Micro-RNA and the Features of Metabolic Syndrome: A Narrative Review

Author(s): Srijit Das*, Isa Naina Mohamed, Seong Lin Teoh, Tarrsini Thevaraj, Ku Nurmahirah Ku Ahmad Nasir, Azwani Zawawi, Hazwan Hazrin Salim, Dennis Kheng Zhou

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 20 , Issue 7 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The incidence of Metabolic Syndrome (MetS) has risen globally. MetS includes a combination of features, i.e. blood glucose impairment, excess abdominal/body fat dyslipidemia and elevated blood pressure. Other than conventional treatment with drugs, the main preventive approaches include lifestyle changes, weight loss, diet control and adequate exercise also proves to be beneficial. MicroRNAs (miRNAs) are small non-coding RNAs that play critical regulatory roles in most biological and pathological processes. In the present review, we discuss various miRNAs which are related to MetS by targeting various organs, including the pancreas, liver, skeletal muscles and adipose tissues. These miRNAs have the effect on insulin production and secretion (miR-9, miR-124a, miR-130a,b, miR152, miR-335, miR-375), insulin resistance (miR-29), adipogenesis (miR-143, miR148a) and lipid metabolism (miR-192). We also discuss the miRNAs as potential biomarkers and future therapeutic targets. This review may be beneficial for molecular biologists and clinicians dealing with MetS.

Keywords: miRNA, metabolic syndrome, biomarker, therapeutic, RNAs, MetS.

[1]
Kylin, E. Studien ueber das Hypertonie-Hyperglyca “mie-Hyperurika” miesyndrom. Zentralblatt fuer Innere Medizin., 1923, 44, 105-127.
[2]
Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med., 1998, 15(7), 539-553.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199807)15:7<539:: AID-DIA668>3.0.CO;2-S] [PMID: 9686693]
[3]
Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr; Spertus, J.A.; Costa, F. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Curr. Opin. Cardiol., 2006, 21(1), 1-6.
[http://dx.doi.org/10.1097/01.hco.0000200416.65370.a0] [PMID: 16355022]
[4]
Alberti, K.G.; Zimmet, P.; Shaw, J. The metabolic syndrome--a new worldwide definition. Lancet, 2005, 366(9491), 1059-1062.
[http://dx.doi.org/10.1016/S0140-6736(05)67402-8] [PMID: 16182882]
[5]
Arshad, N.; Lin, T.S.; Yahaya, M.F. Metabolic syndrome and its effect on the brain: Possible mechanism. CNS Neurol. Disord. Drug Targets, 2018, 17(8), 595-603.
[http://dx.doi.org/10.2174/1871527317666180724143258] [PMID: 30047340]
[6]
Reinehr, T. Metabolic syndrome in children and adolescents: A critical approach considering the interaction between pubertal stage and insulin resistance. Curr. Diab. Rep., 2016, 16(1), 8.
[http://dx.doi.org/10.1007/s11892-015-0695-1] [PMID: 26747052]
[7]
Villamor, E.; Finan, C.C.; Ramirez-Zea, M.; Roman, A.V. Prevalence and sociodemographic correlates of metabolic syndrome in school-aged children and their parents in nine Mesoamerican countries. Public Health Nutr., 2017, 20(2), 255-265.
[http://dx.doi.org/10.1017/S1368980016002342] [PMID: 27609776]
[8]
Wong, N.D. Intensified screening and treatment of the metabolic syndrome for cardiovascular risk reduction. Prev. Cardiol., 2005, 8(1), 47-52.
[http://dx.doi.org/10.1111/j.1520-037X.2005.4073.x] [PMID: 15722694]
[9]
Deen, D. Metabolic syndrome: time for action. Am. Fam. Physician, 2004, 69(12), 2875-2882.
[PMID: 15222652]
[10]
Reaven, G.M. Role of insulin resistance in human disease (syndrome X): an expanded definition. Annu. Rev. Med., 1993, 44, 121-131.
[http://dx.doi.org/10.1146/annurev.me.44.020193.001005] [PMID: 8476236]
[11]
Grundy, S.M. Metabolic syndrome update. Trends Cardiovasc. Med., 2016, 26(4), 364-373.
