Microbiota and Alcohol Use Disorder: Are Psychobiotics a Novel Therapeutic Strategy?

Author(s): Alicia Rodriguez-Gonzalez, Laura Orio*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 20 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

In recent years, there has been an exciting focus of research attempting to understand neuropsychiatric disorders from a holistic perspective in order to determine the role of gut microbiota in the aetiology and pathogenesis of such disorders. Thus, the possible therapeutic benefits of targeting gut microbiota are being explored for conditions such as stress, depression or schizophrenia. Growing evidence indicates that there is bidirectional communication between gut microbiota and the brain that has an effect on normal CNS functioning and behavioural responses. Alcohol abuse damages the gastrointestinal tract, alters gut microbiota and induces neuroinflammation and cognitive decline. The relationship between alcohol abuse and hypothalamic-pituitary-adrenal axis activation, inflammation and immune regulation has been well documented. In this review, we explore the connection between microbiota, brain function and behaviour, as well as the mechanisms through which alcohol induces microbiota dysbiosis and intestinal barrier dysfunction. Finally, we propose the study of psychobiotics as a novel pharmaceutical strategy to treat alcohol use disorders.

Keywords: Alcohol, microbiome, gut-brain axis, dysbiosis, AUD, microbiota.

[1]
Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 3(10): 701-1.
[http://dx.doi.org/10.1038/nrn3346] [PMID: 22968153]
[2]
Wang HX, Wang YP. Gut Microbiota-brain Axis. Chin Med J (Engl) 2016; 129(19): 2373-80.
[http://dx.doi.org/10.4103/0366-6999.190667] [PMID: 27647198]
[3]
Erny D, Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18(7): 965-77.
[http://dx.doi.org/10.1038/nn.4030] [PMID: 26030851]
[4]
Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 2014; 6(263): 263ra158
[http://dx.doi.org/10.1126/scitranslmed.3009759] [PMID: 25411471]
[5]
Wang S, Harvey L, Martin R, et al. Targeting the gut microbiota to influence brain development and function in early life. Neurosci Biobehav Rev 2018; 95: 191-201.
[http://dx.doi.org/10.1016/j.neubiorev.2018.09.002] [PMID: 30195933]
[6]
Martin-Subero M, Anderson G, Kanchanatawan B, Berk M, Maes M. Comorbidity between depression and inflammatory bowel disease explained by immune-inflammatory, oxidative, and nitrosative stress; tryptophan catabolite; and gut-brain pathways. CNS Spectr 2016; 21(2): 184-98.
[http://dx.doi.org/10.1017/S1092852915000449] [PMID: 26307347]
[7]
Van Oudenhove L, Törnblom H, Störsrud S, Tack J, Simrén M. Depression and somatization are associated with increased postprandial symptoms in patients with irritable bowel syndrome. Gastroenterology 2016; 150(4): 866-74.
[http://dx.doi.org/10.1053/j.gastro.2015.11.010] [PMID: 26602216]
[8]
Hayley S, Audet MC, Anisman H. Inflammation and the microbiome: implications for depressive disorders. Curr Opin Pharmacol 2016; 29: 42-6.
[http://dx.doi.org/10.1016/j.coph.2016.06.001] [PMID: 27327647]
[9]
Ding HT, Taur Y, Walkup JT. Gut microbiota and autism: key concepts and findings. J Autism Dev Disord 2017; 47(2): 480-9.
[http://dx.doi.org/10.1007/s10803-016-2960-9] [PMID: 27882443]
[10]
Mutlu EA, Gillevet PM, Rangwala H, et al. Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol 2012; 302(9): G966-78.
[http://dx.doi.org/10.1152/ajpgi.00380.2011] [PMID: 22241860]
[11]
Funk C, Braune A, Grabber JH, Steinhart H, Bunzel M. Model studies of lignified fiber fermentation by human fecal microbiota and its impact on heterocyclic aromatic amine adsorption. Mutat Res 2007; 624(1-2): 41-8.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.03.010] [PMID: 17475287]
[12]
Cummings JH, Macfarlane GT. Role of intestinal bacteria in nutrient metabolism. JPEN J Parenter Enteral Nutr 1997; 21(6): 357-65.
[http://dx.doi.org/10.1016/S0261-5614(97)80252-X] [PMID: 9406136]
[13]
Lupp C, Robertson ML, Wickham ME, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2007; 2(3): 204.http://dx.doi.org/S1931-3128(07)00194-1
[PMID: 18030708]
[14]
Guo G, Jia KR, Shi Y, et al. Psychological stress enhances the colonization of the stomach by Helicobacter pylori in the BALB/c mouse. Stress 2009; 12(6): 478-85.
[http://dx.doi.org/10.3109/10253890802642188] [PMID: 20102319]
[15]
Bruce-Keller AJ, Salbaum JM, Luo M, et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry 2015; 77(7): 607-15.
[http://dx.doi.org/10.1016/j.biopsych.2014.07.012] [PMID: 25173628]
[16]
Hammer AM, Morris NL, Earley ZM, Choudhry MA. The first line of defense: the effects of alcohol on post-burn intestinal barrier, immune cells, and microbiome. Alcohol Res 2015; 37(2): 209-22.
[PMID: 26695746]
[17]
Szabo G, Bala S. Alcoholic liver disease and the gut-liver axis. World J Gastroenterol 2010; 16(11): 1321-9.
[http://dx.doi.org/10.3748/wjg.v16.i11.1321] [PMID: 20238398]
[18]
Rao R. Endotoxemia and gut barrier dysfunction in alcoholic liver disease. Hepatology 2009; 50(2): 638-44.
[http://dx.doi.org/10.1002/hep.23009] [PMID: 19575462]
[19]
Montesinos J, Alfonso-Loeches S, Guerri C. Impact of the innate immune response in the actions of ethanol on the central nervous system. Alcohol Clin Exp Res 2016; 40(11): 2260-70.
