Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

A Review of Evaluating Hematopoietic Stem Cells Derived from Umbilical Cord Blood's Expansion and Homing

Author(s): Maryam Islami* and Fatemeh Soleimanifar

Volume 15, Issue 3, 2020

Page: [250 - 262] Pages: 13

DOI: 10.2174/1574888X15666200124115444

Price: $65

Abstract

Transplantation of hematopoietic stem cells (HSCs) derived from umbilical cord blood (UCB) has been taken into account as a therapeutic approach in patients with hematologic malignancies. Unfortunately, there are limitations concerning HSC transplantation (HSCT), including (a) low contents of UCB-HSCs in a single unit of UCB and (b) defects in UCB-HSC homing to their niche. Therefore, delays are observed in hematopoietic and immunologic recovery and homing. Among numerous strategies proposed, ex vivo expansion of UCB-HSCs to enhance UCB-HSC dose without any differentiation into mature cells is known as an efficient procedure that is able to alter clinical treatments through adjusting transplantation-related results and making them available. Accordingly, culture type, cytokine combinations, O2 level, co-culture with mesenchymal stromal cells (MSCs), as well as gene manipulation of UCB-HSCs can have effects on their expansion and growth. Besides, defects in homing can be resolved by exposing UCB-HSCs to compounds aimed at improving homing. Fucosylation of HSCs before expansion, CXCR4-SDF-1 axis partnership and homing gene involvement are among strategies that all depend on efficiency, reasonable costs, and confirmation of clinical trials. In general, the present study reviewed factors improving the expansion and homing of UCB-HSCs aimed at advancing hematopoietic recovery and expansion in clinical applications and future directions.

Keywords: Hematopoietic stem cells (HSCs), umbilical cord blood (UCB), cytokine, expansion, homing, fucosylation.

[1]
Andrade PZ, de Soure AM, Dos Santos F, Paiva A, Cabral JM, da Silva CL. Ex vivo expansion of cord blood haematopoietic stem/progenitor cells under physiological oxygen tensions: clear-cut effects on cell proliferation, differentiation and metabolism. J Tissue Eng Regen Med 2015; 9(10): 1172-81.
[http://dx.doi.org/10.1002/term.1731] [PMID: 23596131]
[2]
Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood 2013; 122(4): 491-8.
[http://dx.doi.org/10.1182/blood-2013-02-453175] [PMID: 23673863]
[3]
Delaney C, Ratajczak MZ, Laughlin MJ. Strategies to enhance umbilical cord blood stem cell engraftment in adult patients. Expert Rev Hematol 2010; 3(3): 273-83.
[http://dx.doi.org/10.1586/ehm.10.24] [PMID: 20835351]
[4]
Hollands P, McCauley C. Private cord blood banking: current use and clinical future. Stem Cell Rev Rep 2009; 5(3): 195-203.
[http://dx.doi.org/10.1007/s12015-009-9082-0] [PMID: 19603288]
[5]
Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I, Dick JE. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 2011; 333(6039): 218-21.
[http://dx.doi.org/10.1126/science.1201219] [PMID: 21737740]
[6]
Maung KK, Horwitz ME. Current and future perspectives on allogeneic transplantation using ex vivo expansion or manipulation of umbilical cord blood cells. Int J Hematol 2019; 110(1): 50-8.
[http://dx.doi.org/10.1007/s12185-019-02670-6] [PMID: 31123927]
[7]
Oran B, Shpall E. Umbilical cord blood transplantation: a maturing technology. Hematology (Am Soc Hematol Educ Program) 2012; 2012: 215-22.
[http://dx.doi.org/10.1182/asheducation.V2012.1.215.3798291] [PMID: 23233584]
[8]
Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 1989; 321(17): 1174-8.
[http://dx.doi.org/10.1056/NEJM198910263211707] [PMID: 2571931]
[9]
Dessels C, Alessandrini M, Pepper MS. Factors influencing the umbilical cord blood stem cell industry: An evolving treatment landscape. Stem Cells Transl Med 2018; 7(9): 643-50.
[http://dx.doi.org/10.1002/sctm.17-0244] [PMID: 29777574]
[10]
Peled T, Mandel J, Goudsmid RN, et al. Pre-clinical development of cord blood-derived progenitor cell graft expanded ex vivo with cytokines and the polyamine copper chelator tetraethylenepentamine. Cytotherapy 2004; 6(4): 344-55.
