DLEU1: A Functional Long Noncoding RNA in Tumorigenesis

Author(s): Chaoying Song, Jiali Zhang, Zongyao Zhao, Yuxia Yang, Di Meng, Jing Wang, Chong Guo*, Chengfu Yuan*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 15 , 2020

Become EABM
Become Reviewer

Abstract:

Background: LncRNA DLEU1 participates in various biological processes, playing an indispensable role in the pathophysiology of human diseases, especially in tumorigenesis and other processes. Besides, it may represent a promising target for biotherapy in numerous tumors. The aim of this review was to reveal the pathophysiological functions and mechanisms of lncRNA DLEU1 in different types of cancer.

Methods: In this review, current studies concerning the biological functions and mechanisms of DLEU1 in tumor development are summarized and analyzed; the related researches are collected through a systematic retrieval of PubMed.

Results: DLEU1 is a novel cancer-associated lncRNA that has been proved to be abnormally elevated in various malignancies, containing osteosarcoma, glioma, glioblastoma multiforme, hepatocellular carcinoma, bladder cancer, cervical cancer, non-small cell lung cancer, pancreatic ductal adenocarcinoma, colorectal cancer, oral squamous cell carcinoma, endometrial cancer, gastric cancer, Burkitt lymphoma and ovarian carcinoma. Besides, lncRNA LDEU1 has been demonstrated involving in the procession of proliferation, migration, invasion and inhibition of apoptosis of cancer cells.

Conclusion: Long non-coding RNA DLEU1 is likely to represent an available biomarker or a potential therapeutic target in multiple tumors.

Keywords: Long non-coding RNA, DLEU1, tumorigenesis, biomarker, potential therapeutic target, multiple tumors.