[http://dx.doi.org/10.1111/acer.13208] [PMID: 27650785]
[20]
Qin L, He J, Hanes RN, Pluzarev O, Hong JS, Crews FT. Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation 2008; 5: 10-2094-5-10
[http://dx.doi.org/10.1186/1742-2094-5-10] [PMID: 18348728]
[21]
Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008; 9(1): 46-56.
[http://dx.doi.org/10.1038/nrn2297] [PMID: 18073775]
[22]
Cacabelos R, Torrellas C, Fernández-Novoa L, Aliev G. Neuroimmune crosstalk in CNS Disorders: The histamine connection. Curr Pharm Des 2016; 22(7): 819-48.http://dx.doi.org/CPD-EPUB-72401
[PMID: 26648474]
[23]
Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009; 9(5): 313-23.
[http://dx.doi.org/10.1038/nri2515] [PMID: 19343057]
[24]
Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science 2016; 352(6285): 539-44.
[http://dx.doi.org/10.1126/science.aad9378] [PMID: 27126036]
[25]
Banks WA, Gray AM, Erickson MA, et al. Lipopolysaccharideinduced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J Neuroinflammation 2015; 12: 223-015-0434-1
[http://dx.doi.org/10.1186/s12974-015-0434-1] [PMID: 26608623]
[26]
Danielski LG, Giustina AD, Badawy M, et al. Brain barrier breakdown as a cause and consequence of neuroinflammation in sepsis. Mol Neurobiol 2018; 55(2): 1045-53.
[http://dx.doi.org/10.1007/s12035-016-0356-7] [PMID: 28092082]
[27]
Leclercq S, Mian FM, Stanisz AM, et al. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat Commun 2017; 8: 15062.
[http://dx.doi.org/10.1038/ncomms15062] [PMID: 28375200]
[28]
Hoyles L, Snelling T, Umlai UK, et al. Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier Microbiome 2018; 6(1: ) 55-018-0439-y
[http://dx.doi.org/10.1136/bmj.e4439] [PMID: 22782848]
[29]
Farzi A, Fröhlich EE, Holzer P. Gut microbiota and the neuroendocrine system. Neurotherapeutics 2018; 15(1): 5-22.
[http://dx.doi.org/10.1007/s13311-017-0600-5] [PMID: 29380303]
[30]
Crumeyrolle-Arias M, Jaglin M, Bruneau A, et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 2014; 42: 207-17.
[http://dx.doi.org/10.1016/j.psyneuen.2014.01.014] [PMID: 24636517]
[31]
Desbonnet L, Clarke G, Traplin A, et al. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav Immun 2015; 48: 165-73.
[http://dx.doi.org/10.1016/j.bbi.2015.04.004] [PMID: 25866195]
[32]
Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013; 18(6): 666-73.
[http://dx.doi.org/10.1038/mp.2012.77] [PMID: 22688187]
[33]
Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 2004; 558(Pt 1): 263-75.
[http://dx.doi.org/10.1113/jphysiol.2004.063388] [PMID: 15133062]
[34]
De Palma G, Blennerhassett P, Lu J, et al. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun 2015; 6: 7735.
[http://dx.doi.org/10.1038/ncomms8735] [PMID: 26218677]
[35]
Neufeld KA, Kang N, Bienenstock J, Foster JA. Effects of intestinal microbiota on anxiety-like behavior. Commun Integr Biol 2011; 4(4): 492-4.
[http://dx.doi.org/10.4161/cib.15702] [PMID: 21966581]
[36]
Huo R, Zeng B, Zeng L, et al. Microbiota modulate anxiety-like behavior and endocrine abnormalities in hypothalamic-pituitary-adrenal axis. Cell Infect Microbiol 2017; 7: 489.
[http://dx.doi.org/10.3389/fcimb.2017.00489] [PMID: 29250490]
[37]
Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 2016; 21(6): 786-96.
[http://dx.doi.org/10.1038/mp.2016.44] [PMID: 27067014]
[38]
Su Y, Yao W, Perez-Gutierrez ON, Smidt H, Zhu WY. Changes in abundance of Lactobacillus spp. and Streptococcus suis in the stomach, jejunum and ileum of piglets after weaning. FEMS Microbiol Ecol 2008; 66(3): 546-55.
[http://dx.doi.org/10.1111/j.1574-6941.2008.00529.x] [PMID: 18554303]
[39]
O’Mahony SM, Marchesi JR, Scully P, et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 2009; 65(3): 263-7.
[http://dx.doi.org/10.1016/j.biopsych.2008.06.026] [PMID: 18723164]
[40]
Bailey MT, Coe CL. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol 1999; 35(2): 146-55.
[http://dx.doi.org/10.1002/(SICI)1098-2302(199909)35:23.0.CO;2-G] [PMID: 10461128]
[41]
Holdeman LV, Good IJ, Moore WE. Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl Environ Microbiol 1976; 31(3): 359-75.
[PMID: 938032]
[42]
Moore WE, Cato EP, Holdeman LV. Some current concepts in intestinal bacteriology. Am J Clin Nutr 1978; 31(10)(Suppl.): S33-42.
[http://dx.doi.org/10.1093/ajcn/31.10.S33] [PMID: 707392]
[43]
Karl JP, Margolis LM, Madslien EH, et al. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am J Physiol Gastrointest Liver Physiol 2017; 312(6): G559-71.
[http://dx.doi.org/10.1152/ajpgi.00066.2017] [PMID: 28336545]
[44]
Ek M, Kurosawa M, Lundeberg T, Ericsson A. Activation of vagal afferents after intravenous injection of interleukin-1beta: role of endogenous prostaglandins. J Neurosci 1998; 18(22): 9471-9.
[http://dx.doi.org/10.1523/JNEUROSCI.18-22-09471.1998] [PMID: 9801384]
[45]
Hosoi T, Okuma Y, Nomura Y. Electrical stimulation of afferent vagus nerve induces IL-1beta expression in the brain and activates HPA axis. Am J Physiol Regul Integr Comp Physiol 2000; 279(1): R141-7.