[http://dx.doi.org/10.1080/14653240410004916] [PMID: 16146887]
[11]
Broxmeyer HE, Douglas GW, Hangoc G, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA 1989; 86(10): 3828-32.
[http://dx.doi.org/10.1073/pnas.86.10.3828] [PMID: 2566997]
[12]
Kelly SS, Sola CB, de Lima M, Shpall E. Ex vivo expansion of cord blood. Bone Marrow Transplant 2009; 44(10): 673-81.
[http://dx.doi.org/10.1038/bmt.2009.284] [PMID: 19802023]
[13]
Horwitz ME. Ex vivo expansion or manipulation of stem cells to improve outcome of umbilical cord blood transplantation. Curr Hematol Malig Rep 2016; 11(1): 12-8.
[http://dx.doi.org/10.1007/s11899-015-0297-7] [PMID: 26677145]
[14]
Huang GP, Pan ZJ, Jia BB, et al. Ex vivo expansion and transplantation of hematopoietic stem/progenitor cells supported by mesenchymal stem cells from human umbilical cord blood. Cell Transplant 2007; 16(6): 579-85.
[http://dx.doi.org/10.3727/000000007783465073] [PMID: 17912949]
[15]
Bojanić I, Golubić Cepulić B. [Umbilical cord blood as a source of stem cells]. Acta Med Croatica 2006; 60(3): 215-25. [Umbilical cord blood as a source of stem cells].
[PMID: 16933834]
[16]
Lu LL, Liu YJ, Yang SG, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 2006; 91(8): 1017-26.
[PMID: 16870554]
[17]
Hao QL, Shah AJ, Thiemann FT, Smogorzewska EM, Crooks GM. A functional comparison of CD34 + CD38- cells in cord blood and bone marrow. Blood 1995; 86(10): 3745-53.
[http://dx.doi.org/10.1182/blood.V86.10.3745.bloodjournal86103745] [PMID: 7579341]
[18]
Ballen KK, Spitzer TR, Yeap BY, et al. Double unrelated reduced-intensity umbilical cord blood transplantation in adults. Biol Blood Marrow Transplant 2007; 13(1): 82-9.
[http://dx.doi.org/10.1016/j.bbmt.2006.08.041] [PMID: 17222756]
[19]
Mousavi SH, Abroun S, Soleimani M, Mowla SJ. Expansion of human cord blood hematopoietic stem/progenitor cells in three-dimensional Nanoscaffold coated with Fibronectin. Int J Hematol Oncol Stem Cell Res 2015; 9(2): 72-9.
[PMID: 25922647]
[20]
Lotem J, Sachs L. Cytokine control of developmental programs in normal hematopoiesis and leukemia. Oncogene 2002; 21(21): 3284-94.
[http://dx.doi.org/10.1038/sj.onc.1205319] [PMID: 12032770]
[21]
Zhu J, Emerson SG. Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 2002; 21(21): 3295-313.
[http://dx.doi.org/10.1038/sj.onc.1205318] [PMID: 12032771]
[22]
Mousavi SH, Abroun S, Soleimani M, Mowla SJ. 3-Dimensional nano-fibre scaffold for ex vivo expansion of cord blood haematopoietic stem cells. Artif Cells Nanomed Biotechnol 2018; 46(4): 740-8.
[http://dx.doi.org/10.1080/21691401.2017.1337026] [PMID: 28685587]
[23]
Pallotta I, Lovett M, Kaplan DL, Balduini A. Three-dimensional system for the in vitro study of megakaryocytes and functional platelet production using silk-based vascular tubes. Tissue Eng Part C Methods 2011; 17(12): 1223-32.
[http://dx.doi.org/10.1089/ten.tec.2011.0134] [PMID: 21895494]
[24]
Ferreira MSV, Mousavi SH. Nanofiber technology in the ex vivo expansion of cord blood-derived hematopoietic stem cells. Nanomedicine (Lond) 2018; 14(5): 1707-18.
