A Novel Hydrocolloid Film Based on Pectin, Starch and Gunnera tinctoria and Ugni molinae Plant Extracts for Wound Dressing Applications

Author(s): Constanza Sabando, Walther Ide, Maité Rodríguez-Díaz, Gustavo Cabrera-Barjas, Johanna Castaño, Rebeca Bouza, Niels Müller, Cristian Gutiérrez, Luis Barral, Joaquín Rojas, Fernando Martínez, Saddys Rodríguez-Llamazares*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 4 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: The biodegradable and biocompatible nature of pectin-based films is of particular interest in wound dressing applications, due to its non-toxicity, pH-sensitivity and gelling activity. An approach to improve the mechanical properties, the release profile of bioactive compounds as well as the performance in wet environments of pectin-based films is mixing with other biopolymers.

Objective: To prepare hydrocolloid films based on crosslinked pectin / starch blend loaded with bioactive extracts from leaves of G. tinctoria and U. molinae with controlled release of bioactive compounds and healing property.

Methods: The hydrocolloid films were characterized by FTIR, SEM, and TGA-FTIR techniques and their tensile properties, water uptake, and polyphenolic release profile in aqueous media were evaluated. The dermal anti inflammatory activity of the hydrocolloid films was assessed by the mouse ear inflammation test. The wound healing property of the loaded hydrocolloid films was explored in a rat model and in a clinical trial (sacrum pressure ulcer).

Results: The films showed an adequate water-uptake capacity between 100-160%. The release of active compounds from the hydrocolloid films followed the Korsmeyer-Peppas equation. The mechanical properties of hydrocolloid films were not affected by the plant extracts within the concentration range used. The incorporation of the bioactive extracts in the polysaccharide films inhibited the topical edematous response by about 50%. The topical application of the loaded hydrocolloid film on the pressure ulcer is completely closed after 17 days without showing any adverse reaction.

Conclusion: A novel hydrocolloid matrix was produced from crosslinked starch-pectin, which exhibited suitable chemical-physical properties to be used as a carrier of plant extracts with wound healing properties.

Keywords: Gunnera tinctoria, Ugni molinae, Starch, Pectin, Hydrocolloid, Wound dressing.