[http://dx.doi.org/10.1152/ajpregu.2000.279.1.R141] [PMID: 10896875]
[46]
Layé S, Parnet P, Goujon E, Dantzer R. Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Brain Res Mol Brain Res 1994; 27(1): 157-62.http://dx.doi.org/0169-328X(94)90197-X
[PMID: 7877446]
[47]
Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 2011; 108(38): 16050-5.
[http://dx.doi.org/10.1073/pnas.1102999108] [PMID: 21876150]
[48]
Bercik P, Park AJ, Sinclair D, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 2011; 23(12): 1132-9.
[http://dx.doi.org/10.1111/j.1365-2982.2011.01796.x] [PMID: 21988661]
[49]
Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 2012; 113(2): 411-7.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05344.x] [PMID: 22612585]
[50]
Reigstad CS, Salmonson CE, Rainey JF III, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 2015; 29(4): 1395-403.
[http://dx.doi.org/10.1096/fj.14-259598] [PMID: 25550456]
[51]
Diaz Heijtz R, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci- USA 2011; 108-3052.(7): 3047-52.
[http://dx.doi.org/10.1073/pnas.1010529108] [PMID: 21282636]
[52]
The human brain microbiome; there are bacteria in our brains! 2018. Available at: . https://www.abstractsonline.com/pp8/#!/4649/presentation/32057
[53]
Vargas-Caraveo A, Sayd A, Maus SR, et al. Lipopolysaccharide enters the rat brain by a lipoprotein-mediated transport mechanism in physiological conditions. Sci Rep 2017; 7(1): 13113-017.
[http://dx.doi.org/10.1038/s41598-017-13302-6] [PMID: 29030613]
[54]
Emery DC, Shoemark DK, Batstone TE, et al. 16S rRNA next generation sequencing analysis shows bacteria in alzheimer’s post-mortem brain. Front Aging Neurosci 2017; 9: 195.
[http://dx.doi.org/10.3389/fnagi.2017.00195] [PMID: 28676754]
[55]
Hartmann P, Seebauer CT, Schnabl B. Alcoholic liver disease: the gut microbiome and liver cross talk. Clin Exp Res 2015; 39(5): 763-75.
[http://dx.doi.org/10.1111/acer.12704] [PMID: 25872593]
[56]
Engen PA, Green SJ, Voigt RM, Forsyth CB, Keshavarzian A. The Gastrointestinal microbiome: alcohol effects on the composition of intestinal microbiota. Alcohol Res 2015; 37(2): 223-36.
[PMID: 26695747]
[57]
Sophie L, Sebastien M, Patrice DC, et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proceedings of the National Academy of Sciences. 111(42): E4493
[http://dx.doi.org/10.1073/pnas.1415174111]
[58]
Mutlu E, Keshavarzian A, Engen P, Forsyth CB, Sikaroodi M, Gillevet P. Intestinal dysbiosis: a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin Exp Res 2009; 33(10): 1836-46.
[http://dx.doi.org/10.1111/j.1530-0277.2009.01022.x] [PMID: 19645728]
[59]
Keshavarzian A, Holmes EW, Patel M, Iber F, Fields JZ, Pethkar S. Leaky gut in alcoholic cirrhosis: a possible mechanism for alcohol-induced liver damage. Am J Gastroenterol 1999; 94(1): 200-7.
[http://dx.doi.org/10.1111/j.1572-0241.1999.00797.x] [PMID: 9934756]
[60]
Fukui H, Kitano H, Okamoto Y, et al. Interaction of Kupffer cells to splenic macrophages and hepatocytes in endotoxin clearance: effect of alcohol. J Gastroenterol Hepatol 1995; 10(Suppl. 1): S31-4.
[http://dx.doi.org/10.1111/j.1440-1746.1995.tb01793.x] [PMID: 8589338]
[61]
Bull-Otterson L, Feng W, Kirpich I, et al. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS One 2013; 8(1): e53028
[62]
Gabbard SL, Lacy BE, Levine GM, Crowell MD. The impact of alcohol consumption and cholecystectomy on small intestinal bacterial overgrowth. Dig Dis Sci 2014; 59(3): 638-44.
[http://dx.doi.org/10.1007/s10620-013-2960-y] [PMID: 24323179]
[63]
Leclercq S, de Timary P, Delzenne NM, Stärkel P. The link between inflammation, bugs, the intestine and the brain in alcohol dependence. Transl Psychiatry 2017; 7(2): e1048
[http://dx.doi.org/10.1038/tp.2017.15] [PMID: 28244981]
[64]
Guo S, Al-Sadi R, Said HM, Ma TY. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathol 2013; 182(2): 375-87.
[http://dx.doi.org/10.1016/j.ajpath.2012.10.014] [PMID: 28244981]
[65]
Forsythe RM, Xu DZ, Lu Q, Deitch EA. Lipopolysaccharide-induced enterocyte-derived nitric oxide induces intestinal monolayer permeability in an autocrine fashion. Shock 2002; 17(3): 180-4.
[http://dx.doi.org/10.1097/00024382-200203000-00004] [PMID: 11900335]
[66]
Preedy VR, Marway JS, Siddiq T, Ansari FA, Hashim IA, Peters TJ. Gastrointestinal protein turnover and alcohol misuse. Drug Alcohol Depend 1993; 34(1): 1-10.
[http://dx.doi.org/10.1016/0376-8716(93)90040-W] [PMID: 8174497]
[67]
Madrid AM, Hurtado C, Venegas M, Cumsille F, Defilippi C. Long-Term treatment with cisapride and antibiotics in liver cirrhosis: effect on small intestinal motility, bacterial overgrowth, and liver function. Am J Gastroenterol 2001; 96(4): 1251-5.
[http://dx.doi.org/10.1111/j.1572-0241.2001.03636.x] [PMID: 11316178]
[68]
Chari S, Teyssen S, Singer MV. Alcohol and gastric acid secretion in humans. Gut 1993; 34(6): 843-7.
[http://dx.doi.org/10.1136/gut.34.6.843] [PMID: 8314520]
[69]
Shindo K, Machida M, Miyakawa K, Fukumura M. A syndrome of cirrhosis, achlorhydria, small intestinal bacterial overgrowth, and fat malabsorption. Am J Gastroenterol 1993; 88(12): 2084-91.
