Mechanisms of Nickel-Induced Cell Damage in Allergic Contact Dermatitis and Nutritional Intervention Strategies

Author(s): Dana Filatova*, Christine Cherpak

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders

Volume 20 , Issue 7 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Hypersensitivity to nickel is a very common cause of allergic contact dermatitis since this metal is largely present in industrial and consumer products as well as in some commonly consumed foods, air, soil, and water. In nickel-sensitized individuals, a cell-mediated delayed hypersensitivity response results in contact to dermatitis due to mucous membranes coming in long-term contact with nickel-containing objects. This process involves the generation of reactive oxidative species and lipid peroxidation-induced oxidative damage. Immunologically, the involvement of T helper (h)-1 and Th-2 cells, as well as the reduced function of T regulatory cells, are of importance. The toxicity, mutagenicity, and carcinogenicity of nickel are attributed to the generation of reactive oxygen species and induction of oxidative damage via lipid peroxidation, which results in DNA damage.

Objective: The aim of this research is to identify nutritionally actionable interventions that can intercept nickel-induced cell damage due to their antioxidant capacities.

Conclusion: Nutritional interventions may be used to modulate immune dysregulation, thereby intercepting nickel-induced cellular damage. Among these nutritional interventions are a low-nickel diet and an antioxidant-rich diet that is sufficient in iron needed to minimize nickel absorption. These dietary approaches not only reduce the likelihood of nickel toxicity by minimizing nickel exposure but also help prevent oxidative damage by supplying the body with antioxidants that neutralize free radicals.

Keywords: Nickel-induced cell damage, nickel-induced contact dermatitis, nickel-induced pathogenic mechanisms, nickelinduced contact dermatitis therapy, antioxidant therapy, free radicals.

