1, 1’-Sulfinyldiethylammonium Bis (Hydrogen Sulfate) as a Recyclable Dicationic Ionic Liquid Catalyst for the Efficient Solvent-free Synthesis of 3, 4-Dihydropyrimidin-2(1H)-ones via Biginelli Reaction

Author(s): Zainab Ehsani-Nasab, Ali Ezabadi*

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 23 , Issue 2 , 2020

Become EABM
Become Reviewer

Abstract:

Objective: A facile and efficient method for synthesis of 3, 4-dihydropyrimidin-2(1H)-ones via Biginelli reaction catalyzed by a novel dicationic Brönsted acidic ionic liquid, [(EtNH2)2SO][HSO4]2, has been successfully developed.

Materials and Methods: 3, 4-Dihydropyrimidin-2(1H)-ones were synthesized through one-pot condensation of aromatic aldehydes, ethyl acetoacetate, and urea under solvent-free conditions using [(EtNH2)2SO][HSO4]2 as a novel catalyst. The progress of the reaction was monitored by thin-layer chromatography (ethyl acetate / n-hexane = 1 / 5). The products have been characterized by IR, 1H NMR, 13C NMR, and also by their melting points.

Results: In this research, a library of dihydropyrimidinone derivatives was synthesized via Biginelli reaction under solvent-free conditions at 120oC using [(EtNH2)2SO][HSO4]2 as a catalyst. Various aromatic aldehydes, as well as heteroaromatic aldehydes, were employed, affording good to high yields of the corresponding products and illustrating the substrate generality of the present method. In addition, the prepared dicationic Brönsted acidic ionic liquid can be easily recovered and reused.

Conclusion: 1, 1’-Sulfinyldiethylammonium bis (hydrogen sulfate), as a novel dicationic ionic liquid, can act as a highly efficient catalyst for the synthesis of 3, 4-dihydropyrimidin-2(1H)-ones under solvent-free conditions.

Keywords: Dicationic ionic liquid, solvent-free conditions, catalyst, 3, 4-dihydropyrimidin-2(1H)-ones, three-component condensation, Brönsted acidic ionic liquid.

[1]
Ghandi, K. A review of ionic liquids, their limits and applications. Green Sustainable Chem., 2014, 4, 44.
[http://dx.doi.org/10.4236/gsc.2014.41008]
[2]
Guo, F.; Zhang, S.; Wang, J.; Teng, B.; Zhang, T.; Fan, M. Synthesis and applications of ionic liquids in clean energy and environment: a review. Curr. Org. Chem., 2015, 19, 455-468.
[http://dx.doi.org/10.2174/1385272819666150114235649] [PMID: ]
[3]
Lei, Z.; Chen, B.; Koo, Y-M.; MacFarlane, D.R. Introduction: Ionic Liquids; ACS Publications, 2017.
[http://dx.doi.org/10.1093/med/9780198784975.003.0001]
[4]
Parveen, M.; Azaz, S.; Malla, A.M.; Ahmad, F.; da Silva, P.S.P.; Silva, M.R. Solvent-free, [Et3NH][HSO4] catalyzed facile synthesis of hydrazone derivatives. New J. Chem., 2015, 39, 469-481.
[http://dx.doi.org/10.1039/C4NJ01666A]
[5]
Amarasekara, A.S. Acidic ionic liquids. Chem. Rev., 2016, 116(10), 6133-6183.
[http://dx.doi.org/10.1021/acs.chemrev.5b00763] [PMID: 27175515]
[6]
Jordan, A.; Gathergood, N. Biodegradation of ionic liquids--a critical review. Chem. Soc. Rev., 2015, 44(22), 8200-8237.
[http://dx.doi.org/10.1039/C5CS00444F] [PMID: 26239761]
[7]
Khan, A.S.; Man, Z.; Bustam, M.A.; Nasrullah, A.; Ullah, Z.; Sarwono, A.; Shah, F.U.; Muhammad, N. Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids. Carbohydr. Polym., 2018, 181, 208-214.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.064] [PMID: 29253965]
[8]
Sardar, S.; Wilfred, C.D.; Mumtaz, A.; Rashid, Z.; Leveque, J-M. Synthesis, thermophysical properties, Hammett acidity and COSMO-RS study of camphorsulfonate-based Brönsted acidic ionic liquids. J. Mol. Liq., 2018, 271, 621-630.
[http://dx.doi.org/10.1016/j.molliq.2018.09.024]
[9]
Vafaeezadeh, M.; Alinezhad, H. Brønsted acidic ionic liquids: Green catalysts for essential organic reactions. J. Mol. Liq., 2016, 218, 95-105.
[http://dx.doi.org/10.1016/j.molliq.2016.02.017]
[10]
Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq., 2017, 227, 44-60.