[PMID: 8249977]
[70]
Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Gut microbiota, cirrhosis, and alcohol regulate bile acid metabolism in the gut. Dig Dis 2015; 33(3): 338-45.
[http://dx.doi.org/10.1159/000371678] [PMID: 26045267]
[71]
Kang DJ, Hylemon PB, Gillevet PM, Sartor RB, Betrapally NS, Kakiyama G, et al. Gut microbial composition can differentially regulate bile acid synthesis in humanized mice HepatolCommun 2017; 1(1): 61-70.
[http://dx.doi.org/10.1002/hep4.1020] [PMID: 29404434]
[72]
Kakiyama G, Pandak WM, Gillevet PM, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol 2013; 58(5): 949-55.
[http://dx.doi.org/10.1016/j.jhep.2013.01.003] [PMID: 23333527]
[73]
Inagaki T, Moschetta A, Lee YK. Peng L, Zhao G, Downes M, etal. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA 2006; 103(10): 3920-5.
[http://dx.doi.org/10.1073/pnas.0509592103] [PMID: 16473946]
[74]
Lorenzo-Zúñiga V, Bartolí R, Planas R. Hofmann AF, Vinado B, Hagey LR,. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology 2003; 37(3): 551-7.
[http://dx.doi.org/10.1053/jhep.2003.50116] [PMID: 12601352]
[75]
Björstad A, Fu H, Karlsson A, Dahlgren C, Bylund J. Starkel P, Torralba M, Schott E, etal. Interleukin-8-derived peptide has antibacterial activity. Antimicrob Agents Chemother 2005; 49(9): 3889-95.
[http://dx.doi.org/10.1128/AAC.49.9.3889-3895.2005] [PMID: 16127067]
[76]
Hartmann P, Chen P, Wang HJ, Wang L, McCole DF, Brandl K. Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice. Hepatology 2013; 58(1): 108-19.
[http://dx.doi.org/10.1002/hep.26321] [PMID: 23408358]
[77]
Yan AW, Fouts DE, Brandl J, et al. Starkel P, Torralba M, Schott E, etal. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 2011; 53(1): 96-105.
[http://dx.doi.org/10.1002/hep.24018] [PMID: 21254165]
[78]
Vaishnava S, Yamamoto M, Severson KM, et al. Ruhn KA, Yu X, Koren O etal. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011; 334(6053): 255-8.
[http://dx.doi.org/10.1126/science.1209791] [PMID: 21998396]
[79]
Wang L, Fouts DE, Stärkel P, et al. Hartmann P, Chen P, Llorente C, etal. Intestinal REG3 Lectins Protect against Alcoholic Steatohepatitis by Reducing Mucosa-Associated Microbiota and Preventing Bacterial Translocation. Cell Host Microbe 2016; 19(2): 227-39.
[http://dx.doi.org/10.1016/j.chom.2016.01.003] [PMID: 26867181]
[80]
Blomstrand R. Observations of the formation of ethanol in the intestinal tract in man. Life Sci II 1971; 10(10): 575-82.
[http://dx.doi.org/10.1016/0024-3205(71)90194-9] [PMID: 5556166]
[81]
Krebs HA, Perkins JR. The physiological role of liver alcohol dehydrogenase. Biochem J 1970; 118(4): 635-44.
[PMID: 5481498]
[82]
Salaspuro M. Bacteriocolonic pathway for ethanol oxidation: characteristics and implications. Ann Med 1996; 28(3): 195-200.
[http://dx.doi.org/10.3109/07853899609033120] [PMID: 8811162]
[83]
Atkinson KJ, Rao RK. Role of protein tyrosine phosphorylation in acetaldehyde-induced disruption of epithelial tight junctions. Am J Physiol Gastrointest Liver Physiol 2001; 280(6): G1280-8.
[http://dx.doi.org/10.1152/ajpgi.2001.280.6.G1280] [PMID: 11352822]
[84]
Shifflett DE, Clayburgh DR, Koutsouris A, Turner JR, Hecht GA. Enteropathogenic E. coli disrupts tight junction barrier function and structure in vivo. Lab Invest 2005; 85(10): 1308-24.http://dx.doi.org/3700330
[PMID: 16127426]
[85]
Zhou Y, Qin H, Zhang M, et al. Lactobacillus plantarum inhibits intestinal epithelial barrier dysfunction induced by unconjugated bilirubin. Br J Nutr 2010; 104(3): 390-401.
[http://dx.doi.org/10.1017/S0007114510000474] [PMID: 20412608]
[86]
Ewaschuk JB, Diaz H, Meddings L, et al. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol 2008; 295(5): G1025-34.
[http://dx.doi.org/10.1152/ajpgi.90227.2008] [PMID: 18787064]
[87]
Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 2013; 70(4): 631-59.
[http://dx.doi.org/10.1007/s00018-012-1070-x] [PMID: 22782113]
[88]
Samak G, Narayanan D, Jaggar JH, Rao R. CaV1.3 channels and intracellular calcium mediate osmotic stress-induced N-terminal c-Jun kinase activation and disruption of tight junctions in Caco-2 CELL MONOLAYERS. J Biol Chem 2011; 286(34): 30232-43.
[http://dx.doi.org/10.1074/jbc.M111.240358] [PMID: 21737448]
[89]
Jain S, Suzuki T, Seth A, Samak G, Rao R. Protein kinase Cζ phosphorylates occludin and promotes assembly of epithelial tight junctions. Biochem J 2011; 437(2): 289-99.
[http://dx.doi.org/10.1042/BJ20110587] [PMID: 21545357]
[90]
Moriez R, Salvador-Cartier C, Theodorou V, Fioramonti J, Eutamene H, Bueno L. Myosin light chain kinase is involved in lipopolysaccharide-induced disruption of colonic epithelial barrier and bacterial translocation in rats. Am J Pathol 2005; 167(4): 1071-9.