[http://dx.doi.org/10.1016/j.tcm.2015.10.004] [PMID: 26654259]
[12]
Vishram, J.K.; Borglykke, A.; Andreasen, A.H.; Jeppesen, J.; Ibsen, H.; Jørgensen, T.; Palmieri, L.; Giampaoli, S.; Donfrancesco, C.; Kee, F.; Mancia, G.; Cesana, G.; Kuulasmaa, K.; Salomaa, V.; Sans, S.; Ferrieres, J.; Dallongeville, J.; Söderberg, S.; Arveiler, D.; Wagner, A.; Tunstall-Pedoe, H.; Drygas, W.; Olsen, M.H. Impact of age and gender on the prevalence and prognostic importance of the metabolic syndrome and its components in Europeans. The MORGAM Prospective Cohort Project. PLoS One, 2014, 9(9)e107294
[http://dx.doi.org/10.1371/journal.pone.0107294] [PMID: 25244618]
[13]
Cameron, A.J.; Shaw, J.E.; Zimmet, P.Z. The metabolic syndrome: prevalence in worldwide populations. Endocrinol. Metab. Clin. North Am., 2004, 33(2), 351-375.
[http://dx.doi.org/10.1016/j.ecl.2004.03.005] [PMID: 15158523]
[14]
Aguilar, M.; Bhuket, T.; Torres, S.; Liu, B.; Wong, R.J. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA, 2015, 313(19), 1973-1974.
[http://dx.doi.org/10.1001/jama.2015.4260] [PMID: 25988468]
[15]
Wong-McClure, R.A.; Gregg, E.W.; Barceló, A.; Lee, K.; Abarca-Gómez, L.; Sanabria-López, L.; Tortós-Guzmán, J. Prevalence of metabolic syndrome in Central America: a cross-sectional population-based study. Rev. Panam. Salud Publica, 2015, 38(3), 202-208.
[PMID: 26757998]
[16]
Li, R.; Li, W.; Lun, Z.; Zhang, H.; Sun, Z.; Kanu, J.S.; Qiu, S.; Cheng, Y.; Liu, Y. Prevalence of metabolic syndrome in Mainland China: a meta-analysis of published studies. BMC Public Health, 2016, 16, 296.
[http://dx.doi.org/10.1186/s12889-016-2870-y] [PMID: 27039079]
[17]
Dong, H.; Lei, J.; Ding, L.; Wen, Y.; Ju, H.; Zhang, X. MicroRNA: function, detection, and bioanalysis. Chem. Rev., 2013, 113(8), 6207-6233.
[http://dx.doi.org/10.1021/cr300362f] [PMID: 23697835]
[18]
Du, T.; Zamore, P.D. Beginning to understand microRNA function. Cell Res., 2007, 17(8), 661-663.
[http://dx.doi.org/10.1038/cr.2007.67] [PMID: 17694094]
[19]
O’Carroll, D.; Schaefer, A. General principals of miRNA biogenesis and regulation in the brain. Neuropsychopharmacology, 2013, 38(1), 39-54.
[http://dx.doi.org/10.1038/npp.2012.87] [PMID: 22669168]
[20]
Putteeraj, M.; Fairuz, Y.M.; Teoh, S.L. MicroRNA Dysregulation in Alzheimer’s Disease. CNS Neurol. Disord. Drug Targets, 2017, 16(9), 1000-1009.
[PMID: 28782488]
[21]
Teoh, S.L.; Das, S. The role of microRNAs in diagnosis, prognosis, metastasis and resistant cases in breast cancer. Curr. Pharm. Des., 2017, 23(12), 1845-1859.
[http://dx.doi.org/10.2174/1381612822666161027120043] [PMID: 28231756]
[22]
Hussan, F.; Yahaya, M.F.; Teoh, S.L.; Das, S. Herbs for effective treatment of diabetes mellitus wounds: Medicinal chemistry and future therapeutic options. Mini Rev. Med. Chem., 2018, 18(8), 697-710.
[http://dx.doi.org/10.2174/1389557517666170927155707] [PMID: 28971772]
[23]
Finnegan, E.F.; Pasquinelli, A.E. MicroRNA biogenesis: regulating the regulators. Crit. Rev. Biochem. Mol. Biol., 2013, 48(1), 51-68.