[1]
Jacob, S.E.; Zapolanski, T. Systemic contact dermatitis. Dermatitis, 2008, 19(1), 9-15.
[http://dx.doi.org/10.2310/6620.2008.06069] [PMID: 18346390]
[2]
Zhang, N.; Bevan, M.J. CD8(+) T cells: Foot soldiers of the immune system. Immunity, 2011, 35(2), 161-168.
[http://dx.doi.org/10.1016/j.immuni.2011.07.010] [PMID: 21867926]
[3]
Saito, M.; Arakaki, R.; Yamada, A.; Tsunematsu, T.; Kudo, Y.; Ishimaru, N. Molecular mechanisms of nickel allergy. Int. J. Mol. Sci., 2016, 17(2) E202
[http://dx.doi.org/10.3390/ijms17020202] [PMID: 26848658]
[4]
Gittler, J.K.; Krueger, J.G.; Guttman-Yassky, E. Atopic dermatitis results in intrinsic barrier and immune abnormalities: implications for contact dermatitis. J. Allergy Clin. Immunol., 2013, 131(2), 300-313.
[http://dx.doi.org/10.1016/j.jaci.2012.06.048] [PMID: 22939651]
[5]
Thyssen, J.P.; Menné, T. Metal allergy--A review on exposures, penetration, genetics, prevalence, and clinical implications. Chem. Res. Toxicol., 2010, 23(2), 309-318.
[http://dx.doi.org/10.1021/tx9002726] [PMID: 19831422]
[6]
Cempel, M.; Nikel, G. Nickel: A review of its sources and environmental toxicology. Pol. J. Environ. Stud., 2006, 15(3), 375-382.
[7]
Shilpa, S.; Fahmida, K.; Madhurima, P.; Pandey, P.K. Nickel contamination of the environment. Res. J. Chem. Sci., 2017, 7(10), 21-25.
[8]
Rathor, G.; Chopra, N.; Adhikari, T. Nickel as a pollutant and its management. Int. Res. J. Environment Sci., 2014, 3(10), 94-98.
[9]
Giurlani, W.; Zangari, G.; Gambinossi, F.; Passaponti, M.; Salvietti, E.; Di Benedetto, F.; Caporali, S.; Innocenti, M. Electroplating for decorative applications: Recent trends in research and development. Coatings., 2018, 8(8), 260.
[http://dx.doi.org/10.3390/coatings8080260]
[10]
Berk, D.R.; Bayliss, S.J. Cellular phone and cellular phone accessory dermatitis due to nickel allergy: report of five cases. Pediatr. Dermatol., 2011, 28(3), 327-331.
[http://dx.doi.org/10.1111/j.1525-1470.2011.01313.x] [PMID: 21453303]
[11]
Dever, T.T.; Gibbs, N.F.; Jacob, S.E. Dog tag dermatitis and nickel allergy in the military. Dermatitis, 2012, 23(1), 50.
[http://dx.doi.org/10.1097/DER.0b013e31823d17e8] [PMID: 22653071]
[12]
Borghi, A.; Corazza, M.; Maietti, E.; Patruno, C.; Napolitano, M.; Schena, D.; Musumeci, M.L.; Micali, G.; Magrone, T.; Romita, P.; Foti, C. Eyelid dermatitis and contact sensitization to nickel: Results from an italian multi-centric observational study. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(1), 38-45.
[http://dx.doi.org/10.2174/1871530318666180731114418] [PMID: 30062976]
[13]
Keinan, D.; Mass, E.; Zilberman, U. Absorption of nickel, chromium, and iron by the root surface of primary molars covered with stainless steel crowns. Int. J. Dent., 2010, 2010326124
[http://dx.doi.org/10.1155/2010/326124] [PMID: 21274429]
[14]
Guarneri, F.; Costa, C.; Cannavò, S.P.; Catania, S.; Bua, G.D.; Fenga, C.; Dugo, G. Release of nickel and chromium in common foods during cooking in 18/10 (grade 316) stainless steel pots. Contact Dermat., 2017, 76(1), 40-48.
[http://dx.doi.org/10.1111/cod.12692] [PMID: 27804135]
[15]
Kamerud, K.L.; Hobbie, K.A.; Anderson, K.A. Stainless steel leaches nickel and chromium into foods during cooking. J. Agric. Food Chem., 2013, 61(39), 9495-9501.
[http://dx.doi.org/10.1021/jf402400v] [PMID: 23984718]
[16]
Pizzutelli, S. Systemic nickel hypersensitivity and diet: Myth or reality? Eur. Ann. Allergy Clin. Immunol., 2011, 43(1), 5-18.
[PMID: 21409856]
[17]
Rizzi, A.; Nucera, E.; Laterza, L.; Gaetani, E.; Valenza, V.; Corbo, G.M.; Inchingolo, R.; Buonomo, A.; Schiavino, D.; Gasbarrini, A. Irritable bowel syndrome and nickel allergy: What is the role of the low nickel diet? J. Neurogastroenterol. Motil., 2017, 23(1), 101-108.
[http://dx.doi.org/10.5056/jnm16027] [PMID: 28049864]
[18]
Ahamed, M. Toxic response of nickel nanoparticles in human lung epithelial A549 cells. Toxicol. In Vitro, 2011, 25(4), 930-936.
[http://dx.doi.org/10.1016/j.tiv.2011.02.015] [PMID: 21376802]
[19]
Dhingra, N.; Shemer, A.; Correa da Rosa, J.; Rozenblit, M.; Fuentes-Duculan, J.; Gittler, J.K.; Finney, R.; Czarnowicki, T.; Zheng, X.; Xu, H.; Estrada, Y.D.; Cardinale, I.; Suárez-Fariñas, M.; Krueger, J.G.; Guttman-Yassky, E. Molecular profiling of contact dermatitis skin identifies allergen-dependent differences in immune response. J. Allergy Clin. Immunol., 2014, 134(2), 362-372.
[http://dx.doi.org/10.1016/j.jaci.2014.03.009] [PMID: 24768652]
[20]
Kumagai, K.; Horikawa, T.; Shigematsu, H.; Matsubara, R.; Kitaura, K.; Eguchi, T.; Kobayashi, H.; Nakasone, Y.; Sato, K.; Yamada, H.; Suzuki, S.; Hamada, Y.; Suzuki, R. Possible immune regulation of natural killer t cells in a murine model of metal ion-induced allergic contact dermatitis. Int. J. Mol. Sci., 2016, 17(1) E87