[http://dx.doi.org/10.1016/j.nano.2018.04.017] [PMID: 29753127]
[25]
Leisten I, Kramann R, Ventura Ferreira MS, et al. 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials 2012; 33(6): 1736-47.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.034] [PMID: 22136713]
[26]
De León A, Mayani H, Ramírez OT. Design, characterization and application of a minibioreactor for the culture of human hematopoietic cells under controlled conditions. Cytotechnology 1998; 28(1-3): 127-38.
[http://dx.doi.org/10.1023/A:1008042000744] [PMID: 19003414]
[27]
Koller MR, Emerson SG, Palsson BO. Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures. Blood 1993; 82(2): 378-84.
[http://dx.doi.org/10.1182/blood.V82.2.378.378] [PMID: 8329697]
[28]
Meissner P, Schröder B, Herfurth C, Biselli M. Development of a fixed bed bioreactor for the expansion of human hematopoietic progenitor cells. Cytotechnology 1999; 30(1-3): 227-34.
[http://dx.doi.org/10.1023/A:1008085932764] [PMID: 19003372]
[29]
Mehta RS, Rezvani K, Olson A, et al. Novel Techniques for Ex Vivo Expansion of Cord Blood: Clinical Trials. Front Med (Lausanne) 2015; 2: 89.
[http://dx.doi.org/10.3389/fmed.2015.00089] [PMID: 26697430]
[30]
Tiwari A, et al. Expansion of Human Hematopoietic Stem/Progenitor Cells on Decellularized Matrix Scaffolds. Curr Protoc Stem Cell Biol 2016; 36 1c.15.1-1c.15.16.
[31]
Pineault N, Abu-Khader A. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp Hematol 2015; 43(7): 498-513.
[http://dx.doi.org/10.1016/j.exphem.2015.04.011] [PMID: 25970610]
[32]
Sadat Hashemi Z, Forouzandeh Moghadam M, Soleimani M. Comparison of the Ex Vivo Expansion of UCB-Derived CD34+ in 3D DBM/MBA Scaffolds with USSC as a Feeder Layer. Iran J Basic Med Sci 2013; 16(10): 1075-87.
[PMID: 24379965]
[33]
D’Arena G, Musto P, Cascavilla N, et al. Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features. Haematologica 1998; 83(3): 197-203.
[PMID: 9573672]
[34]
Yang H, Loutfy MR, Mayerhofer S, Shuen P. Factors affecting banking quality of umbilical cord blood for transplantation. Transfusion 2011; 51(2): 284-92.
[http://dx.doi.org/10.1111/j.1537-2995.2010.02826.x] [PMID: 20723167]
[35]
Broxmeyer HE, Hangoc G, Cooper S, et al. Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci USA 1992; 89(9): 4109-13.
[http://dx.doi.org/10.1073/pnas.89.9.4109] [PMID: 1373894]
[36]
de Graaf CA, Metcalf D. Thrombopoietin and hematopoietic stem cells. Cell Cycle 2011; 10(10): 1582-9.
[http://dx.doi.org/10.4161/cc.10.10.15619] [PMID: 21478671]
[37]
Schipper LF, Brand A, Fibbe WE, Van Hensbergen Y. Functional characterization of TPO-expanded CD34+ cord blood cells identifies CD34- CD61- cells as platelet-producing cells early after transplantation in NOD/SCID mice and rCD34+ cells as CAFC colony-forming cells. Stem Cells 2012; 30(5): 988-96.
[http://dx.doi.org/10.1002/stem.1071] [PMID: 22378601]
[38]
Islami M, Soleimani M, Ajami M, Darvish M. Co-culture of Umbilical Cord-derived Hematopoietic and Mesenchymal Stem Cells on Protein-Coated poly-L-Lactic Acid Nanoscaffolds. Journal of Mazandaran University of Medical Sciences 2020; 181: 1-11.
[http://dx.doi.org/10.2174/187221010791208777] [PMID: 20420564]
[39]
Larochelle A, Savona M, Wiggins M, et al. Human and rhesus macaque hematopoietic stem cells cannot be purified based only on SLAM family markers. Blood 2011; 117(5): 1550-4.
[http://dx.doi.org/10.1182/blood-2009-03-212803] [PMID: 21163926]
[40]
Islami M, Mortazavi Y, Soleimani M, Nadri S. In vitro expansion of CD 133+ cells derived from umbilical cord blood in poly-L-lactic acid (PLLA) scaffold coated with fibronectin and collagen. Artif Cells Nanomed Biotechnol 2018; 46(5): 1025-33.