[http://dx.doi.org/10.3109/10409238.2012.738643] [PMID: 23163351]
[24]
Johanson, T.M.; Lew, A.M.; Chong, M.M. MicroRNA-independent roles of the RNase III enzymes Drosha and Dicer. Open Biol., 2013, 3(10)130144
[http://dx.doi.org/10.1098/rsob.130144] [PMID: 24153005]
[25]
Wu, K.; He, J.; Pu, W.; Peng, Y. The role of exportin-5 in microRNA biogenesis and cancer. Genomics Proteomics Bioinformatics, 2018, 16(2), 120-126.
[http://dx.doi.org/10.1016/j.gpb.2017.09.004] [PMID: 29723684]
[26]
Wilson, R.C.; Tambe, A.; Kidwell, M.A.; Noland, C.L.; Schneider, C.P.; Doudna, J.A. Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol. Cell, 2015, 57(3), 397-407.
[http://dx.doi.org/10.1016/j.molcel.2014.11.030] [PMID: 25557550]
[27]
Lee, H.; Han, S.; Kwon, C.S.; Lee, D. Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell, 2016, 7(2), 100-113.
[http://dx.doi.org/10.1007/s13238-015-0212-y] [PMID: 26399619]
[28]
Sarshad, A.A.; Juan, A.H.; Muler, A.I.C. Argonaute-miRNA complexes silence target mRNAs in the nucleus of mammalian stem cells. Mol. Cell, 2018, 71, 1040-1050.
[http://dx.doi.org/10.1016/j.molcel.2018.07.020]
[29]
Kim, Y.K.; Kim, B.; Kim, V.N. Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis. Proc. Natl. Acad. Sci. USA, 2016, 113(13), E1881-E1889.
[http://dx.doi.org/10.1073/pnas.1602532113] [PMID: 26976605]
[30]
Yang, J.S.; Lai, E.C. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell, 2011, 43(6), 892-903.
[http://dx.doi.org/10.1016/j.molcel.2011.07.024] [PMID: 21925378]
[31]
Tang, X.; Tang, G.; Ozcan, S. Role of microRNAs in diabetes. Biochim. Biophys. Acta, 2008, 1779(11), 697-701.
[http://dx.doi.org/10.1016/j.bbagrm.2008.06.010] [PMID: 18655850]
[32]
Joglekar, M.V.; Parekh, V.S.; Mehta, S.; Bhonde, R.R.; Hardikar, A.A. MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev. Biol., 2007, 311(2), 603-612.
[http://dx.doi.org/10.1016/j.ydbio.2007.09.008] [PMID: 17936263]
[33]
Poy, M.N.; Hausser, J.; Trajkovski, M.; Braun, M.; Collins, S.; Rorsman, P.; Zavolan, M.; Stoffel, M. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc. Natl. Acad. Sci. USA, 2009, 106(14), 5813-5818.
[http://dx.doi.org/10.1073/pnas.0810550106] [PMID: 19289822]
[34]
Poy, M.N.; Eliasson, L.; Krutzfeldt, J.; Kuwajima, S.; Ma, X.; Macdonald, P.E.; Pfeffer, S.; Tuschl, T.; Rajewsky, N.; Rorsman, P.; Stoffel, M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 2004, 432(7014), 226-230.
[http://dx.doi.org/10.1038/nature03076] [PMID: 15538371]
[35]
El Ouaamari, A.; Baroukh, N.; Martens, G.A.; Lebrun, P.; Pipeleers, D.; van Obberghen, E. miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes, 2008, 57(10), 2708-2717.
[http://dx.doi.org/10.2337/db07-1614] [PMID: 18591395]
[36]
Lahmy, R.; Soleimani, M.; Sanati, M.H.; Behmanesh, M.; Kouhkan, F.; Mobarra, N. MiRNA-375 promotes beta pancreatic differentiation in human induced pluripotent stem (hiPS) cells. Mol. Biol. Rep., 2014, 41(4), 2055-2066.
[http://dx.doi.org/10.1007/s11033-014-3054-4] [PMID: 24469711]
[37]
Baroukh, N.; Ravier, M.A.; Loder, M.K.; Hill, E.V.; Bounacer, A.; Scharfmann, R.; Rutter, G.A.; Van Obberghen, E. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J. Biol. Chem., 2007, 282(27), 19575-19588.