[1]
Bergmann JH, Spector DL. Long non-coding RNAs: modulators of nuclear structure and function. Curr Opin Cell Biol 2014; 26: 10-8.
[http://dx.doi.org/10.1016/j.ceb.2013.08.005] [PMID: 24529241]
[2]
Nava-Rodríguez MP, Domínguez-Cruz MD, Aguilar-López LB, Borjas-Gutiérrez C, Magaña-Torres MT, González-García JR. Genomic instability in a chronic lymphocytic leukemia patient with mono-allelic deletion of the DLEU and RB1 genes. Mol Cytogenet 2019; 12: 2.
[http://dx.doi.org/10.1186/s13039-019-0417-5] [PMID: 30733830]
[3]
Chen X, Zhang C, Wang X. Long noncoding RNA DLEU1 aggravates osteosarcoma carcinogenesis via regulating the miR-671-5p/DDX5 axis. Artif Cells Nanomed Biotechnol 2019; 47(1): 3322-8.
[http://dx.doi.org/10.1080/21691401.2019.1648285] [PMID: 31379208]
[4]
Feng L, He M, Rao M, Diao J, Zhu Y. Long noncoding RNA DLEU1 aggravates glioma progression via the miR-421/MEF2D axis. OncoTargets Ther 2019; 12: 5405-14.
[http://dx.doi.org/10.2147/OTT.S207542] [PMID: 31360066]
[5]
Wang J, Quan X, Peng D, Hu G. Long non‑coding RNA DLEU1 promotes cell proliferation of glioblastoma multiforme. Mol Med Rep 2019; 20(2): 1873-82.
[http://dx.doi.org/10.3892/mmr.2019.10428] [PMID: 31257517]
[6]
Zhang W, Liu S, Liu K, Liu Y. Long non-coding RNA deleted in lymphocytic leukaemia 1 promotes hepatocellular carcinoma progression by sponging miR-133a to regulate IGF-1R expression. J Cell Mol Med 2019; 23(8): 5154-64.
[http://dx.doi.org/10.1111/jcmm.14384] [PMID: 31207081]
[7]
Li Y, Shi B, Dong F, Zhu X, Liu B, Liu Y. Long non-coding RNA DLEU1 promotes cell proliferation, invasion, and confers cisplatin resistance in bladder cancer by regulating the miR-99b/HS3ST3B1 axis. Front Genet 2019; 10: 280.
[http://dx.doi.org/10.3389/fgene.2019.00280] [PMID: 30984249]
[8]
Liu C, Tian X, Zhang J, Jiang L. Long non-coding RNA DLEU1 promotes proliferation and invasion by interacting with miR-381 and enhancing HOXA13 expression in cervical cancer. Front Genet 2018; 9: 629.
[http://dx.doi.org/10.3389/fgene.2018.00629] [PMID: 30581456]
[9]
Zhang S, Guan Y, Liu X, Ju M, Zhang Q. Long non-coding RNA DLEU1 exerts an oncogenic function in non-small cell lung cancer. Biomed Pharmacother 2019; 109: 985-90.
[http://dx.doi.org/10.1016/j.biopha.2018.10.175] [PMID: 30551552]
[10]
Gao S, Cai Y, Zhang H, Hu F, Hou L, Xu Q. Long noncoding RNA DLEU1 aggravates pancreatic ductal adenocarcinoma carcinogenesis via the miR-381/CXCR4 axis. J Cell Physiol 2019; 234(5): 6746-57.
[http://dx.doi.org/10.1002/jcp.27421] [PMID: 30382579]
[11]
Liu T, Han Z, Li H, Zhu Y, Sun Z, Zhu A. LncRNA DLEU1 contributes to colorectal cancer progression via activation of KPNA3. Mol Cancer 2018; 17(1): 118.
[http://dx.doi.org/10.1186/s12943-018-0873-2] [PMID: 30098595]
[12]
Nishiyama K, Maruyama R, Niinuma T, et al. Screening for long noncoding RNAs associated with oral squamous cell carcinoma reveals the potentially oncogenic actions of DLEU1. Cell Death Dis 2018; 9(8): 826.
[http://dx.doi.org/10.1038/s41419-018-0893-2] [PMID: 30069008]
[13]
Shao W, Li Y, Chen F, Jia H, Jia J, Fu Y. Long non-coding RNA DLEU1 contributes to the development of endometrial cancer by sponging miR-490 to regulate SP1 expression. Pharmazie 2018; 73(7): 379-85.
[PMID: 30001771]
[14]
Du Y, Wang L, Chen S, Liu Y, Zhao Y. lncRNA DLEU1 contributes to tumorigenesis and development of endometrial carcinoma by targeting mTOR. Mol Carcinog 2018; 57(9): 1191-200.
[http://dx.doi.org/10.1002/mc.22835] [PMID: 29745433]
[15]
Li X, Li Z, Liu Z, Xiao J, Yu S, Song Y. Long non-coding RNA DLEU1 predicts poor prognosis of gastric cancer and contributes to cell proliferation by epigenetically suppressing KLF2. Cancer Gene Ther 2018; 25(3-4): 58-67.
[http://dx.doi.org/10.1038/s41417-017-0007-9] [PMID: 29282356]
[16]