Boateng, J.S.; Matthews, K.H.; Stevens, H.N.E.; Eccleston, G.M. Wound healing dressings and drug delivery systems: a review. J. Pharm. Sci., 2008, 97(8), 2892-2923.
[http://dx.doi.org/10.1002/jps.21210] [PMID: 17963217]
Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem., 2009, 20(2), 263-275.
Einhorn-Stoll, U. Pectin-water interactions in foods - From powder to gel. Food Hydrocoll., 2018, 78, 109-119.
Liu, L.; Liu, C.K.; Fishman, M.L.; Hicks, K.B. Composite films from pectin and fish skin gelatin or soybean flour protein. J. Agric. Food Chem., 2007, 55(6), 2349-2355.
[http://dx.doi.org/10.1021/jf062612u] [PMID: 17311396]
Raei, M.; Rafe, A.; Shahidi, F. Rheological and structural characteristics of whey protein-pectin complex coacervates. J. Food Eng., 2018, 228, 25-31.
Coffin, D.R.; Fishman, M.L. Viscoelastic properties of pectin starch blends. J. Agric. Food Chem., 1993, 41(8), 1192-1197.
Coffin, D.R.; Fishman, M.L. Physical and mechanical-properties of highly plasticized pectin starch films. J. Appl. Polym. Sci., 1994, 54(9), 1311-1320.
Coffin, D.R.; Fishman, M.L.; Cooke, P.H. Mechanical and microstructural properties of pectin starch films. J. Appl. Polym. Sci., 1995, 57(6), 663-670.
Desai, K.G. Properties of tableted high-amylose corn starch-pectin blend microparticles intended for controlled delivery of diclofenac sodium. J. Biomater. Appl., 2007, 21(3), 217-233.
[http://dx.doi.org/10.1177/0885328206056771] [PMID: 16443630]
Khondar, D.; Tester, R.F.; Hudson, N.; Karkalas, J.; Morrow, J. Rheological behaviour of uncross-linked and cross-linked gelatinised waxy maize starch with pectin gels. Food Hydrocoll., 2007, 21(8), 1296-1301.
Atangana, E.; Chiweshe, T.T.; Roberts, H. Modification of novel chitosan-starch cross-linked derivatives polymers: synthesis and characterization. J. Polym. Environ., 2019, 27(5), 979-995.
Hastuti, B.; Siswanta, D. Mudasir; Triyono, Kinetics and isotherm studies of Pb(II) imprinted carboxymethyl chitosan-pectin-PEGDE. J. Teknol., 2017, 79(6), 141-147.
Ministry of Health, G.d.C.. Traditional herbal medicines 103 plant Species 2010.
Jofré, I.; Pezoa, C.; Cuevas, M.; Scheuermann, E.; Freires, I.A.; Rosalen, P.L.; de Alencar, S.M.; Romero, F. Antioxidant and vasodilator activity of ugnimolinae turcz. (murtilla) and its modulatory mechanism in hypotensive Response. Oxid. Med. Cell. Longev., 2016, 2016 6513416
[http://dx.doi.org/10.1155/2016/6513416] [PMID: 27688827]
Delporte, C.; Backhouse, N.; Inostroza, V.; Aguirre, M.C.; Peredo, N.; Silva, X.; Negrete, R.; Miranda, H.F. Analgesic activity of Ugnimolinae (murtilla) in mice models of acute pain. J. Ethnopharmacol., 2007, 112(1), 162-165.
[http://dx.doi.org/10.1016/j.jep.2007.02.018] [PMID: 17403589]
Aguirre, M.C.; Delporte, C.; Backhouse, N.; Erazo, S.; Letelier, M.E.; Cassels, B.K.; Silva, X.; Alegría, S.; Negrete, R. Topical anti-inflammatory activity of 2alpha-hydroxy pentacyclic triterpene acids from the leaves of Ugnimolinae. Bioorg. Med. Chem., 2006, 14(16), 5673-5677.
[http://dx.doi.org/10.1016/j.bmc.2006.04.021] [PMID: 16697209]
Shene, C.; Reyes, A.K.; Villarroel, M.; Sineiro, J.; Pinelo, M.; Rubilar, M. Plant location and extraction procedure strongly alter the antimicrobial activity of murta extracts. Eur. Food Res. Technol., 2009, 228(3), 467-475.
Estomba, D.; Ladio, A.; Lozada, M. Medicinal wild plant knowledge and gathering patterns in a Mapuche community from North-western Patagonia. J. Ethnopharmacol., 2006, 103(1), 109-119.
[http://dx.doi.org/10.1016/j.jep.2005.07.015] [PMID: 16157460]
Rodriguez-Diaz, M.; Delgado, J.M.; Torres, F.; Sandoval, C.; Rodriguez, S.; Delporte, C.; Ross, C. Phytochemical and pharmacological screening of extracts from Gunnera tinctoria Mol., a native chilean plant. Planta Med., 2013, 79(13), 1270-1270.
Rodríguez-Díaz, M.; Delporte, C.; Cartagena, C.; Cassels, B.K.; González, P.; Silva, X.; León, F.; Wessjohann, L.A. Topical anti-inflammatory activity of quillaic acid from Quillaja saponaria Mol. and some derivatives. J. Pharm. Pharmacol., 2011, 63(5), 718-724.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01263.x] [PMID: 21492174]