[http://dx.doi.org/10.1016/S0002-9440(10)61196-0] [PMID: 16192642]
[91]
Keita AV, Söderholm JD. The intestinal barrier and its regulation by neuroimmune factors. Neurogastroenterol Motil 2010; 22(7): 718-33.
[http://dx.doi.org/10.1111/j.1365-2982.2010.01498.x] [PMID: 20377785]
[92]
Leclercq S, Matamoros S, Cani PD, et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci USA 2014; 111(42): E4485-93.
[http://dx.doi.org/10.1073/pnas.1415174111] [PMID: 25288760]
[93]
Leclercq S, Cani PD, Neyrinck AM, et al. Role of intestinal permeability and inflammation in the biological and behavioral control of alcohol-dependent subjects. Brain Behav Immun 2012; 26(6): 911-8.
[http://dx.doi.org/10.1016/j.bbi.2012.04.001] [PMID: 22521198]
[94]
Keshavarzian A, Fields JZ, Vaeth J, Holmes EW. The differing effects of acute and chronic alcohol on gastric and intestinal permeability. Am J Gastroenterol 1994; 89(12): 2205-11.
[PMID: 7977243]
[95]
Antón M, Alén F, Gómez de Heras R, et al. Oleoylethanolamide prevents neuroimmune HMGB1/TLR4/NF-kB danger signaling in rat frontal cortex and depressive-like behavior induced by ethanol binge administration. Addict Biol 2017; 22(3): 724-41.
[http://dx.doi.org/10.1111/adb.12365] [PMID: 26857094]
[96]
Antón M, Rodríguez-González A, Ballesta A, et al. Alcohol binge disrupts the rat intestinal barrier: the partial protective role of oleoylethanolamide. Br J Pharmacol 2018; 175(24): 4464-79.
[http://dx.doi.org/10.1111/bph.14501] [PMID: 30248186]
[97]
Orio L, Antón M, Rodríguez-Rojo IC, et al. Young alcohol binge drinkers have elevated blood endotoxin, peripheral inflammation and low cortisol levels: neuropsychological correlations in women. Addict Biol 2018; 23(5): 1130-44.
[http://dx.doi.org/10.1111/adb.12543] [PMID: 28840951]
[98]
Bode C, Bode JC. Effect of alcohol consumption on the gut. Best Pract Res Clin Gastroenterol 2003; 17(4): 575-92.
[http://dx.doi.org/10.1016/S1521-6918(03)00034-9] [PMID: 12828956]
[99]
Tamai H, Kato S, Horie Y, Ohki E, Yokoyama H, Ishii H. Effect of acute ethanol administration on the intestinal absorption of endotoxin in rats. Alcohol Clin Exp Res 2000; 24(3): 390-4.
[http://dx.doi.org/10.1111/j.1530-0277.2000.tb04629.x] [PMID: 10776683]
[100]
Lambert JC, Zhou Z, Wang L, Song Z, McClain CJ, Kang YJ. Prevention of alterations in intestinal permeability is involved in zinc inhibition of acute ethanol-induced liver damage in mice. J Pharmacol Exp Ther 2003; 305(3): 880-6.
[http://dx.doi.org/10.1124/jpet.102.047852] [PMID: 12626662]
[101]
Gottfried EB, Korsten MA, Lieber CS. Alcohol-induced gastric and duodenal lesions in man. Am J Gastroenterol 1978; 70(6): 587-92.
[PMID: 369362]
[102]
Brozinsky S, Fani K, Grosberg SJ, Wapnick S. Alcohol ingestion-induced changes in the human rectal mucosa: light and electron microscopic studies. Dis Colon Rectum 1978; 21(5): 329-35.
[http://dx.doi.org/10.1007/BF02586661] [PMID: 699722]
[103]
Asai K, Buurman WA, Reutelingsperger CP, Schutte B, Kaminishi M. Low concentrations of ethanol induce apoptosis in human intestinal cells. Scand J Gastroenterol 2003; 38(11): 1154-61.
[http://dx.doi.org/10.1080/00365520310006252] [PMID: 14686719]
[104]
Rossi MA, Zucoloto S. Effect of chronic ethanol ingestion on the small intestinal ultrastructure in rats. Beitr Pathol 1977; 161(1): 50-61.
[http://dx.doi.org/10.1016/S0005-8165(77)80109-1] [PMID: 562662]
[105]
Napolitano LM, Koruda MJ, Zimmerman K, McCowan K, Chang J, Meyer AA. Chronic ethanol intake and burn injury: evidence for synergistic alteration in gut and immune integrity. J Trauma 1995; 38(2): 198-207.
[http://dx.doi.org/10.1097/00005373-199502000-00008] [PMID: 7869435]
[106]
Persson J, Berg NO, Sjölund K, Stenling R, Magnusson PH. Morphologic changes in the small intestine after chronic alcohol consumption. Scand J Gastroenterol 1990; 25(2): 173-84.
[http://dx.doi.org/10.3109/00365529009107940] [PMID: 2305214]
[107]
Klingensmith NJ, Yoseph BP, Liang Z, et al. Epidermal growth factor improves intestinal integrity and survival in murine sepsis following chronic alcohol ingestion. Shock 2017; 47(2): 184-92.
[http://dx.doi.org/10.1097/SHK.0000000000000709] [PMID: 27465753]
[108]
Bujanda L. The effects of alcohol consumption upon the gastrointestinal tract. Am J Gastroenterol 2000; 95(12): 3374-82.
[http://dx.doi.org/10.1111/j.1572-0241.2000.03347.x] [PMID: 11151864]
[109]
Ma TY, Nguyen D, Bui V, Nguyen H, Hoa N. Ethanol modulation of intestinal epithelial tight junction barrier. Am J Physiol 1999; 276(4): G965-74.
[PMID: 10198341]
[110]
Elamin E, Masclee A, Dekker J, Jonkers D. Ethanol disrupts intestinal epithelial tight junction integrity through intracellular calcium-mediated Rho/ROCK activation. Am J Physiol Gastrointest Liver Physiol 2014; 306(8): G677-85.