[http://dx.doi.org/10.1016/j.molliq.2016.11.123]
[11]
Yue, C.; Fang, D.; Liu, L.; Yi, T-F. Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. J. Mol. Liq., 2011, 163, 99-121.
[http://dx.doi.org/10.1016/j.molliq.2011.09.001]
[12]
Baghban, A.; Doustkhah, E.; Rostamnia, S. Catalytic behavior of perchloric acid on silica mesoporous SBA-15 as a green heterogeneous Bronsted acid in heterocyclic multicomponent reactions. Int. Nano Lett., 2018, 8(1), 41-47.
[http://dx.doi.org/10.1007/s40089-018-0231-9]
[13]
Beichel, W.; Panzer, J.M.; Hätty, J.; Ye, X.; Himmel, D.; Krossing, I. Straightforward synthesis of the Brønsted acid hfipOSO3H and its application for the synthesis of protic ionic liquids. Angew. Chem. Int. Ed. Engl., 2014, 53(26), 6637-6640.
[http://dx.doi.org/10.1002/anie.201402577] [PMID: 24862292]
[14]
Lunagariya, J.; Dhar, A.; Vekariya, R.L. Efficient esterification of n-butanol with acetic acid catalyzed by the Brönsted acidic ionic liquids: influence of acidity. RSC Advances, 2017, 7(9), 5412-5420.
[http://dx.doi.org/10.1039/C6RA26722J]
[15]
Matsagar, B.M.; Dhepe, P.L. Effects of cations, anions and H+ concentration of acidic ionic liquids on the valorization of polysaccharides into furfural. New J. Chem., 2017, 41(14), 6137-6144.
[http://dx.doi.org/10.1039/C7NJ00342K]
[16]
Sarma, P.; Dutta, A.K.; Borah, R. Design and exploration of–SO3H group functionalized Brønsted acidic ionic liquids (BAILs) as task-specific catalytic systems for organic reactions: A review of literature. Catal. Surv. Asia, 2017, 21(2), 70-93.
[http://dx.doi.org/10.1007/s10563-017-9227-0]
[17]
Shiwei, L.; Congxia, X.; Shitao, Y.; Mo, X.; Fusheng, L. A Brønsted-Lewis acidic ionic liquid: its synthesis and use as the catalyst in rosin dimerization. Chin. J. Catal., 2009, 30(5), 401-406.
[http://dx.doi.org/10.1016/S1872-2067(08)60109-6]
[18]
Vafaeezadeh, M.; Karbalaie-Reza, M.; Hashemi, M.M.; Soleimany, K.Q. Surfactant-like Brønsted acidic ionic liquid as an efficient catalyst for selective Mannich reaction and biodiesel production in water. J. Iran. Chem. Soc., 2017, 14(4), 907-914.
[http://dx.doi.org/10.1007/s13738-016-1036-2]
[19]
Zhang, H.; Li, H.; Pan, H.; Liu, X.; Yang, K.; Huang, S.; Yang, S. Efficient production of biodiesel with promising fuel properties from Koelreuteria integrifoliola oil using a magnetically recyclable acidic ionic liquid. Energy Convers. Manage., 2017, 138, 45-53.
[http://dx.doi.org/10.1016/j.enconman.2017.01.060]
[20]
Talebi, M.; Patil, R.A.; Armstrong, D.W. Physicochemical properties of branched-chain dicationic ionic liquids. J. Mol. Liq., 2018, 256, 247-255.
[http://dx.doi.org/10.1016/j.molliq.2018.02.016]
[21]
Steudte, S.; Bemowsky, S.; Mahrova, M.; Bottin-Weber, U.; Tojo-Suarez, E.; Stepnowski, P.; Stolte, S. Toxicity and biodegradability of dicationic ionic liquids. RSC Advances, 2014, 4, 5198-5205.
[http://dx.doi.org/10.1039/c3ra45675g]
[22]
Lohar, T.; Kumbhar, A.; Barge, M.; Salunkhe, R. DABCO functionalized dicationic ionic liquid (DDIL): A novel green benchmark in multicomponent synthesis of heterocyclic scaffolds under sustainable reaction conditions. J. Mol. Liq., 2016, 224, 1102-1108.
[http://dx.doi.org/10.1016/j.molliq.2016.10.039]
[23]
Zhang, H.; Li, M.; Yang, B. Design, synthesis, and analysis of thermophysical properties for imidazolium-based geminal dicationic ionic liquids. J. Phys. Chem. C, 2018, 122(5), 2467-2474.
[http://dx.doi.org/10.1021/acs.jpcc.7b09315]
[24]
Khan, A.S.; Man, Z.; Arvina, A.; Bustam, M.A.; Nasrullah, A.; Ullah, Z.; Sarwono, A.; Muhammad, N. Dicationic imidazolium based ionic liquids: Synthesis and properties. J. Mol. Liq., 2017, 227, 98-105.