[http://dx.doi.org/10.1080/21691401.2017.1358733] [PMID: 28782391]
[41]
Guitart AV, Hammoud M, Dello Sbarba P, Ivanovic Z, Praloran V. Slow-cycling/quiescence balance of hematopoietic stem cells is related to physiological gradient of oxygen. Exp Hematol 2010; 38(10): 847-51.
[http://dx.doi.org/10.1016/j.exphem.2010.06.002] [PMID: 20547202]
[42]
Darvish M, Payandeh Z, Soleimanifar F, Taheri B, Soleimani M, Islami M. Umbilical cord blood mesenchymal stem cells application in hematopoietic stem cells expansion on nanofiber three-dimensional scaffold. J Cell Biochem 2019; 120(7): 12018-26.
[http://dx.doi.org/10.1634/stemcells.22-5-716] [PMID: 15342936]
[43]
Arranz L, Urbano-Ispizúa A, Méndez-Ferrer S. Mitochondria underlie different metabolism of hematopoietic stem and progenitor cells. Haematologica 2013; 98(7): 993-5.
[http://dx.doi.org/10.3324/haematol.2013.084293] [PMID: 23813642]
[44]
Hammoud M, Vlaski M, Duchez P, et al. Combination of low O(2) concentration and mesenchymal stromal cells during culture of cord blood CD34(+) cells improves the maintenance and proliferative capacity of hematopoietic stem cells. J Cell Physiol 2012; 227(6): 2750-8.
[http://dx.doi.org/10.1002/jcp.23019] [PMID: 21913190]
[45]
Zhang H, Menzies KJ, Auwerx J. The role of mitochondria in stem cell fate and aging. Development 2018; 145(8)dev143420
[http://dx.doi.org/10.1242/dev.143420] [PMID: 29654217]
[46]
Roy S, Tripathy M, Mathur N, Jain A, Mukhopadhyay A. Hypoxia improves expansion potential of human cord blood-derived hematopoietic stem cells and marrow repopulation efficiency. Eur J Haematol 2012; 88(5): 396-405.
[http://dx.doi.org/10.1111/j.1600-0609.2012.01759.x] [PMID: 22268587]
[47]
Skrtić M, Sriskanthadevan S, Jhas B, et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 2011; 20(5): 674-88.
[http://dx.doi.org/10.1016/j.ccr.2011.10.015] [PMID: 22094260]
[48]
Can A, Karahuseyinoglu S. Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 2007; 25(11): 2886-95.
[http://dx.doi.org/10.1634/stemcells.2007-0417] [PMID: 17690177]
[49]
Zimmermann JA, McDevitt TC. Pre-conditioning mesenchymal stromal cell spheroids for immunomodulatory paracrine factor secretion. Cytotherapy 2014; 16(3): 331-45.
[http://dx.doi.org/10.1016/j.jcyt.2013.09.004] [PMID: 24219905]
[50]
Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24(5): 1294-301.
[http://dx.doi.org/10.1634/stemcells.2005-0342] [PMID: 16410387]
[51]
Islami M, Payandeh Z, Dalir Abdolahinia E, et al. Fucosylated umbilical cord blood hematopoietic stem cell expansion on selectin-coated scaffolds. J Cell Physiol 2019; 234(12): 22593-603.
[http://dx.doi.org/10.1002/jcp.28825] [PMID: 31102280]
[52]
Metcalf D. Hematopoietic cytokines. Blood 2008; 111(2): 485-91.
[http://dx.doi.org/10.1182/blood-2007-03-079681] [PMID: 18182579]
[53]
McNiece I, Harrington J, Turney J, Kellner J, Shpall EJ. Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells. Cytotherapy 2004; 6(4): 311-7.
[http://dx.doi.org/10.1080/14653240410004871] [PMID: 16146883]
[54]
Dong C, Lv Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. Polymers (Basel) 2016; 8(2): 42.
[http://dx.doi.org/10.3390/polym8020042] [PMID: 30979136]
[55]
Ferreira MS, Jahnen-Dechent W, Labude N, et al. Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials 2012; 33(29): 6987-97.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.029] [PMID: 22800538]
[56]
Mirzaei A, Saburi E, Islami M, et al. Bladder smooth muscle cell differentiation of the human induced pluripotent stem cells on electrospun Poly(lactide-co-glycolide) nanofibrous structure. Gene 2019; 694: 26-32.