Rodríguez-Llamazares, S.; Sabando, C.; Gutierrez, C.; Muñoz, Y.; Rodríguez-Díaz, M. Use of a hydrocolloid film that is used for skin lesions that has anti-inflammatory, analgesic and antimicrobial activity, comprising extracts of Gunnera tinctoria nalca or Ugni molinae murtilla leaves and method of preparing said hydrocolloid film. Chilean Patent 58014, December 30. 2013.
Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 1965, 16, 144-158.
Bankowski, Z.; Howard-Jones, N. In: ; Biomedical research involving animals: proposed international guiding principles, Proceedings of the XVIIth Council for International Organizations of Medical Sciences, Geneva, Switzerland. December 8-9, 1983; Council for International Organizations of Medical Sciences Eds.: Geneva, Italy, 1985.
Young, J.B.; Dobrzanski, S. Pressure sores. Epidemiology and current management concepts. Drugs Aging, 1992, 2(1), 42-57.
[http://dx.doi.org/10.2165/00002512-199202010-00006] [PMID: 1554973]
Vamadevan, V.; Bertoft, E. Impact of different structural types of amylopectin on retrogradation. Food Hydrocoll., 2018, 80, 88-96.
Fishman, M.L.; Coffin, D.R.; Unruh, J.J.; Ly, T. Pectin/starch/glycerol films: Blends or composites? J. Macromol. Sci. Pure Appl. Chem., 1996, A33(5), 639-654.
Pérez, C.D.; Flores, S.K.; Marangoni, A.G.; Gerschenson, L.N.; Rojas, A.M. Development of a high methoxyl pectin edible film for retention of l-(+)-ascorbic acid. J. Agric. Food Chem., 2009, 57(15), 6844-6855.
[http://dx.doi.org/10.1021/jf804019x] [PMID: 19610645]
Seslija, S.; Nesic, A.; Ruzic, J.; Krusic, M.K.; Velickovic, S.; Avolio, R.; Santagata, G.; Malinconico, M. Edible blend films of pectin and poly(ethylene glycol): Preparation and physico-chemical evaluation. Food Hydrocoll., 2018, 77, 494-501.
Nesic, A.; Ruzic, J.; Gordic, M.; Ostojic, S.; Micic, D.; Onjia, A. Pectin-polyvinylpyrrolidone films: A sustainable approach to the development of biobased packaging materials. Compos., Part B Eng., 2017, 110, 56-61.
Taboada, E.; Fisher, P.; Jara, R.; Zuniga, E.; Gidekel, M.; Cabrera, J.C.; Pereira, E.; Gutierrez-Moraga, A.; Villalonga, R.; Cabrera, G. Isolation and characterisation of pectic substances from murta (Ugni molinae Turcz) fruits. Food Chem., 2010, 123(3), 669-678.
Fellah, A.; Anjukandi, P.; Waterland, M.R.; Williams, M.A.K. Determining the degree of methylesterification of pectin by ATR/FT-IR: Methodology optimisation and comparison with theoretical calculations. Carbohydr. Polym., 2009, 78(4), 847-853.
Ilic-Stojanovic, S.; Nikolic, V.; Kundakovic, T.; Savic, I.; Savic-Gajic, I.; Jocic, E.; Nikolic, L. Thermosensitive hydrogels for modified release of ellagic acid obtained from Alchemilla vulgaris L. extract. Int. J. Polym. Mater., 2018, 67(9), 553-563.
Oliveira, T.Í.S.; Rosa, M.F.; Cavalcante, F.L.; Pereira, P.H.F.; Moates, G.K.; Wellner, N.; Mazzetto, S.E.; Waldron, K.W.; Azeredo, H.M.C. Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chem., 2016, 198, 113-118.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.080] [PMID: 26769512]
Castaño, J.; Rodríguez-Llamazares, S.; Contreras, K.; Carrasco, C.; Pozo, C.; Bouza, R.; Franco, C.M.; Giraldo, D. Horse chestnut (Aesculus hippocastanum L.) starch: Basic physico-chemical characteristics and use as thermoplastic material. Carbohydr. Polym., 2014, 112, 677-685.
[http://dx.doi.org/10.1016/j.carbpol.2014.06.046] [PMID: 25129797]
Stampella, A.; Papi, A.; Rizzitelli, G.; Costantini, M.; Colosi, C.; Barbetta, A.; Massimi, M.; Devirgiliis, L.C.; Dentini, M. Synthesis and characterization of a novel poly(vinyl alcohol) 3D platform for the evaluation of hepatocytes’ response to drug administration. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(24), 3083-3098.
Kono, H. Characterization and properties of carboxymethyl cellulose hydrogels crosslinked by polyethylene glycol. Carbohydr. Polym., 2014, 106, 84-93.
[http://dx.doi.org/10.1016/j.carbpol.2014.02.020] [PMID: 24721054]
Einhorn-Stoll, U.; Kunzek, H.; Dongowski, G. Thermal analysis of chemically and mechanically modified pectins. Food Hydrocoll., 2007, 21(7), 1101-1112.
Wang, W.J.; Ma, X.B.; Jiang, P.; Hu, L.L.; Zhi, Z.J.; Chen, J.L.; Ding, T.; Ye, X.Q.; Liu, D.H. Characterization of pectin from grapefruit peel: A comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocoll., 2016, 61, 730-739.