[http://dx.doi.org/10.1074/jbc.M611841200] [PMID: 17462994]
[38]
Tugay, K.; Guay, C.; Marques, A.C.; Allagnat, F.; Locke, J.M.; Harries, L.W.; Rutter, G.A.; Regazzi, R. Role of microRNAs in the age-associated decline of pancreatic beta cell function in rat islets. Diabetologia, 2016, 59(1), 161-169.
[http://dx.doi.org/10.1007/s00125-015-3783-5] [PMID: 26474776]
[39]
Sebastiani, G.; Po, A.; Miele, E.; Ventriglia, G.; Ceccarelli, E.; Bugliani, M.; Marselli, L.; Marchetti, P.; Gulino, A.; Ferretti, E.; Dotta, F. MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetol., 2015, 52(3), 523-530.
[http://dx.doi.org/10.1007/s00592-014-0675-y] [PMID: 25408296]
[40]
Plaisance, V.; Abderrahmani, A.; Perret-Menoud, V.; Jacquemin, P.; Lemaigre, F.; Regazzi, R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J. Biol. Chem., 2006, 281(37), 26932-26942.
[http://dx.doi.org/10.1074/jbc.M601225200] [PMID: 16831872]
[41]
Jafarian, A.; Taghikani, M.; Abroun, S.; Allahverdi, A.; Lamei, M.; Lakpour, N.; Soleimani, M. The generation of insulin producing cells from human mesenchymal stem cells by miR-375 and anti-miR-9. PLoS One, 2015, 10(6), e0128650
[http://dx.doi.org/10.1371/journal.pone.0128650] [PMID: 26047014]
[42]
Hu, D.; Wang, Y.; Zhang, H.; Kong, D. Identification of miR-9 as a negative factor of insulin secretion from beta cells. J. Physiol. Biochem., 2018, 74(2), 291-299.
[http://dx.doi.org/10.1007/s13105-018-0615-3] [PMID: 29470815]
[43]
Salunkhe, V.A.; Ofori, J.K.; Gandasi, N.R.; Salö, S.A.; Hansson, S.; Andersson, M.E.; Wendt, A.; Barg, S.; Esguerra, J.L.S.; Eliasson, L. MiR-335 overexpression impairs insulin secretion through defective priming of insulin vesicles. Physiol. Rep., 2017, 5(21)e13493
[http://dx.doi.org/10.14814/phy2.13493] [PMID: 29122960]
[44]
Dooley, J.; Garcia-Perez, J.E.; Sreenivasan, J.; Schlenner, S.M.; Vangoitsenhoven, R.; Papadopoulou, A.S.; Tian, L.; Schonefeldt, S.; Serneels, L.; Deroose, C.; Staats, K.A.; Van der Schueren, B.; De Strooper, B.; McGuinness, O.P.; Mathieu, C.; Liston, A. The microRNA-29 family dictates the balance between homeostatic and pathological glucose handling in diabetes and obesity. Diabetes, 2016, 65(1), 53-61.
[http://dx.doi.org/10.2337/db15-0770] [PMID: 26696639]
[45]
Ofori, J.K.; Salunkhe, V.A.; Bagge, A.; Vishnu, N.; Nagao, M.; Mulder, H.; Wollheim, C.B.; Eliasson, L.; Esguerra, J.L. Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell. Sci. Rep., 2017, 7, 44986.
[http://dx.doi.org/10.1038/srep44986] [PMID: 28332581]
[46]
Roux, M.; Perret, C.; Feigerlova, E.; Mohand Oumoussa, B.; Saulnier, P.J.; Proust, C.; Trégouët, D.A.; Hadjadj, S. Plasma levels of hsa-miR-152-3p are associated with diabetic nephropathy in patients with type 2 diabetes. Nephrol. Dial. Transplant., 2018, 33(12), 2201-2207.
[http://dx.doi.org/10.1093/ndt/gfx367] [PMID: 29361146]
[47]
Trajkovski, M.; Hausser, J.; Soutschek, J.; Bhat, B.; Akin, A.; Zavolan, M.; Heim, M.H.; Stoffel, M. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature, 2011, 474(7353), 649-653.
[http://dx.doi.org/10.1038/nature10112] [PMID: 21654750]
[48]
Yamamoto, M.; Toya, Y.; Schwencke, C.; Lisanti, M.P.; Myers, M.G., Jr; Ishikawa, Y. Caveolin is an activator of insulin receptor signaling. J. Biol. Chem., 1998, 273(41), 26962-26968.