[http://dx.doi.org/10.1152/ajpgi.00236.2013] [PMID: 24557761]
[111]
Elamin E, Masclee A, Troost F, et al. Ethanol impairs intestinal barrier function in humans through mitogen activated protein kinase signaling: a combined in vivo and in vitro approach. PLoS One 2014; 9(9): e107421
[http://dx.doi.org/10.1371/journal.pone.0107421] [PMID: 25226407]
[112]
Elamin E, Jonkers D, Juuti-Uusitalo K, et al. Effects of ethanol and acetaldehyde on tight junction integrity: in vitro study in a three dimensional intestinal epithelial cell culture model. PLoS One 2012; 7(4): e35008
[http://dx.doi.org/10.1371/journal.pone.0035008] [PMID: 22563376]
[113]
Tang Y, Banan A, Forsyth CB, et al. Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease. Alcohol Clin Exp Res 2008; 32(2): 355-64.
[http://dx.doi.org/10.1111/j.1530-0277.2007.00584.x] [PMID: 18162065]
[114]
Banan A, Keshavarzian A, Zhang L, et al. NF-kappaB activation as a key mechanism in ethanol-induced disruption of the F-actin cytoskeleton and monolayer barrier integrity in intestinal epithelium. Alcohol 2007; 41(6): 447-60.
[http://dx.doi.org/10.1016/j.alcohol.2007.07.003] [PMID: 17869053]
[115]
Forsyth CB, Voigt RM, Keshavarzian A. Intestinal CYP2E1: A mediator of alcohol-induced gut leakiness. Redox Biol 2014; 3: 40-6.
[http://dx.doi.org/10.1016/j.redox.2014.10.002] [PMID: 25462064]
[116]
Cho YE, Yu LR, Abdelmegeed MA, Yoo SH, Song BJ. Apoptosis of enterocytes and nitration of junctional complex proteins promote alcohol-induced gut leakiness and liver injury. J Hepatol 2018; 69(1): 142-53.
[http://dx.doi.org/10.1016/j.jhep.2018.02.005] [PMID: 29458168]
[117]
Banan A, Fields JZ, Decker H, Zhang Y, Keshavarzian A. Nitric oxide and its metabolites mediate ethanol-induced microtubule disruption and intestinal barrier dysfunction. J Pharmacol Exp Ther 2000; 294(3): 997-1008.
[PMID: 10945852]
[118]
Elamin E, Masclee A, Troost F, Dekker J, Jonkers D. Activation of the epithelial-to-mesenchymal transition factor snail mediates acetaldehyde-induced intestinal epithelial barrier disruption. Alcohol Clin Exp Res 2014; 38(2): 344-53.
[http://dx.doi.org/10.1111/acer.12234] [PMID: 24033729]
[119]
Zhong W, McClain CJ, Cave M, Kang YJ, Zhou Z. The role of zinc deficiency in alcohol-induced intestinal barrier dysfunction. Am J Physiol Gastrointest Liver Physiol 2010; 298(5): G625-33.
[http://dx.doi.org/10.1152/ajpgi.00350.2009] [PMID: 20167873]
[120]
Kyoko OO, Kono H, Ishimaru K, et al. Expressions of tight junction proteins Occludin and Claudin-1 are under the circadian control in the mouse large intestine: implications in intestinal permeability and susceptibility to colitis. PLoS One 2014; 9(5): e98016
[http://dx.doi.org/10.1371/journal.pone.0098016] [PMID: 24845399]
[121]
Swanson GR, Gorenz A, Shaikh M, et al. Decreased melatonin secretion is associated with increased intestinal permeability and marker of endotoxemia in alcoholics. Am J Physiol Gastrointest Liver Physiol 2015; 308(12): G1004-11.
[http://dx.doi.org/10.1152/ajpgi.00002.2015] [PMID: 25907689]
[122]
Forsyth CB, Voigt RM, Burgess HJ, Swanson GR, Keshavarzian A. Circadian rhythms, alcohol and gut interactions. Alcohol 2015; 49(4): 389-98.
[http://dx.doi.org/10.1016/j.alcohol.2014.07.021] [PMID: 25499101]
[123]
Visapää JP, Tillonen J, Salaspuro M. Microbes and mucosa in the regulation of intracolonic acetaldehyde concentration during ethanol challenge. Alcohol Alcohol 2002; 37(4): 322-6.
[http://dx.doi.org/10.1093/alcalc/37.4.322] [PMID: 12107032]
[124]
Seth A, Basuroy S, Sheth P, Rao RK. L-Glutamine ameliorates acetaldehyde-induced increase in paracellular permeability in Caco-2 cell monolayer. Am J Physiol Gastrointest Liver Physiol 2004; 287(3): G510-7.
[http://dx.doi.org/10.1152/ajpgi.00058.2004] [PMID: 15331350]
[125]
Sheth P, Seth A, Atkinson KJ, et al. Acetaldehyde dissociates the PTP1B-E-cadherin-beta-catenin complex in Caco-2 cell monolayers by a phosphorylation-dependent mechanism. Biochem J 2007; 402http://dx.doi.org/BJ20060665 291: 300.
[126]
Mandrekar P, Szabo G. Signalling pathways in alcohol-induced liver inflammation. J Hepatol 2009; 50(6): 1258-66.
[http://dx.doi.org/10.1016/j.jhep.2009.03.007] [PMID: 19398236]
[127]
Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 2011; 141(5): 1572-85.
[http://dx.doi.org/10.1053/j.gastro.2011.09.002] [PMID: 21920463]
[128]
Banks WA, Kastin AJ, Broadwell RD. Passage of cytokines across the blood-brain barrier. J Immunol 1995; 175(10): 6893-9.
[http://dx.doi.org/10.1159/000097202] [PMID: 8963753]
[129]
Blanco AM, Vallés SL, Pascual M, Guerri C. Involvement of TLR4/type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J Immunol 2005; 175(10): 6893-9.http://dx.doi.org/175/10/6893
[PMID: 16272348]
[130]
Fernandez-Lizarbe S, Pascual M, Guerri C. Critical role of TLR4 response in the activation of microglia induced by ethanol. J Immunol 2009; 183(7): 4733-44.