[http://dx.doi.org/10.1016/j.gene.2019.01.037] [PMID: 30735717]
[57]
Zhang Y, Chai C, Jiang XS, Teoh SH, Leong KW. Co-culture of umbilical cord blood CD34+ cells with human mesenchymal stem cells. Tissue Eng 2006; 12(8): 2161-70.
[http://dx.doi.org/10.1089/ten.2006.12.2161] [PMID: 16968157]
[58]
Islami M. Expansion of Umbilical Cord Blood Hematopoietic Stem Cells on Collagen- Fibronectin Coated Electrospun Nano Scaffold. Zanjan University of Medical Sciences journal 2018; 117(26): 32- 43.
[59]
Atashi A, Islami M, Mortazavi Y, Soleimani M. Homing genes expression in fucosyltransferase VI-treated umbilical cord blood CD133+ cells which expanded on protein-coated nanoscaffolds. Mol Biotechnol 2018; 60(7): 455-67.
[http://dx.doi.org/10.1007/s12033-018-0086-3] [PMID: 29730712]
[60]
Prus E, Peled T, Fibach E. The effect of tetraethylenepentamine, a synthetic copper chelating polyamine, on expression of CD34 and CD38 antigens on normal and leukemic hematopoietic cells. Leuk Lymphoma 2004; 45(3): 583-9.
[http://dx.doi.org/10.1080/10428190310001598035] [PMID: 15160922]
[61]
Peled T, Landau E, Mandel J, et al. Linear polyamine copper chelator tetraethylenepentamine augments long-term ex vivo expansion of cord blood-derived CD34+ cells and increases their engraftment potential in NOD/SCID mice. Exp Hematol 2004; 32(6): 547-55.
[http://dx.doi.org/10.1016/j.exphem.2004.03.002] [PMID: 15183895]
[62]
Horwitz ME, Chao NJ, Rizzieri DA, et al. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J Clin Invest 2014; 124(7): 3121-8.
[http://dx.doi.org/10.1172/JCI74556] [PMID: 24911148]
[63]
Peled T, Shoham H, Aschengrau D, et al. Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Exp Hematol 2012; 40(4): 342-55.e1.
[http://dx.doi.org/10.1016/j.exphem.2011.12.005] [PMID: 22198152]
[64]
Rocha V, Broxmeyer HE. New approaches for improving engraftment after cord blood transplantation. Biol Blood Marrow Transplant 2010; 16(1)(Suppl.): S126-32.
[http://dx.doi.org/10.1016/j.bbmt.2009.11.001] [PMID: 19896543]
[65]
Sauvageau G, Iscove NN, Humphries RK. In vitro and in vivo expansion of hematopoietic stem cells. Oncogene 2004; 23(43): 7223-32.
[http://dx.doi.org/10.1038/sj.onc.1207942] [PMID: 15378082]
[66]
Wagner JE Jr, Brunstein CG, Boitano AE, et al. Phase I/II Trial of StemRegenin-1 Expanded Umbilical Cord Blood Hematopoietic Stem Cells Supports Testing as a Stand-Alone Graft. Cell Stem Cell 2016; 18(1): 144-55.
[http://dx.doi.org/10.1016/j.stem.2015.10.004] [PMID: 26669897]
[67]
Antonchuk J, Sauvageau G, Humphries RK. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 2002; 109(1): 39-45.
[http://dx.doi.org/10.1016/S0092-8674(02)00697-9] [PMID: 11955445]
[68]
Duncan AW, Rattis FM, DiMascio LN, et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005; 6(3): 314-22.
[http://dx.doi.org/10.1038/ni1164] [PMID: 15665828]
[69]
Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, Bernstein ID. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med 2010; 16(2): 232-6.
[http://dx.doi.org/10.1038/nm.2080] [PMID: 20081862]
[70]
Pineault N, Cortin V, Boyer L, et al. Individual and synergistic cytokine effects controlling the expansion of cord blood CD34(+) cells and megakaryocyte progenitors in culture. Cytotherapy 2011; 13(4): 467-80.