Lee S, Luo W, Shah T, et al. The effects of DLEU1 gene expression in Burkitt lymphoma (BL): potential mechanism of chemoimmunotherapy resistance in BL. Oncotarget 2017; 8(17): 27839-53.
[http://dx.doi.org/10.18632/oncotarget.15711] [PMID: 28427156]
[17]
Wang LL, Sun KX, Wu DD, et al. DLEU1 contributes to ovarian carcinoma tumourigenesis and development by interacting with miR-490-3p and altering CDK1 expression. J Cell Mol Med 2017; 21(11): 3055-65.
[http://dx.doi.org/10.1111/jcmm.13217] [PMID: 28598010]
[18]
Pang B, Sui S, Wang Q, Wu J, Yin Y, Xu S. Upregulation of DLEU1 expression by epigenetic modification promotes tumorigenesis in human cancer. J Cell Physiol 2019; 234(10): 17420-32.
[http://dx.doi.org/10.1002/jcp.28364] [PMID: 30793303]
[19]
Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res 2009; 152: 3-13.
[http://dx.doi.org/10.1007/978-1-4419-0284-9_1] [PMID: 20213383]
[20]
Ostrom QT, Bauchet L, Davis FG, et al. Response to “the epidemiology of glioma in adults: a ‘state of the science’ review”. Neuro-oncol 2015; 17(4): 624-6.
[http://dx.doi.org/10.1093/neuonc/nov022] [PMID: 25762697]
[21]
Lian H, Daniels C, Han YP, et al. Incidence of metastatic disease and survival among patients with newly diagnosed primary CNS tumors in the United States from 2004-2013. J Cancer 2019; 10(13): 3037-45.
[http://dx.doi.org/10.7150/jca.30624] [PMID: 31281481]
[22]
Massarweh NN, El-Serag HB. Epidemiology of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Contr 2017; 24(3)1073274817729245
[http://dx.doi.org/10.1177/1073274817729245] [PMID: 28975830]
[23]
Bladder cancer: diagnosis and management of bladder cancer: © NICE (2015) Bladder cancer: diagnosis and management of bladder cancer. BJU Int 2017; 120(6): 755-65.
[http://dx.doi.org/10.1111/bju.14045] [PMID: 29168333]
[24]
Tsikouras P, Zervoudis S, Manav B, et al. Cervical cancer: screening, diagnosis and staging. J BUON 2016; 21(2): 320-5.
[PMID: 27273940]
[25]
Tan KS, Eguchi T, Adusumilli PS. Reporting net survival in populations: a sensitivity analysis in lung cancer demonstrates the differential implications of reporting relative survival and cause-specific survival. Clin Epidemiol 2019; 11: 781-92.
[http://dx.doi.org/10.2147/CLEP.S210894] [PMID: 31564983]
[26]
Simoes PK, Olson SH, Saldia A, Kurtz RC. Epidemiology of pancreatic adenocarcinoma. Linchuang Zhongliuxue Zazhi 2017; 6(3): 24.
[http://dx.doi.org/10.21037/cco.2017.06.32] [PMID: 28705001]
[27]
Weinberg BA, Marshall JL, Salem ME. The growing challenge of young adults with colorectal cancer. Oncology (Williston Park) 2017; 31(5): 381-9.
[PMID: 28516436]
[28]
Ghafari R, Jalayer Naderi N, Emami Razavi A. A retrospective institutional study of histopathologic pattern of Oral Squamous Cell Carcinoma (OSCC) in Tehran, Iran during 2006-2015. J Res Med Sci 2019; 24: 53.
[http://dx.doi.org/10.4103/jrms.JRMS_882_18] [PMID: 31333732]
[29]
Suri V, Arora A. Management of endometrial cancer: a review. Rev Recent Clin Trials 2015; 10(4): 309-16.
[http://dx.doi.org/10.2174/1574887110666150923115228] [PMID: 26411949]
[30]
Ang TL, Fock KM. Clinical epidemiology of gastric cancer. Singapore Med J 2014; 55(12): 621-8.
[http://dx.doi.org/10.11622/smedj.2014174] [PMID: 25630323]
[31]
López C, Kleinheinz K, Aukema SM, et al. ICGC MMML-Seq Consortium.Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma. Nat Commun 2019; 10(1): 1459.
[http://dx.doi.org/10.1038/s41467-019-08578-3] [PMID: 30926794]
[32]
Sun W, Fu S. Role of cancer-associated fibroblasts in tumor structure, composition and the microenvironment in ovarian cancer. Oncol Lett 2019; 18(3): 2173-8.
[http://dx.doi.org/10.3892/ol.2019.10587] [PMID: 31452720]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 15
Year: 2020
Page: [1742 - 1748]
Pages: 7
DOI: 10.2174/1381612826666200122145305
Price: $65

Article Metrics

PDF: 22
HTML: 1