[http://dx.doi.org/10.1074/jbc.273.41.26962] [PMID: 9756945]
[49]
Karolina, D.S.; Tavintharan, S.; Armugam, A.; Sepramaniam, S.; Pek, S.L.; Wong, M.T.; Lim, S.C.; Sum, C.F.; Jeyaseelan, K. Circulating miRNA profiles in patients with metabolic syndrome. J. Clin. Endocrinol. Metab., 2012, 97(12), E2271-E2276.
[http://dx.doi.org/10.1210/jc.2012-1996] [PMID: 23032062]
[50]
He, A.; Zhu, L.; Gupta, N.; Chang, Y.; Fang, F. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol. Endocrinol., 2007, 21(11), 2785-2794.
[http://dx.doi.org/10.1210/me.2007-0167] [PMID: 17652184]
[51]
Zhou, Y.; Gu, P.; Shi, W.; Li, J.; Hao, Q.; Cao, X.; Lu, Q.; Zeng, Y. MicroRNA-29a induces insulin resistance by targeting PPARδ in skeletal muscle cells. Int. J. Mol. Med., 2016, 37(4), 931-938.
[http://dx.doi.org/10.3892/ijmm.2016.2499] [PMID: 26936652]
[52]
Fu, X.; Dong, B.; Tian, Y.; Lefebvre, P.; Meng, Z.; Wang, X.; Pattou, F.; Han, W.; Wang, X.; Lou, F.; Jove, R.; Staels, B.; Moore, D.D.; Huang, W. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J. Clin. Invest., 2015, 125(6), 2497-2509.
[http://dx.doi.org/10.1172/JCI75438] [PMID: 25961460]
[53]
Kong, L.; Zhu, J.; Han, W.; Jiang, X.; Xu, M.; Zhao, Y.; Dong, Q.; Pang, Z.; Guan, Q.; Gao, L.; Zhao, J.; Zhao, L. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol., 2011, 48(1), 61-69.
[http://dx.doi.org/10.1007/s00592-010-0226-0] [PMID: 20857148]
[54]
Zhou, T.; Meng, X.; Che, H.; Shen, N.; Xiao, D.; Song, X.; Liang, M.; Fu, X.; Ju, J.; Li, Y.; Xu, C.; Zhang, Y.; Wang, L. Regulation of insulin resistance by multiple miRNAs via targeting the GLUT4 signalling pathway. Cell. Physiol. Biochem., 2016, 38(5), 2063-2078.
[http://dx.doi.org/10.1159/000445565] [PMID: 27165190]
[55]
Yan, S.T.; Li, C.L.; Tian, H.; Li, J.; Pei, Y.; Liu, Y.; Gong, Y.P.; Fang, F.S.; Sun, B.R. MiR-199a is overexpressed in plasma of type 2 diabetes patients which contributes to type 2 diabetes by targeting GLUT4. Mol. Cell. Biochem., 2014, 397(1-2), 45-51.
[http://dx.doi.org/10.1007/s11010-014-2170-8] [PMID: 25084986]
[56]
Chuang, T.Y.; Wu, H.L.; Chen, C.C.; Gamboa, G.M.; Layman, L.C.; Diamond, M.P.; Azziz, R.; Chen, Y.H. MicroRNA-223 expression is upregulated in insulin resistant human adipose tissue. J. Diabetes Res., 2015, 2015943659
[http://dx.doi.org/10.1155/2015/943659] [PMID: 26273679]
[57]
Kopelman, P.G. Obesity as a medical problem. Nature, 2000, 404(6778), 635-643.
[http://dx.doi.org/10.1038/35007508] [PMID: 10766250]
[58]
Klöting, N.; Berthold, S.; Kovacs, P.; Schön, M.R.; Fasshauer, M.; Ruschke, K.; Stumvoll, M.; Blüher, M. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One, 2009, 4(3), e4699
[http://dx.doi.org/10.1371/journal.pone.0004699] [PMID: 19259271]
[59]
Jordan, S.D.; Krüger, M.; Willmes, D.M.; Redemann, N.; Wunderlich, F.T.; Brönneke, H.S.; Merkwirth, C.; Kashkar, H.; Olkkonen, V.M.; Böttger, T.; Braun, T.; Seibler, J.; Brüning, J.C. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat. Cell Biol., 2011, 13(4), 434-446.