[http://dx.doi.org/10.3109/14653249.2010.530651] [PMID: 21090916]
[71]
Sauvageau G, Thorsteinsdottir U, Eaves CJ, et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 1995; 9(14): 1753-65.
[http://dx.doi.org/10.1101/gad.9.14.1753] [PMID: 7622039]
[72]
Staal FJ, Chhatta A, Mikkers H. Caught in a Wnt storm: Complexities of Wnt signaling in hematopoiesis. Exp Hematol 2016; 44(6): 451-7.
[http://dx.doi.org/10.1016/j.exphem.2016.03.004] [PMID: 27016274]
[73]
Richter J, Traver D, Willert K. The role of Wnt signaling in hematopoietic stem cell development. Crit Rev Biochem Mol Biol 2017; 52(4): 414-24.
[http://dx.doi.org/10.1080/10409238.2017.1325828] [PMID: 28508727]
[74]
Murdoch B, Chadwick K, Martin M, et al. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc Natl Acad Sci USA 2003; 100(6): 3422-7.
[http://dx.doi.org/10.1073/pnas.0130233100] [PMID: 12626754]
[75]
Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423(6938): 409-14.
[http://dx.doi.org/10.1038/nature01593] [PMID: 12717450]
[76]
Benveniste P, Serra P, Dervovic D, et al. Notch signals are required for in vitro but not in vivo maintenance of human hematopoietic stem cells and delay the appearance of multipotent progenitors. Blood 2014; 123(8): 1167-77.
[http://dx.doi.org/10.1182/blood-2013-07-505099] [PMID: 24363404]
[77]
Delaney C, Varnum-Finney B, Aoyama K, Brashem-Stein C, Bernstein ID. Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood 2005; 106(8): 2693-9.
[http://dx.doi.org/10.1182/blood-2005-03-1131] [PMID: 15976178]
[78]
Karanu FN, Murdoch B, Gallacher L, et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med 2000; 192(9): 1365-72.
[http://dx.doi.org/10.1084/jem.192.9.1365] [PMID: 11067884]
[79]
Varnum-Finney B, Wu L, Yu M, et al. Immobilization of Notch ligand, Delta-1, is required for induction of notch signaling. J Cell Sci 2000; 113(Pt 23): 4313-8.
[PMID: 11069775]
[80]
Yang J, Chai L, Gao C, et al. SALL4 is a key regulator of survival and apoptosis in human leukemic cells. Blood 2008; 112(3): 805-13.
[http://dx.doi.org/10.1182/blood-2007-11-126326] [PMID: 18487508]
[81]
Yong KJ, Li A, Ou WB, et al. Targeting SALL4 by entinostat in lung cancer. Oncotarget 2016; 7(46): 75425-40.
[http://dx.doi.org/10.18632/oncotarget.12251] [PMID: 27705911]
[82]
Mossahebi-Mohammadi M, Atashi A, Kaviani S, Soleimani M. Efficient expansion of SALL4-transduced umbilical cord blood derived CD133+hematopoietic stem cells. Acta Med Iran 2017; 55(5): 290-6.
[PMID: 28724268]
[83]
Aguila JR, Liao W, Yang J, et al. SALL4 is a robust stimulator for the expansion of hematopoietic stem cells. Blood 2011; 118(3): 576-85.
[http://dx.doi.org/10.1182/blood-2011-01-333641] [PMID: 21602528]
[84]
Gao C, Kong NR, Li A, et al. SALL4 is a key transcription regulator in normal human hematopoiesis. Transfusion 2013; 53(5): 1037-49.
[http://dx.doi.org/10.1111/j.1537-2995.2012.03888.x] [PMID: 22934838]
[85]
Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423(6937): 302-5.
[http://dx.doi.org/10.1038/nature01587] [PMID: 12714971]
[86]
Guney I, Wu S, Sedivy JM. Reduced c-Myc signaling triggers telomere-independent senescence by regulating Bmi-1 and p16(INK4a). Proc Natl Acad Sci USA 2006; 103(10): 3645-50.
[http://dx.doi.org/10.1073/pnas.0600069103] [PMID: 16537449]
[87]
Schmelzer E, Finoli A, Nettleship I, Gerlach JC. Long-term three-dimensional perfusion culture of human adult bone marrow mononuclear cells in bioreactors. Biotechnol Bioeng 2015; 112(4): 801-10.