[http://dx.doi.org/10.1016/j.molliq.2016.11.131]
[25]
Patil, R.A.; Talebi, M.; Berthod, A.; Armstrong, D.W. Dicationic ionic liquid thermal decomposition pathways. Anal. Bioanal. Chem., 2018, 410(19), 4645-4655.
[http://dx.doi.org/10.1007/s00216-018-0878-0] [PMID: 29380017]
[26]
Patil, R.A.; Talebi, M.; Sidisky, L.M.; Armstrong, D.W. Examination of selectivities of thermally stable geminal dicationic ionic liquids by structural modification. Chromatographia, 2017, 80(10), 1563-1574.
[http://dx.doi.org/10.1007/s10337-017-3372-5]
[27]
Guglielmero, L.; Mezzetta, A.; Guazzelli, L.; Pomelli, C.S.; D’Andrea, F.; Chiappe, C. Systematic synthesis and properties evaluation of dicationic ionic liquids, and a glance into a potential new field. Front Chem., 2018, 6, 612.
[http://dx.doi.org/10.3389/fchem.2018.00612] [PMID: 30619821]
[28]
Jauk, B.; Pernat, T.; Kappe, C. Design and synthesis of a conformationally rigid mimic of the dihydropyrimidine calcium channel modulator SQ 32,926. Molecules, 2000, 5, 227-239.
[http://dx.doi.org/10.3390/50300227]
[29]
Yu, Y.; Liu, D.; Liu, C.; Luo, G. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using chloroacetic acid as catalyst. Bioorg. Med. Chem. Lett., 2007, 17(12), 3508-3510.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.068] [PMID: 17490874]
[30]
Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type--a literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[31]
Bahekar, S.S.; Shinde, D.B. Synthesis and anti-inflammatory activity of some [2-amino-6-(4-substituted aryl)-4-(4-substituted phenyl)-1,6-dihydropyrimidine-5-yl]-acetic acid derivatives. Acta Pharm., 2003, 53(3), 223-229.
[PMID: 14769245]
[32]
Kappe, C.O. A reexamination of the mechanism of the Biginelli dihydropyrimidine synthesis. Support for an N-acyliminium ion intermediate1. J. Org. Chem., 1997, 62(21), 7201-7204.
[http://dx.doi.org/10.1021/jo971010u] [PMID: 11671828]
[33]
Atwal, K.S.; Swanson, B.N.; Unger, S.E.; Floyd, D.M.; Moreland, S.; Hedberg, A.; O’Reilly, B.C. Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J. Med. Chem., 1991, 34(2), 806-811.
[http://dx.doi.org/10.1021/jm00106a048] [PMID: 1995904]
[34]
Brands, M.; Endermann, R.; Gahlmann, R.; Krüger, J.; Raddatz, S. Dihydropyrimidinones--a new class of anti-staphylococcal antibiotics. Bioorg. Med. Chem. Lett., 2003, 13(2), 241-245.
[http://dx.doi.org/10.1016/S0960-894X(02)00880-6] [PMID: 12482431]
[35]
Tozkoparan, B.; Ertan, M.; Kelicen, P.; Demirdamar, R. Synthesis and anti-inflammatory activities of some thiazolo[3,2-a]pyrimidine derivatives. Farmaco, 1999, 54(9), 588-593.
[http://dx.doi.org/10.1016/S0014-827X(99)00068-3] [PMID: 10555260]
[36]
Grover, G.J.; Dzwonczyk, S.; McMullen, D.M.; Normandin, D.E.; Parham, C.S.; Sleph, P.G.; Moreland, S. Pharmacologic profile of the dihydropyrimidine calcium channel blockers SQ 32,547 and SQ 32,926 [correction of SQ 32,946]. J. Cardiovasc. Pharmacol., 1995, 26(2), 289-294. [correction of SQ 32,946].
[http://dx.doi.org/10.1097/00005344-199508000-00015] [PMID: 7475054]
[37]
Maiti, G.; Kundu, P.; Guin, C. One-pot synthesis of dihydropyrimidinones catalysed by lithium bromide: an improved procedure for the Biginelli reaction. Tetrahedron Lett., 2003, 44, 2757-2758.
[http://dx.doi.org/10.1016/S0040-4039(02)02859-9]
[38]
Haggarty, S.J.; Mayer, T.U.; Miyamoto, D.T.; Fathi, R.; King, R.W.; Mitchison, T.J.; Schreiber, S.L. Dissecting cellular processes using small molecules: identification of colchicine-like, taxol-like and other small molecules that perturb mitosis. Chem. Biol., 2000, 7(4), 275-286.