[http://dx.doi.org/10.1038/ncb2211] [PMID: 21441927]
[60]
Heneghan, H.M.; Miller, N.; McAnena, O.J.; O’Brien, T.; Kerin, M.J. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J. Clin. Endocrinol. Metab., 2011, 96(5), E846-E850.
[http://dx.doi.org/10.1210/jc.2010-2701] [PMID: 21367929]
[61]
Takanabe, R.; Ono, K.; Abe, Y.; Takaya, T.; Horie, T.; Wada, H.; Kita, T.; Satoh, N.; Shimatsu, A.; Hasegawa, K. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem. Biophys. Res. Commun., 2008, 376(4), 728-732.
[http://dx.doi.org/10.1016/j.bbrc.2008.09.050] [PMID: 18809385]
[62]
Esau, C.; Kang, X.; Peralta, E.; Hanson, E.; Marcusson, E.G.; Ravichandran, L.V.; Sun, Y.; Koo, S.; Perera, R.J.; Jain, R.; Dean, N.M.; Freier, S.M.; Bennett, C.F.; Lollo, B.; Griffey, R. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem., 2004, 279(50), 52361-52365.
[http://dx.doi.org/10.1074/jbc.C400438200] [PMID: 15504739]
[63]
Lorente-Cebrián, S.; Mejhert, N.; Kulyté, A.; Laurencikiene, J.; Åström, G.; Hedén, P.; Rydén, M.; Arner, P. MicroRNAs regulate human adipocyte lipolysis: effects of miR-145 are linked to TNF-α. PLoS One, 2014, 9(1), e86800
[http://dx.doi.org/10.1371/journal.pone.0086800] [PMID: 24475180]
[64]
Shi, C.; Zhang, M.; Tong, M.; Yang, L.; Pang, L.; Chen, L.; Xu, G.; Chi, X.; Hong, Q.; Ni, Y.; Ji, C.; Guo, X. miR-148a is associated with obesity and modulates adipocyte differentiation of mesenchymal stem cells through Wnt signaling. Sci. Rep., 2015, 5, 9930.
[http://dx.doi.org/10.1038/srep09930] [PMID: 26001136]
[65]
He, H.; Cai, M.; Zhu, J.; Xiao, W.; Liu, B.; Shi, Y.; Yang, X.; Liang, X.; Zheng, T.; Hu, S.; Jia, X.; Chen, S.; Wang, J.; Qin, Y.; Lai, S. miR-148a-3p promotes rabbit preadipocyte differentiation by targeting PTEN. In Vitro Cell. Dev. Biol. Anim., 2018, 54(3), 241-249.
[http://dx.doi.org/10.1007/s11626-018-0232-z] [PMID: 29426973]
[66]
Concepcion, C.P.; Bonetti, C.; Ventura, A. The microRNA-17-92 family of microRNA clusters in development and disease. Cancer J., 2012, 18(3), 262-267.
[http://dx.doi.org/10.1097/PPO.0b013e318258b60a] [PMID: 22647363]
[67]
He, L.; Thomson, J.M.; Hemann, M.T.; Hernando-Monge, E.; Mu, D.; Goodson, S.; Powers, S.; Cordon-Cardo, C.; Lowe, S.W.; Hannon, G.J.; Hammond, S.M. A microRNA polycistron as a potential human oncogene. Nature, 2005, 435(7043), 828-833.
[http://dx.doi.org/10.1038/nature03552] [PMID: 15944707]
[68]
Uziel, T.; Karginov, F.V.; Xie, S.; Parker, J.S.; Wang, Y.D.; Gajjar, A.; He, L.; Ellison, D.; Gilbertson, R.J.; Hannon, G.; Roussel, M.F. The miR-17~92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc. Natl. Acad. Sci. USA, 2009, 106(8), 2812-2817.
[http://dx.doi.org/10.1073/pnas.0809579106] [PMID: 19196975]
[69]
Mestdagh, P.; Boström, A.K.; Impens, F.; Fredlund, E.; Van Peer, G.; De Antonellis, P.; von Stedingk, K.; Ghesquière, B.; Schulte, S.; Dews, M.; Thomas-Tikhonenko, A.; Schulte, J.H.; Zollo, M.; Schramm, A.; Gevaert, K.; Axelson, H.; Speleman, F.; Vandesompele, J. The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. Mol. Cell, 2010, 40(5), 762-773.