Shahrokh, Z.; Kavoosi, G.; Shakeri, R. Physical, thermal, antioxidant and antimicrobial properties of starches from corn, oat, and wheat enriched with Zataria essential oil. Bioact. Carbohydr. Diet. Fibre, 2019, 19 100193
Ferrari, F.; Bertoni, M.; Caramella, C.; Waring, M.J. Comparative-evaluation of hydrocolloid dressings by means of water-uptake and swelling force measurements II. Int. J. Pharm., 1994, 112(1), 29-36.
Hasatsri, S.; Pitiratanaworanat, A.; Swangwit, S.; Boochakul, C.; Tragoonsupachai, C. Comparison of the morphological and physical properties of different absorbent wound dressings. Dermatol. Res. Pract., 2018, 2018 9367034
[http://dx.doi.org/10.1155/2018/9367034] [PMID: 29951092]
Bajpai, A.K.; Shrivastava, J. Studies on alpha-amylase induced degradation of binary polymeric blends of crosslinked starch and pectin. J. Mater. Sci. Mater. Med., 2007, 18(5), 765-777.
[http://dx.doi.org/10.1007/s10856-006-0003-3] [PMID: 17143735]
Meneguin, A.B.; Ferreira Cury, B.S.; Dos Santos, A.M.; Franco, D.F.; Barud, H.S.; da Silva Filho, E.C. Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydr. Polym., 2017, 157, 1013-1023.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.062] [PMID: 27987801]
Fu, Z.Q.; Wang, L.J.; Li, D.; Wei, Q.; Adhikari, B. Effects of high-pressure homogenization on the properties of starch-plasticizer dispersions and their films. Carbohydr. Polym., 2011, 86(1), 202-207.
Rioux, B.; Lspas-Szabo, P.; Ait-Kadi, A.; Mateescu, M.A.; Juhasz, J. Structure-properties relationship in cross-linked high amylose starch cast films. Carbohydr. Polym., 2002, 50(4), 371-378.
Costa, P.; Sousa Lobo, J.M.; Lobo, S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci., 2001, 13(2), 123-133.
[http://dx.doi.org/10.1016/S0928-0987(01)00095-1] [PMID: 11297896]
Sibaja, B.; Culbertson, E.; Marshall, P.; Boy, R.; Broughton, R.M.; Solano, A.A.; Esquivel, M.; Parker, J.; De La Fuente, L.; Auad, M.L. Preparation of alginate-chitosan fibers with potential biomedical applications. Carbohydr. Polym., 2015, 134, 598-608.
[http://dx.doi.org/10.1016/j.carbpol.2015.07.076] [PMID: 26428163]
Riachy, P.; Roig, F.; García-Celma, M-J.; Stébé, M-J.; Pasc, A.; Esquena, J.; Solans, C.; Blin, J.L. Hybrid hierarchical porous silica templated in nanoemulsions for drug release. Eur. J. Inorg. Chem., 2016, 2016(13‐14), 1989-1997.
Chen, C.H.; Sheu, M.T.; Chen, T.F.; Wang, Y.C.; Hou, W.C.; Liu, D.Z.; Chung, T.C.; Liang, Y.C. Suppression of endotoxin-induced proinflammatory responses by citrus pectin through blocking LPS signaling pathways. Biochem. Pharmacol., 2006, 72(8), 1001-1009.
[http://dx.doi.org/10.1016/j.bcp.2006.07.001] [PMID: 16930561]
Ríos, J.L.; Giner, R.M.; Marín, M.; Recio, M.C. A pharmacological update of ellagic acid. Planta Med., 2018, 84(15), 1068-1093.
[http://dx.doi.org/10.1055/a-0633-9492] [PMID: 29847844]
Mo, J.; Panichayupakaranant, P.; Kaewnopparat, N.; Songkro, S.; Reanmongkol, W. Topical anti-inflammatory potential of standardized pomegranate rind extract and ellagic acid in contact dermatitis. Phytother. Res., 2014, 28(4), 629-632.
[http://dx.doi.org/10.1002/ptr.5039] [PMID: 23873506]
Peng, D.; Huang, W.; Ai, S.; Wang, S. Clinical significance of leukocyte infiltrative response in deep wound of patients with major burns. Burns, 2006, 32(8), 946-950.
[http://dx.doi.org/10.1016/j.burns.2006.03.003] [PMID: 16901653]
Rowan, M.P.; Cancio, L.C.; Elster, E.A.; Burmeister, D.M.; Rose, L.F.; Natesan, S.; Chan, R.K.; Christy, R.J.; Chung, K.K. Burn wound healing and treatment: review and advancements. Crit. Care, 2015, 19, 243.
[http://dx.doi.org/10.1186/s13054-015-0961-2] [PMID: 26067660]
Lukiswanto, B.S.; Miranti, A.; Sudjarwo, S.A.; Primarizky, H.; Yuniarti, W.M. Evaluation of wound healing potential of pomegranate (Punicagranatum) whole fruit extract on skin burn wound in rats (Rattusnorvegicus). J. Adv. Vet. Anim. Res., 2019, 6(2), 202-207.
[http://dx.doi.org/10.5455/javar.2019.f333] [PMID: 31453192]
Munarin, F.; Tanzi, M.C.; Petrini, P. Advances in biomedical applications of pectin gels. Int. J. Biol. Macromol., 2012, 51(4), 681-689.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.07.002] [PMID: 22776748]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 26 March, 2020
Page: [280 - 292]
Pages: 13
DOI: 10.2174/1568026620666200124100631
Price: $65

Article Metrics

PDF: 26
PRC: 1