[http://dx.doi.org/10.3390/ijms17010087] [PMID: 26771600]
[21]
Wang, K.; Jiang, H.; Li, W.; Qiang, M.; Dong, T.; Li, H. Role of vitamin C in skin diseases. Front. Physiol., 2018, 9, 819.
[http://dx.doi.org/10.3389/fphys.2018.00819] [PMID: 30022952]
[22]
Patak, P.; Willenberg, H.S.; Bornstein, S.R.; Vitamin, C. Vitamin C is an important cofactor for both adrenal cortex and adrenal medulla. Endocr. Res., 2004, 30(4), 871-875.
[http://dx.doi.org/10.1081/ERC-200044126] [PMID: 15666839]
[23]
Yimcharoen, M.; Kittikunnathum, S.; Suknikorn, C.; Nak-On, W.; Yeethong, P.; Anthony, T.G.; Bunpo, P. Effects of ascorbic acid supplementation on oxidative stress markers in healthy women following a single bout of exercise. J. Int. Soc. Sports Nutr., 2019, 16(1), 2.
[http://dx.doi.org/10.1186/s12970-019-0269-8] [PMID: 30665439]
[24]
Popovic, L.M.; Mitic, N.R.; Miric, D.; Bisevac, B.; Miric, M.; Popovic, B. Influence of vitamin C supplementation on oxidative stress and neutrophil inflammatory response in acute and regular exercise. Oxid. Med. Cell. Longev., 2015, 2015295497
[http://dx.doi.org/10.1155/2015/295497] [PMID: 25802681]
[25]
Das, K.K.; Reddy, R.C.; Bagoji, I.B.; Das, S.; Bagali, S.; Mullur, L.; Khodnapur, J.P.; Biradar, M.S. Primary concept of nickel toxicity - An overview. J. Basic Clin. Physiol. Pharmacol., 2018, 30(2), 141-152.
[http://dx.doi.org/10.1515/jbcpp-2017-0171] [PMID: 30179849]
[26]
Chen, C.Y.; Wang, Y.F.; Lin, Y.H.; Yen, S.F. Nickel-induced oxidative stress and effect of antioxidants in human lymphocytes. Arch. Toxicol., 2003, 77(3), 123-130.
[http://dx.doi.org/10.1007/s00204-002-0427-6] [PMID: 12632251]
[27]
Kaczmarek, M.; Timofeeva, O.A.; Karaczyn, A.; Malyguine, A.; Kasprzak, K.S.; Salnikow, K. The role of ascorbate in the modulation of HIF-1alpha protein and HIF-dependent transcription by chromium(VI) and nickel(II). Free Radic. Biol. Med., 2007, 42(8), 1246-1257.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.026] [PMID: 17382205]
[28]
Zirwas, M.J.; Molenda, M.A. Dietary nickel as a cause of systemic contact dermatitis. J. Clin. Aesthet. Dermatol., 2009, 2(6), 39-43.
[PMID: 20729949]
[29]
Sharma, A.D. Benefit of iron therapy in the management of chronic urticaria due to nickel sensitivity. Indian J. Dermatol., 2010, 55(4), 407-408.
[http://dx.doi.org/10.4103/0019-5154.74576] [PMID: 21430907]
[30]
Cunningham, E. What role does diet play in the management of nickel allergy? J. Acad. Nutr. Diet., 2017, 117(3), 500.
[http://dx.doi.org/10.1016/j.jand.2017.01.001] [PMID: 28236963]
[31]
Filatova, D. Inflammatory Bowel Disease, Iron Deficiency Anemia and Systemic Nickel Allergy Syndrome: What is the significance of the low nickel diet and chronic h. pylori infection? A case report. EC Nutr., 2017, 10(3), 111-118.
[32]
Campanale, M.; Nucera, E.; Ojetti, V.; Cesario, V.; Di Rienzo, T.A.; D’Angelo, G.; Pecere, S.; Barbaro, F.; Gigante, G.; De Pasquale, T.; Rizzi, A.; Cammarota, G.; Schiavino, D.; Franceschi, F.; Gasbarrini, A. Nickel free-diet enhances the Helicobacter pylori eradication rate: A pilot study. Dig. Dis. Sci., 2014, 59(8), 1851-1855.
[http://dx.doi.org/10.1007/s10620-014-3060-3] [PMID: 24595654]
[33]
Pender, M.P. CD8+ T-cell deficiency, epstein-barr virus infection, vitamin D deficiency, and steps to autoimmunity: A unifying hypothesis. Autoimmune Dis., 2012, 2012 189096
[http://dx.doi.org/10.1155/2012/189096] [PMID: 22312480]
[34]
Sharma, A.D. Low nickel diet in dermatology. Indian J. Dermatol., 2013, 58(3), 240.
[http://dx.doi.org/10.4103/0019-5154.110846] [PMID: 23723488]
[35]
Antico, A.; Soana, R. Nickel sensitization and dietary nickel are a substantial cause of symptoms provocation in patients with chronic allergic-like dermatitis syndromes. Allergy Rhinol. (Providence), 2015, 6(1), 56-63.
[http://dx.doi.org/10.2500/ar.2015.6.0109] [PMID: 25747857]
[36]
Katta, R.; Schlichte, M. Diet and dermatitis: Food triggers. J. Clin. Aesthet. Dermatol., 2014, 7(3), 30-36.
[PMID: 24688624]
[37]
Salnikow, K.; Kasprzak, K.S. Ascorbate depletion: A critical step in nickel carcinogenesis? Environ. Health Perspect., 2005, 113(5), 577-584.
[http://dx.doi.org/10.1289/ehp.7605] [PMID: 15866766]
[38]
Lampel, H.P.; Silvestri, D.L. Systemic contact dermatitis: Current challenges and emerging treatments. Curr. Treat. Options Allergy, 2014, 1(4), 348-357.
[http://dx.doi.org/10.1007/s40521-014-0029-6]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 7
Year: 2020
Published on: 09 September, 2020
Page: [1010 - 1014]
Pages: 5
DOI: 10.2174/1871530320666200122155804
Price: $65

Article Metrics

PDF: 27
HTML: 2