[http://dx.doi.org/10.4049/jimmunol.0803590] [PMID: 19752239]
[131]
Szabo G, Lippai D. Converging actions of alcohol on liver and brain immune signaling. Int Rev Neurobiol 2014; 118: 359-80.
[http://dx.doi.org/10.1016/B978-0-12-801284-0.00011-7] [PMID: 25175869]
[132]
Pascual M, Baliño P, Alfonso-Loeches S, Aragón CM, Guerri C. Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun 2011; 25(Suppl. 1): S80-91.
[http://dx.doi.org/10.1016/j.bbi.2011.02.012] [PMID: 21352907]
[133]
Rachdaoui N, Sarkar DK. Effects of alcohol on the endocrine system. Endocrinol Metab Clin North Am 2013; 42(3): 593-615.
[http://dx.doi.org/10.1016/j.ecl.2013.05.008] [PMID: 24011889]
[134]
Frias J, Rodriguez R, Torres JM, Ruiz E, Ortega E. Effects of acute alcohol intoxication on pituitary-gonadal axis hormones, pituitary-adrenal axis hormones, beta-endorphin and prolactin in human adolescents of both sexes. Life Sci 2000; 67(9): 1081-6.http://dx.doi.org/S0024320500007025
[PMID: 10954041]
[135]
Richardson HN, Lee SY, O’Dell LE, Koob GF, Rivier CL. Alcohol self-administration acutely stimulates the hypothalamic-pituitary-adrenal axis, but alcohol dependence leads to a dampened neuroendocrine state. Eur J Neurosci 2008; 28(8): 1641-53.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06455.x] [PMID: 18979677]
[136]
Adinoff B, Iranmanesh A, Veldhuis J, Fisher L. Disturbances of the stress response: the role of the HPA axis during alcohol withdrawal and abstinence. Alcohol Health Res World 1998; 22(1): 67-72.
[PMID: 15706736]
[137]
Koob GF, Le Moal M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 2001; 24(2): 97-129.
[http://dx.doi.org/10.1016/S0893-133X(00)00195-0] [PMID: 11120394]
[138]
Rivier C. Adult male rats exposed to an alcohol diet exhibit a blunted adrenocorticotropic hormone response to immune or physical stress: possible role of nitric oxide. Alcohol Clin Exp Res 1995; 19(6): 1474-9.
[http://dx.doi.org/10.1111/j.1530-0277.1995.tb01010.x] [PMID: 8749813]
[139]
Stephens MA, Wand G. Stress and the HPA axis: role of glucocorticoids in alcohol dependence. Alcohol Res 2012; 34(4): 468-83.
[PMID: 23584113]
[140]
Blaine SK, Sinha R. Alcohol, stress, and glucocorticoids: From risk to dependence and relapse in alcohol use disorders. Neuropharmacology 2017; 122: 136-47.http://dx.doi.org/S0028-3908(17)30036-9
[PMID: 28159647]
[141]
Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry 2013; 74(10): 720-6.
[http://dx.doi.org/10.1016/j.biopsych.2013.05.001] [PMID: 23759244]
[142]
Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals. Trends Neurosci 2016; 39(11): 763-81.
[http://dx.doi.org/10.1016/j.tins.2016.09.002] [PMID: 27793434]
[143]
Swendsen JD, Merikangas KR. The comorbidity of depression and substance use disorders. Clin Psychol Rev 2000; 20(2): 173-89.
[http://dx.doi.org/10.1016/S0272-7358(99)00026-4] [PMID: 10721496]
[144]
Burokas A, Arboleya S, Moloney RD, et al. Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry 2017; 82(7): 472-87.http://dx.doi.org/S0006-3223(17)30042-2
[PMID: 28242013]
[145]
Wallace CJK, Milev R. The effects of probiotics on depressive symptoms in humans: a systematic review. Ann Gen Psychiatry 2017; 16 14-017-0138-2.
[http://dx.doi.org/10.1186/s12991-017-0138-2] [PMID: 28239408]
[146]
Sung H, Kim SW, Hong M, Suk KT. Microbiota-based treatments in alcoholic liver disease. World J Gastroenterol 2016; 22(29): 6673-82.
[http://dx.doi.org/10.3748/wjg.v22.i29.6673] [PMID: 27547010]
[147]
Ait-Belgnaoui A, Durand H, Cartier C, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 2012; 37(11): 1885-95.
[http://dx.doi.org/10.1016/j.psyneuen.2012.03.024] [PMID: 22541937]
[148]
Ait-Belgnaoui A, Colom A, Braniste V, et al. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol Motil 2014; 26(4): 510-20.
[http://dx.doi.org/10.1111/nmo.12295] [PMID: 24372793]
[149]
Goehler LE, Park SM, Opitz N, Lyte M, Gaykema RP. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav Immun 2008; 22(3): 354-66.
[http://dx.doi.org/10.1016/j.bbi.2007.08.009] [PMID: 17920243]
[150]
Nishino R, Mikami K, Takahashi H, et al. Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil 2013; 25(6): 521-8.
[http://dx.doi.org/10.1111/nmo.12110] [PMID: 23480302]
[151]
Mackos AR, Eubank TD, Parry NM, Bailey MT. Probiotic Lactobacillus reuteri attenuates the stressor-enhanced severity of Citrobacter rodentium infection. Infect Immun 2013; 81(9): 3253-63.
[http://dx.doi.org/10.1128/IAI.00278-13] [PMID: 23798531]
[152]
Messaoudi M, Lalonde R, Violle N, et al. 2011.
[153]
Messaoudi M, Violle N, Bisson JF, Desor D, Javelot H, Rougeot C. 2011.
[154]
Andersson H, Tullberg C, Ahrné S, et al. Oral administration of Lactobacillus plantarum 299v reduces cortisol levels in human saliva during examination induced stress: a randomized, double-blind controlled trial. Int J Microbiol 2016; 2016: 8469018
[http://dx.doi.org/10.1155/2016/8469018] [PMID: 28101105]
[155]
Yang H, Zhao X, Tang S, et al. Probiotics reduce psychological stress in patients before laryngeal cancer surgery. Asia Pac J Clin Oncol 2016; 12(1): e92-6.