[http://dx.doi.org/10.1002/bit.25485] [PMID: 25335987]
[88]
Robinson SN, Thomas MW, Simmons PJ, et al. Non-fucosylated CB CD34+ cells represent a good target for enforced fucosylation to improve engraftment following cord blood transplantation. Cytotherapy 2017; 19(2): 285-92.
[http://dx.doi.org/10.1016/j.jcyt.2016.11.001] [PMID: 27919572]
[89]
Popat U, Mehta RS, Rezvani K, et al. Enforced fucosylation of cord blood hematopoietic cells accelerates neutrophil and platelet engraftment after transplantation. Blood 2015; 125(19): 2885-92.
[http://dx.doi.org/10.1182/blood-2015-01-607366] [PMID: 25778529]
[90]
Calvi LM, Link DC. The hematopoietic stem cell niche in homeostasis and disease. Blood 2015; 126(22): 2443-51.
[http://dx.doi.org/10.1182/blood-2015-07-533588] [PMID: 26468230]
[91]
Costa MHG, Soure A, Cabral JMS, Ferreira FC, Silva CL. Hematopoietic niche - exploring biomimetic cues to improve the functionality of hematopoietic stem/progenitor cells. Biotechnol J 2018; 13(2): 10.1002/biot.201700088.
[http://dx.doi.org/10.1002/biot.201700088]
[92]
Jiang J, Papoutsakis ET. Stem-cell niche based comparative analysis of chemical and nano-mechanical material properties impacting ex vivo expansion and differentiation of hematopoietic and mesenchymal stem cells. Adv Healthc Mater 2013; 2(1): 25-42.
[http://dx.doi.org/10.1002/adhm.201200169] [PMID: 23184458]
[93]
Costa MHG, de Soure AM, Cabral JMS, Ferreira FC, da Silva CL. Hematopoietic Niche - Exploring Biomimetic Cues to Improve the Functionality of Hematopoietic Stem/Progenitor Cells. Biotechnol J 2018; 13(2)
[http://dx.doi.org/10.1002/biot.201700088] [PMID: 29178199]
[94]
Benz C, Copley MR, Kent DG, et al. Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell 2012; 10(3): 273-83.
[http://dx.doi.org/10.1016/j.stem.2012.02.007] [PMID: 22385655]
[95]
Wu W, Kim CH, Liu R, et al. The bone marrow-expressed antimicrobial cationic peptide LL-37 enhances the responsiveness of hematopoietic stem progenitor cells to an SDF-1 gradient and accelerates their engraftment after transplantation. Leukemia 2012; 26(4): 736-45.
[http://dx.doi.org/10.1038/leu.2011.252] [PMID: 21931324]
[96]
Bari S, Seah KK, Poon Z, et al. Expansion and homing of umbilical cord blood hematopoietic stem and progenitor cells for clinical transplantation. Biol Blood Marrow Transplant 2015; 21(6): 1008-19.
[http://dx.doi.org/10.1016/j.bbmt.2014.12.022] [PMID: 25555449]
[97]
Li N, Feugier P, Serrurrier B, et al. Human mesenchymal stem cells improve ex vivo expansion of adult human CD34+ peripheral blood progenitor cells and decrease their allostimulatory capacity. Exp Hematol 2007; 35(3): 507-15.
[http://dx.doi.org/10.1016/j.exphem.2006.10.015] [PMID: 17309831]
[98]
Wasnik S, Kantipudi S, Kirkland MA, Pande G. Enhanced Ex Vivo Expansion of Human Hematopoietic Progenitors on Native and Spin Coated Acellular Matrices Prepared from Bone Marrow Stromal Cells. Stem Cells Int 2016; 20167231567
[http://dx.doi.org/10.1155/2016/7231567] [PMID: 26981135]
[99]
Celebi B, Mantovani D, Pineault N. Effects of extracellular matrix proteins on the growth of haematopoietic progenitor cells. Biomed Mater 2011; 6(5)055011
[http://dx.doi.org/10.1088/1748-6041/6/5/055011] [PMID: 21931196]
[100]
Christopherson KW II, Hangoc G, Mantel CR, Broxmeyer HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004; 305(5686): 1000-3.
[http://dx.doi.org/10.1126/science.1097071] [PMID: 15310902]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy