geronikaki, A.; Anastasia, K.; Incerti, M.; Zani, F. Synthesis and antimicrobial activity of novel 2-thiazolylimino-5-arylidene-4-thiazolidinones. Bioorg. Med. Chem., 2006, 14(11), 3859-3864.
[http://dx.doi.org/10.1016/j.bmc.2006.01.043] [PMID: 16488614]
[55]
Haroun, M.; Tratrat, C.; Tsolaki, E.; Geronikaki, A. Thiazole-based thiazolidinones as potent antimicrobial agents. design, synthesis and biological evaluation. Comb. Chem. High Throughput Screen., 2016, 19(1), 51-57.
[http://dx.doi.org/10.2174/1386207319666151203002348] [PMID: 26632442]
[56]
Haroun, M.; Tratrat, C.; Kositsi, K.; Tsolaki, E.; Petrou, A.; Aldhubiab, B.; Attimarad, M.; Harsha, S.; Geronikaki, A.; Venugopala, K.N.; Elsewedy, H.S.; Sokovic, M.; Glamoclija, J.; Ciric, A. New benzothiazole-based thiazolidinones as potent antimicrobial agents. design, synthesis and biological evaluation. Curr. Top. Med. Chem., 2018, 18(1), 75-87.
[http://dx.doi.org/10.2174/1568026618666180206101814] [PMID: 29412109]
[57]
Lagunin, A.; Stepanchikova, A.; Filimonov, D.; Poroikov, V. PASS: prediction of activity spectra for biologically active substances. Bioinformatics, 2000, 16(8), 747-748.
[http://dx.doi.org/10.1093/bioinformatics/16.8.747] [PMID: 11099264]
[58]
Ahmed, S.; Zayed, M.F.; El-Messery, S.M.; Al-Agamy, M.H.; Abdel-Rahman, H.M. Design, synthesis, antimicrobial evaluation and molecular modeling study of 1,2,4-triazole-based 4-thiazolidinones. Molecules, 2016, 21(5), 568.
[http://dx.doi.org/10.3390/molecules21050568] [PMID: 27144547]
[59]
Deep, A.; Jain, S.; Sharma, P.C.; Mittal, S.K.; Phogat, P.; Malhotra, M. Synthesis, characterization and antimicrobial evaluation of 2,5-disubstituted-4-thiazolidinone derivatives. Arab. J. Chem., 2014, 7(3), 287-291.
[http://dx.doi.org/10.1016/j.arabjc.2010.10.032]
[60]
Fuloria, N.; Fuloria, S.; Gupta, R. Synthesis and antimicrobial profile of newer schiff bases and thiazolidinone derivatives. world academy of science, engineering and technology, international journal of chemical, molecular, nuclear. Materials and Metallurgical Engineering, 2014, 8(12), 1329-1332.
[61]
Pham, D.T.; Vo, T.; Truong, P.; Ho, P.; Nguyen, M. Antimicrobial activity of some novel 2-(2-iodophenylimino)-5-arylidenethiazolidin-4-one derivatives. Asian Biomed., 2018, 11, 405-412.
[http://dx.doi.org/10.1515/abm-2018-0015]
[62]
Rudik, A.V.; Dmitriev, A.V.; Lagunin, A.A.; Filimonov, D.A.; Poroikov, V.V. PASS-based prediction of metabolites detection in biological systems. SAR QSAR Environ. Res., 2019, 30(10), 751-758.
[http://dx.doi.org/10.1080/1062936X.2019.1665099] [PMID: 31542944]
[63]
Geronikaki, A.A.; Dearden, J.C.; Filimonov, D.; Galaeva, I.; Garibova, T.L.; Gloriozova, T.; Krajneva, V.; Lagunin, A.; Macaev, F.Z.; Molodavkin, G.; Poroikov, V.V.; Pogrebnoi, S.I.; Shepeli, F.; Voronina, T.A.; Tsitlakidou, M.; Vlad, L. Design of new cognition enhancers: from computer prediction to synthesis and biological evaluation. J. Med. Chem., 2004, 47(11), 2870-2876.
[http://dx.doi.org/10.1021/jm031086k] [PMID: 15139765]
[64]
Stasevych, M.; Zvarych, V.; Lunin, V.; Deniz, N.G.; Gokmen, Z.; Akgun, O.; Ulukaya, E.; Poroikov, V.; Gloriozova, T.; Novikov, V. Computer-aided prediction and cytotoxicity evaluation of dithiocarbamates of 9,10-anthracenedione as new anticancer agents. SAR QSAR Environ. Res., 2017, 28(5), 355-366.
[http://dx.doi.org/10.1080/1062936X.2017.1323796] [PMID: 28524703]
[65]
Pogodin, P.V.; Lagunin, A.A.; Rudik, A.V.; Filimonov, D.A.; Druzhilovskiy, D.S.; Nicklaus, M.C.; Poroikov, V.V. How to achieve better results using pass-based virtual screening: case study for kinase inhibitors. Front Chem., 2018, 6(Article 133), 1-14.
[66]
Opentox. https://opentox.net/library/toxicity-prediction(Accessed on May 5th 2018)
[67]
ToxPredict. https://apps.ideaconsult.net/ToxPredict(Accessed on May 11th, 2018)
[68]
Protox. http://tox.charite.de/protox_II/(Accessed on May 11th 2018)
[70]
Emami, S.; Ghobadi, E.; Saednia, S.; Hashemi, S.M. Current advances of triazole alcohols derived from fluconazole: Design, in vitro and in silico studies. Eur. J. Med. Chem., 2019, 170, 173-194.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.020] [PMID: 30897396]
[71]
Friggeri, L.; Hargrove, T.Y.; Rachakonda, G.; Williams, A.D.; Wawrzak, Z.; Di Santo, R.; De Vita, D.; Waterman, M.R.; Tortorella, S.; Villalta, F.; Lepesheva, G.I. Structural basis for rational design of inhibitors targeting Trypanosoma cruzi sterol 14α-demethylase: two regions of the enzyme molecule potentiate its inhibition. J. Med. Chem., 2014, 57(15), 6704-6717.
[http://dx.doi.org/10.1021/jm500739f] [PMID: 25033013]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 2
Year: 2020
Published on: 07 April, 2020
Page: [126 - 140]
Pages: 15
DOI: 10.2174/1386207323666200127115238
Price: $65

Article Metrics

PDF: 21
HTML: 3