[http://dx.doi.org/10.1016/S1074-5521(00)00101-0] [PMID: 10780927]
[39]
Khorshidi, A.; Tabatabaeian, K.; Azizi, H.; Aghaei-Hashjin, M.; Abbaspour-Gilandeh, E. Efficient one-pot synthesis of 3, 4-dihydropyrimidin-2(1H)-ones catalyzed by a new heterogeneous catalyst based on co-functionalized Na+-montmorillonite. RSC Advances, 2017, 7, 17732-17740.
[http://dx.doi.org/10.1039/C7RA00794A]
[40]
Kumar, D.; Mishra, B.G.; Rao, V.S. An environmentally benign protocol for the synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones using solid acid catalysts under solvent-free conditions. Indian J. Chem., 2006, 45B, 2325-2329.
[41]
Debache, A.; Amimour, M.; Belfaitah, A.; Rhouati, S.; Carboni, B. A one-pot Biginelli synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones/thiones catalyzed by triphenylphosphine as Lewis base. Tetrahedron Lett., 2008, 49, 6119-6121.
[http://dx.doi.org/10.1016/j.tetlet.2008.08.016]
[42]
Sharma, U.K.; Sharma, N.; Kumar, R.; Sinha, A.K. Biocatalysts for multicomponent Biginelli reaction: bovine serum albumin triggered waste-free synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Amino Acids, 2013, 44(3), 1031-1037.
[http://dx.doi.org/10.1007/s00726-012-1437-1] [PMID: 23247925]
[43]
Nagarajaiah, H.; Mukhopadhyay, A.; Moorthy, J.N. Biginelli reaction: an overview. Tetrahedron Lett., 2016, 57, 5135-5149.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.047]
[44]
Kappe, C.O. Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc. Chem. Res., 2000, 33(12), 879-888.
[http://dx.doi.org/10.1021/ar000048h] [PMID: 11123887]
[45]
Patil, R.V.; Chavan, J.U.; Dalal, D.S.; Shinde, V.S.; Beldar, A.G. Biginelli reaction: polymer supported catalytic approaches. ACS Comb. Sci., 2019, 21(3), 105-148.
[http://dx.doi.org/10.1021/acscombsci.8b00120] [PMID: 30645098]
[46]
Biginelli, P. Aldehyde-urea derivatives of aceto-and oxaloacetic acids. Gazz. Chim. Ital., 1893, 23, 360-413.
[47]
Dong, F.; Jun, L.; Xinli, Z.; Zhiwen, Y.; Zuliang, L. One-pot green procedure for Biginelli reaction catalyzed by novel task-specific room-temperature ionic liquids. J. Mol. Catal. Chem., 2007, 274, 208-211.
[http://dx.doi.org/10.1016/j.molcata.2007.05.014]
[48]
Selvakumar, K.; Shanmugaprabha, T.; Kumaresan, M.; Sami, P. Heteropoly acid supported on activated natural clay-catalyzed synthesis of 3, 4-dihydropyrimidinones/thiones through Biginelli reaction under solvent-free conditions. Synth. Commun., 2018, 48, 223-232.
[http://dx.doi.org/10.1080/00397911.2017.1396614]
[49]
Parthiban, D.; Karunakaran, R.J.; Magesh, C.J. The recyclable bronsted acidic liquid resin mediated eco-benign synthesis of 3, 4-dihydropyrimidine-2(1h)-ones and 3, 4-dihydropyrimidin-2 (1H)-thiones via Biginelli reaction. Int. Res. J. Pure Appl. Chem., 2018, 16, 1-10.
[http://dx.doi.org/10.9734/IRJPAC/2018/40035]
[50]
Yao, N.; Lu, M.; Liu, X.B.; Tan, J.; Hu, Y.L. Copper-doped mesoporous silica supported dual acidic ionic liquid as an efficient and cooperative reusability catalyst for Biginelli reaction. J. Mol. Liq., 2018, 262, 328-335.
[http://dx.doi.org/10.1016/j.molliq.2018.04.121]
[51]
Tayebee, R.; Ghadamgahi, M. Solvent free one-pot multi-component synthesis of 3, 4-dihydropyrimidin-2(1H)-ones catalyzed by mesoporous NH4H2PO4/MCM-41 as an environmentally friendly, cheap, and effective catalyst. Arab. J. Chem., 2017, 10, S757-S764.
[http://dx.doi.org/10.1016/j.arabjc.2012.12.001]
[52]
Mansoor, S.S.; Logaiya, K.; Aswin, K.; Sudhan, P.N. An appropriate one-pot synthesis of 3, 4-dihydropyrano[c]chromenes and 6-amino-5-cyano-4-aryl-2-methyl-4 H-pyrans with thiourea dioxide as an efficient, reusable organic catalyst in aqueous medium. J. Taibah Univ. Sci., 2015, 9, 213-226.
[http://dx.doi.org/10.1016/j.jtusci.2014.09.008]
[53]
Kiyani, H.; Ghiasi, M. Phthalimide-N-sulfonic acid: a new and efficient organocatalyst for the Biginelli reaction under solvent-free conditions. Res. Chem. Intermed., 2015, 41, 6635-6648.
[http://dx.doi.org/10.1007/s11164-014-1766-7]
[54]
Wang, M.; Song, J-L.; Zhao, S.; Wan, X. Synthesis of 3, 4-dihydropyrimidin-2(1H)-ones using sodium bisulfate as a catalyst under solvent-free conditions. Org. Prep. Proced. Int., 2014, 46, 457-462.
[http://dx.doi.org/10.1080/00304948.2014.944407]
[55]
Sumathi, S.; Buvaneswari, G. Room temperature synthesis of 3, 4-dihydropyrimidin-2(1H)-one using apatite like oxyphosphate. Inorg. Nano-Met. Chem, 2017, 47, 961-965.
[56]
Zhang, L.; Wang, C.; Tai, Y.; Lv, C. Graphene-supported NiBr2: A highly efficient and reusable catalyst for the Biginelli reaction. Fuller. Nanotub. Car. N., 2016, 24, 757-761.
[http://dx.doi.org/10.1080/1536383X.2016.1230100]
[57]
Tajbakhsh, M.; Ranjbar, Y.; Masuodi, A.; Khaksar, S. A simple and environmentally benign protocol for Biginelli reactions catalyzed by silica-bonded S-sulfonic acid. Chin. J. Catal., 2012, 33, 1542-1545.
[http://dx.doi.org/10.1016/S1872-2067(11)60432-4]
[58]
Liu, X.; Lu, M.; Lu, T.; Mai, C. An efficient protocol for the synthesis of 3, 4-dihydropyrimidine-2-(1H)-ones catalyzed by functionalized ionic liquid [DDPA][HSO4]. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2011, 38, 263-269.
[59]
Kefayati, H.; Asghari, F.; Khanjanian, R. 1-Methylimidazolium hydrogen sulfate/chlorotrimethylsilane: an effective catalytic system for the synthesis of 3, 4-dihydropyrimidin-2(1H)-ones and hydroquinazoline-2, 5-diones. J. Mol. Liq., 2012, 172, 147-151.
[http://dx.doi.org/10.1016/j.molliq.2012.01.019]
[60]
Pourjavadi, A.; Hosseini, S.H.; Soleyman, R. Crosslinked poly (ionic liquid) as high loaded dual acidic organocatalyst. J. Mol. Catal. Chem., 2012, 365, 55-59.
[http://dx.doi.org/10.1016/j.molcata.2012.08.008]
[61]
Hajipour, A.R.; Seddighi, M. Pyridinium-based brønsted acidic ionic liquid as a highly efficient catalyst for one-pot synthesis of dihydropyrimidinones. Synth. Commun., 2012, 42, 227-235.
[http://dx.doi.org/10.1080/00397911.2010.523488]
[62]
Dam, B.; Pal, A.K.; Gupta, A. Nano-Fe3O4@silica sulfuric acid as a reusable and magnetically separable potent solid acid catalyst in Biginelli-type reaction for the one-pot multicomponent synthesis of fused dihydropyrimidine derivatives: A greener NOSE and SFRC approach. Synth. Commun., 2016, 46, 275-286.
[http://dx.doi.org/10.1080/00397911.2015.1135955]
[63]
Chen, X.; Peng, Y. Chloroferrate (III) ionic liquid: efficient and recyclable catalyst for solvent-free synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones. Catal. Lett., 2008, 122, 310-313.
[http://dx.doi.org/10.1007/s10562-007-9377-1]
[64]
Zhu, A.; Li, Q.; Li, L.; Wang, J. One-pot synthesis of 3, 4-dihydro-2(H)-pyrimidinones catalyzed by reusable acidic choline-based ionic liquids. Catal. Lett., 2013, 143, 463-468.
[http://dx.doi.org/10.1007/s10562-013-0978-6]
[65]
Khabazzadeh, H.; Kermani, E.T.; Jazinizadeh, T. An efficient synthesis of 3, 4-dihydropyrimidin-2(1H)-ones catalyzed by molten [Et3NH]. [HSO4]. Arab. J. Chem., 2012, 5, 485-488.
[http://dx.doi.org/10.1016/j.arabjc.2010.09.015]
[66]
Nemati, F.; Alizadeh, S.G. Bi-SO3H functionalized ionic liquid based on DABCO: new and efficient catalyst for facile synthesis of dihydropyrimidinones. J. Chem., 2013, 2013Article ID 235818
[http://dx.doi.org/10.1155/2013/235818]
[67]
Murthy, Y.L.N.; Rajack, A.; Yuvaraj, K. Solvent free synthesis of 3, 4-dihydropyrimidine-2-(1H)-ones/thiones catalyzed by N, O-bis(trimethylsilyl)acetamide and dicyclohexyl carbodimide. Arab. J. Chem., 2016, 9, S1740-S1746.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.046]
[68]
Kadam, N.D.; Jayaram, R.V. Poly ethylene glycol based dicationic acidic ionic liquid [PEG-DAIL][CL] used as cost effective and recyclable catalyst for Biginelli reactions. Curr. Catal., 2018, 7, 52-59.