[http://dx.doi.org/10.1111/ajco.12120] [PMID: 24571169]
[156]
Pinto-Sanchez MI, Hall GB, Ghajar K, et al. Probiotic bifidobacterium longum ncc3001 reduces depression scores and alters brain activity: a pilot study in patients with irritable bowel syndrome 2017.
[157]
Shukla PK, Meena AS, Manda B, et al. Lactobacillus plantarum prevents and mitigates alcohol-induced disruption of colonic epithelial tight junctions, endotoxemia, and liver damage by an EGF receptor-dependent mechanism. FASEB J 2018; fj201800351R: fj201800351R
[http://dx.doi.org/10.1096/fj.201800351R] [PMID: 29912589]
[158]
Kao AC, Harty S, Burnet PW. The Influence of Prebiotics on Neurobiology and Behavior. Int Rev Neurobiol 2016; 131: 21-48.
[http://dx.doi.org/10.1016/bs.irn.2016.08.007] [PMID: 27793220]
[159]
Tarr AJ, Galley JD, Fisher SE, Chichlowski M, Berg BM, Bailey MT. The prebiotics 3‘Sialyllactose and 6’Sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations: Evidence for effects on the gut-brain axis. Brain Behav Immun 2015; 50: 166-77.http://dx.doi.org/S0889-1591(15)00234-2
[PMID: 26144888]
[160]
Kapiki A, Costalos C, Oikonomidou C, Triantafyllidou A, Loukatou E, Pertrohilou V. The effect of a fructo-oligosaccharide supplemented formula on gut flora of preterm infants. Early Hum Dev 2007; 83(5): 335-9.
[http://dx.doi.org/10.1016/j.earlhumdev.2006.07.003] [PMID: 16978805]
[161]
Schmidt K, Cowen PJ, Harmer CJ, Tzortzis G, Errington S, Burnet PW. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology (Berl) 2015; 232(10): 1793-801.
[http://dx.doi.org/10.1007/s00213-014-3810-0] [PMID: 25449699]
[162]
Gronier B, Savignac HM, Di Miceli M, et al. Increased cortical neuronal responses to NMDA and improved attentional set-shifting performance in rats following prebiotic (B-GOS®) ingestion. Eur Neuropsychopharmacol 2018; 28(1): 211-24.http://dx.doi.org/0924-977X(17)31992-2
[PMID: 29174530]
[163]
Savignac HM, Corona G, Mills H, et al. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochem Int 2013; 63(8): 756-64.
[http://dx.doi.org/10.1016/j.neuint.2013.10.006] [PMID: 24140431]
[164]
Burokas A, Martín-García E, Espinosa-Carrasco J, et al. Extinction and reinstatement of an operant responding maintained by food in different models of obesity. Addict Biol 2018; 23(2): 544-55.
[http://dx.doi.org/10.1111/adb.12597] [PMID: 29282813]
[165]
Yarandi SS, Peterson DA, Treisman GJ, Moran TH, Pasricha PJ. Modulatory effects of gut microbiota on the central nervous system: how gut could play a role in neuropsychiatric health and diseases. J Neurogastroenterol Motil 2016; 22(2): 201-12.
[http://dx.doi.org/10.5056/jnm15146] [PMID: 27032544]
[166]
Rios-Covian D, Cuesta I, Alvarez-Buylla JR, Ruas-Madiedo P, Gueimonde M, de Los Reyes-Gavilan CG. Bacteroides fragilis metabolises exopolysaccharides produced by bifidobacteria 2016.
[167]
Davis DJ, Hecht PM, Jasarevic E, et al. Sex-specific effects of docosahexaenoic acid (DHA) on the microbiome and behavior of socially-isolated mice. Brain Behav Immun 2017; 59: 38-48.http://dx.doi.org/S0889-1591(16)30412-3
[PMID: 27621225]
[168]
Costantini L, Molinari R, Farinon B, Merendino N. Impact of omega-3 fatty acids on the gut microbiota. Int J Mol Sci 2017; 18(12): E2645
[http://dx.doi.org/10.3390/ijms18122645] [PMID: 29215589]
[169]
Antón M, Rodríguez-González A, Rodríguez-Rojo IC, et al. Increased plasma oleoylethanolamide and palmitoleoylethanolamide levels correlate with inflammatory changes in alcohol binge drinkers: the case of HMGB1 in women. Addict Biol 2018; 23(6): 1242-50.
[http://dx.doi.org/10.1111/adb.12580] [PMID: 29178411]
[170]
Rodríguez de Fonseca F, Navarro M, Gómez R, et al. An anorexic lipid mediator regulated by feeding. Nature 2001; 414(6860): 209-12.
[http://dx.doi.org/10.1038/35102582] [PMID: 11700558]
[171]
Di Paola M, Bonechi E, Provensi G, et al. Oleoylethanolamide treatment affects gut microbiota composition and the expression of intestinal cytokines in Peyer's patches of mice 2018.
[172]
de Timary P, Leclercq S, Stärkel P, Delzenne N. A dysbiotic subpopulation of alcohol-dependent subjects. Gut Microbes 2015; 6(6): 388-91.
[http://dx.doi.org/10.1080/19490976.2015.1107696] [PMID: 26727422]
[173]
Meckel KR, Kiraly DD. A potential role for the gut microbiome in substance use disorders. Psychopharmacology (Berl) 2019; 236(5): 1513-30.
[http://dx.doi.org/10.1007/s00213-019-05232-0] [PMID: 30982128]
[174]
Lowe PP, Gyongyosi B, Satishchandran A, Iracheta-Vellve A, Cho Y, Ambade A, et al. 2018.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 20
Year: 2020
Published on: 20 June, 2020
Page: [2426 - 2437]
Pages: 12
DOI: 10.2174/1381612826666200122153541
Price: $65

Article Metrics

PDF: 22
HTML: 4