[http://dx.doi.org/10.2174/2211544706666170720102644]
[69]
Quan, Z-J.; Da, Y-X.; Zhang, Z.; Wang, X-C. PS-PEG-SO3H as an efficient catalyst for 3, 4-dihydropyrimidones via Biginelli reaction. Catal. Commun., 2009, 10, 1146-1148.
[http://dx.doi.org/10.1016/j.catcom.2008.12.017]
[70]
Kumar, K.A.; Kasthuraiah, M.; Reddy, C.S.; Reddy, C.D. Mn(OAc)3.2H2O-mediated three-component, one-pot, condensation reaction: an efficient synthesis of 4-aryl-substituted 3, 4-dihydropyrimidin-2-ones. Tetrahedron Lett., 2001, 42, 7873-7875.
[http://dx.doi.org/10.1016/S0040-4039(01)01603-3]
[71]
Debache, A.; Boulcina, R.; Tafer, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. Ca(NO3)2.4H2O-catalysed Biginelli reaction: One-pot synthesis of 1, 2, 3, 4-tetrahydropyrimidin-2-ones/pyrimidine-2-thiones under solvent-free conditions. Chin. J. Chem., 2008, 26, 2112-2116.
[http://dx.doi.org/10.1002/cjoc.200890377]
[72]
Valizadeh, H.; Shockravi, A. Imidazolium-based phosphinite ionic liquid as reusable catalyst and solvent for one-pot synthesis of 3, 4-dihydropyrimidin-2(1H)-(thio) ones. Heteroatom Chem., 2009, 20, 284-288.
[http://dx.doi.org/10.1002/hc.20549]
[73]
Ranu, B.C.; Hajra, A.; Jana, U. Indium(III) chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a three-component coupling of 1,3-dicarbonyl compounds, aldehydes, and urea: an improved procedure for the Biginelli reaction. J. Org. Chem., 2000, 65(19), 6270-6272.
[http://dx.doi.org/10.1021/jo000711f] [PMID: 10987976]
[74]
Yuan, H.; Zhang, K.; Xia, J.; Hu, X.; Yuan, S. Gallium(III) chloride-catalyzed synthesis of 3, 4-dihydropyrimidinones for Biginelli reaction under solvent-free conditions. Cogent Chem., 2017, 31318692
[http://dx.doi.org/10.1080/23312009.2017.1318692]
[75]
Su, W.; Li, J.; Zheng, Z.; Shen, Y. One-pot synthesis of dihydropyrimidiones catalyzed by strontium(II)triflate under solvent-free conditions. Tetrahedron Lett., 2005, 46, 6037-6040.
[http://dx.doi.org/10.1016/j.tetlet.2005.07.021]
[76]
Roy, S.R.; Jadhavar, P.S.; Seth, K.; Sharma, K.K.; Chakraborti, A.K. Organocatalytic application of ionic liquids: [bmim][MeSO4] as a recyclable organocatalyst in the multicomponent reaction for the preparation of dihydropyrimidinones and-thiones. Synthesis, 2011, 2011, 2261-2267.
[http://dx.doi.org/10.1055/s-0030-1260067]
[77]
Asghari, S.; Tajbakhsh, M.; Kenari, B.J.; Khaksar, S. Supramolecular synthesis of 3, 4-dihydropyrimidine-2(1H)-one/thiones under neat conditions. Chin. Chem. Lett., 2011, 22, 127-130.
[http://dx.doi.org/10.1016/j.cclet.2010.09.030]
[78]
Sajjadifar, S.; Rezaee Nezhad, E.; Darvishi, G. 1-methyl-3-(2-(sulfooxy)ethyl)-1H-imidazol-3-ium chloride as a new and green ionic liquid catalyst for one-pot synthesis of dihydropyrimidinones under solvent-free condition. J. Chem., 2012, 2013Article ID 834656
[79]
Peng, H.; Hu, Y.; Xing, R.; Fang, D. Synthesis of 3, 4-dihydropyrimidin-2(1H)-one via one-pot Biginelli reaction under solvent-free conditions. Monatsh. Chem., 2015, 146, 2053-2058.
[http://dx.doi.org/10.1007/s00706-015-1505-9]
[80]
Li, M.; Guo, W-S.; Wen, L-R.; Li, Y-F.; Yang, H-Z. One-pot synthesis of Biginelli and Hantzsch products catalyzed by non-toxic ionic liquid (BMImSac) and structural determination of two products. J. Mol. Catal. Chem., 2006, 258(1-2), 133-138.
[http://dx.doi.org/10.1016/j.molcata.2006.05.028]
[81]
Kargar, M.; Hekmatshoar, R.; Mostashari, A.; Hashemi, Z. Efficient and green synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones/thiones using imidazol-1-yl-acetic acid as a novel, reusable and water-soluble organocatalyst. Catal. Commun., 2011, 15(1), 123-126.
[http://dx.doi.org/10.1016/j.catcom.2011.08.022]
[82]
Sabitha, G.; Reddy, G.K.K.; Reddy, K.B.; Yadav, J. Vanadium (III) chloride catalyzed Biginelli condensation: solution phase library generation of dihydropyrimidin-(2H)-ones. Tetrahedron Lett., 2003, 44(34), 6497-6499.
[http://dx.doi.org/10.1016/S0040-4039(03)01564-8]
[83]
Gore, S.; Baskaran, S.; Koenig, B. Efficient synthesis of 3, 4-dihydropyrimidin-2-ones in low melting tartaric acid–urea mixtures. Green Chem., 2011, 13(4), 1009-1013.
[http://dx.doi.org/10.1039/c1gc00009h]
[84]
Shaterian, H.R.; Hosseinian, A.; Ghashang, M.; Khorami, F. N. Al (HSO4)3 and Al2O3-SO3H as efficient catalysts for modified preparation of 3, 4-dihydropyrimidin-2(1H)-ones/thiones. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(9), 2333-2338.
[http://dx.doi.org/10.1080/10426500802454144]
[85]
Wang, X.; Quan, Z.; Wang, F.; Wang, M.; Zhang, Z.; Li, Z. PEG‐SO3H as catalyst for 3, 4‐dihydropyrimidones via Biginelli reaction under microwave and solvent‐free conditions. Synth. Commun., 2006, 36(4), 451-456.
[http://dx.doi.org/10.1080/00397910500383519]
[86]
Shen, Z-L.; Xu, X-P.; Ji, S-J. Brønsted base-catalyzed one-pot three-component Biginelli-type reaction: an efficient synthesis of 4,5,6-triaryl-3,4-dihydropyrimidin-2(1H)-one and mechanistic study. J. Org. Chem., 2010, 75(4), 1162-1167.
[http://dx.doi.org/10.1021/jo902394y] [PMID: 20085235]
[87]
Chavan, S.S.; Sharma, Y.O.; Degani, M.S. Cost-effective ionic liquid for environmentally friendly synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones. Green Chem. Lett. Rev., 2009, 2(3), 175-179.
[http://dx.doi.org/10.1080/17518250903252260]
[88]
Ghorbani-Choghamarani, A.; Zamani, P. Three component reactions: An efficient and green synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones and thiones using silica gel-supported l-pyrrolidine-2-carboxylic acid-4-hydrogen sulfate. Chin. Chem. Lett., 2013, 24(9), 804-808.
[http://dx.doi.org/10.1016/j.cclet.2013.05.033]
[89]
Bashti, A.; Kiasat, A. Biginelli multicomponent condensation Reaction promoted by 4, 4ʹ-bipyridinium dichloride ordered mesoporous silica nanocomposite under solvent free conditions. Org. Chem. Res., 2016, 2(1), 28-38.
[90]
Jetti, S.R.; Verma, D.; Jain, S. 3-[(3-(Trimethoxysilyl)propyl)thio] propane-1-oxy-sulfonic acid: An efficient recyclable heterogeneous catalyst for the synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones/thiones. Arab. J. Chem., 2017, 10, S3184-S3189.
[http://dx.doi.org/10.1016/j.arabjc.2013.12.012]
[91]
Mahdavinia, G.H.; Sepehrian, H. MCM-41 anchored sulfonic acid (MCM-41-R-SO3H): a mild, reusable and highly efficient heterogeneous catalyst for the Biginelli reaction. Chin. Chem. Lett., 2008, 19(12), 1435-1439.
[http://dx.doi.org/10.1016/j.cclet.2008.09.028]
[92]
Liu, Z.; Ma, R.; Cao, D.; Liu, C. New efficient synthesis of 3, 4-dihydropyrimidin-2(1H)-ones catalyzed by benzotriazolium-based ionic liquids under solvent-free conditions. Molecules, 2016, 21(4), 462.
[http://dx.doi.org/10.3390/molecules21040462] [PMID: 27070558]
[93]
Kiyani, H.; Ghiasi, M. Solvent-free efficient one-pot synthesis of Biginelli and Hantzsch compounds catalyzed by potassium phthalimide as a green and reusable organocatalyst. Res. Chem. Intermed., 2015, 41(8), 5177-5203.
[http://dx.doi.org/10.1007/s11164-014-1621-x]
[94]
Hassanpour, A.; Khanmiri, R.H.; Abolhasani, J. ZnO nanoparticles as an efficient, heterogeneous, reusable, and ecofriendly catalyst for one-pot, three-component synthesis of 3, 4-dihydropyrimidin-2(1H)-(thio) one derivatives in water. Synth. Commun., 2015, 45(6), 727-733.
[http://dx.doi.org/10.1080/00397911.2014.987350]
[95]
Attri, P.; Bhatia, R.; Gaur, J.; Arora, B.; Gupta, A.; Kumar, N.; Choi, E.H. Triethylammonium acetate ionic liquid assisted one-pot synthesis of dihydropyrimidinones and evaluation of their antioxidant and antibacterial activities. Arab. J. Chem., 2017, 10(2), 206-214.
[http://dx.doi.org/10.1016/j.arabjc.2014.05.007]
[96]
Kolosov, M.A.; Orlov, V.D.; Beloborodov, D.A.; Dotsenko, V.V. A chemical placebo: NaCl as an effective, cheapest, non-acidic and greener catalyst for Biginelli-type 3,4-dihydropyrimidin-2(1H)-ones (-thiones) synthesis. Mol. Divers., 2009, 13(1), 5-25.
[http://dx.doi.org/10.1007/s11030-008-9094-8] [PMID: 19082754]
[97]
Ehsani-Nasab, Z.; Ezabadi, A. Preparation and characterization of a novel room temperature dicationic ionic liquid and its application in the synthesis of xanthenediones under solvent-free conditions. Comb. Chem. High Throughput Screen., 2018, 21(8), 602-608.
[http://dx.doi.org/10.2174/1386207321666181106114848] [PMID: 30398113]
[98]
Salami, M.; Ezabadi, A. A caffeine-based ionic liquid as a novel and eco-friendly catalyst for the synthesis of 1, 8-dioxo-octahydroxanthenes under solvent-free conditions. Res. Chem. Intermed., 2019, 45, 3673-3686.
[http://dx.doi.org/10.1007/s11164-019-03814-3]
[99]
Piralghar, Z.A.; Hashemi, M.M.; Ezabadi, A. Synthesis and characterization of a novel ionic liquid Based on N, N, N, N-tetramethylethylenediamine and its application in the synthesis of 1, 8-dioxo-octahydro Xanthenes. Comb. Chem. High Throughput Screen., 2018, 21(7), 526-532.
[http://dx.doi.org/10.2174/1386207321666180828092546] [PMID: 30152280]
[100]
Abdi Piralghar, Z.; Hashemi, M.M.; Ezabadi, A. Synthesis and characterization of Brönsted acidic ionic liquid based on ethylamine as an efficient catalyst for the synthesis of xanthene derivatives under solvent-free conditions. Polycycl. Aromat. Compd., 2019, 2019, 1-14.
[http://dx.doi.org/10.1080/10406638.2018.1557709]
[101]
Ghorbani-Choghamarani, A.; Taghipour, T.; Azadi, G. One-pot, green and efficient synthesis of 3, 4-dihydropyrimidin-2(1H)-ones or thiones catalyzed by citric acid. J. Chin. Chem. Soc. (Taipei), 2013, 60, 1202-1206.
[http://dx.doi.org/10.1002/jccs.201300118]
[102]
Sharma, N.; Sharma, U.K.; Kumar, R.; Sinha, A.K. others, Green and recyclable glycine nitrate (GlyNO3) ionic liquid triggered multicomponent Biginelli reaction for the efficient synthesis of dihydropyrimidinones. RSC Advances, 2012, 2, 10648-10651.
[http://dx.doi.org/10.1039/c2ra22037g]
[103]
Zhang, Q.; Wang, X.; Li, Z.; Wu, W.; Liu, J.; Wu, H.; Cui, S.; Guo, K. Phytic acid: a biogenic organocatalyst for one-pot Biginelli reactions to 3, 4-dihydropyrimidin-2 (1 H)-ones/thiones. RSC Advances, 2014, 4, 19710-19715.
[http://dx.doi.org/10.1039/C4RA02084G]
[104]
Sharma, N.; Sharma, U.K.; Kumar, R.; Sinha, A.K. Green and recyclable glycine nitrate (GlyNO3) ionic liquid triggered multicomponent Biginelli reaction for the efficient synthesis of dihydropyrimidinones. RSC Advances, 2012, 2(28), 10648-10651.
[http://dx.doi.org/10.1039/c2ra22037g]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 2
Year: 2020
Published on: 07 April, 2020
Page: [157 - 167]
Pages: 11
DOI: 10.2174/1386207323666200127113743
Price: $65

Article Metrics

PDF: 14
HTML: 3
EPUB: 2