[http://dx.doi.org/10.1016/j.molcel.2010.11.038] [PMID: 21145484]
[70]
Wang, Q.; Li, Y.C.; Wang, J.; Kong, J.; Qi, Y.; Quigg, R.J.; Li, X. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc. Natl. Acad. Sci. USA, 2008, 105(8), 2889-2894.
[http://dx.doi.org/10.1073/pnas.0800178105] [PMID: 18287052]
[71]
Xie, H.; Lim, B.; Lodish, H.F. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes, 2009, 58(5), 1050-1057.
[http://dx.doi.org/10.2337/db08-1299] [PMID: 19188425]
[72]
Wilfred, B.R.; Wang, W.X.; Nelson, P.T. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol. Genet. Metab., 2007, 91(3), 209-217.
[http://dx.doi.org/10.1016/j.ymgme.2007.03.011] [PMID: 17521938]
[73]
Chen, W.M.; Sheu, W.H.; Tseng, P.C.; Lee, T.S.; Lee, W.J.; Chang, P.J.; Chiang, A.N. Modulation of microRNA expression in subjects with metabolic syndrome and decrease of cholesterol efflux from macrophages via microRNA-33-mediated attenuation of ATP-binding cassette transporter A1 expression by statins. PLoS One, 2016, 11(5), e0154672
[http://dx.doi.org/10.1371/journal.pone.0154672] [PMID: 27139226]
[74]
Price, N.L.; Singh, A.K.; Rotllan, N.; Goedeke, L.; Wing, A.; Canfrán-Duque, A.; Diaz-Ruiz, A.; Araldi, E.; Baldán, Á.; Camporez, J.P.; Suárez, Y.; Rodeheffer, M.S.; Shulman, G.I.; de Cabo, R.; Fernández-Hernando, C. Genetic ablation of miR-33 increases food intake, enhances adipose tissue expansion, and promotes obesity and insulin resistance. Cell Rep., 2018, 22(8), 2133-2145.
[http://dx.doi.org/10.1016/j.celrep.2018.01.074] [PMID: 29466739]
[75]
Chang, J.; Nicolas, E.; Marks, D.; Sander, C.; Lerro, A.; Buendia, M.A.; Xu, C.; Mason, W.S.; Moloshok, T.; Bort, R.; Zaret, K.S.; Taylor, J.M. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol., 2004, 1(2), 106-113.
[http://dx.doi.org/10.4161/rna.1.2.1066] [PMID: 17179747]
[76]
Willeit, P.; Skroblin, P.; Moschen, A.R.; Yin, X.; Kaudewitz, D.; Zampetaki, A.; Barwari, T.; Whitehead, M.; Ramírez, C.M.; Goedeke, L.; Rotllan, N.; Bonora, E.; Hughes, A.D.; Santer, P.; Fernández-Hernando, C.; Tilg, H.; Willeit, J.; Kiechl, S.; Mayr, M. Circulating microRNA-122 is associated with the risk of new-onset metabolic syndrome and type 2 diabetes. Diabetes, 2017, 66(2), 347-357.
[http://dx.doi.org/10.2337/db16-0731] [PMID: 27899485]
[77]
Krützfeldt, J.; Rajewsky, N.; Braich, R.; Rajeev, K.G.; Tuschl, T.; Manoharan, M.; Stoffel, M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 2005, 438(7068), 685-689.
[http://dx.doi.org/10.1038/nature04303] [PMID: 16258535]
[78]
Elmén, J.; Lindow, M.; Schütz, S.; Lawrence, M.; Petri, A.; Obad, S.; Lindholm, M.; Hedtjärn, M.; Hansen, H.F.; Berger, U.; Gullans, S.; Kearney, P.; Sarnow, P.; Straarup, E.M.; Kauppinen, S. LNA-mediated microRNA silencing in non-human primates. Nature, 2008, 452(7189), 896-899.
[http://dx.doi.org/10.1038/nature06783] [PMID: 18368051]
[79]
Mysore, R.; Zhou, Y.; Sädevirta, S.; Savolainen-Peltonen, H.; Nidhina Haridas, P.A.; Soronen, J.; Leivonen, M.; Sarin, A.P.; Fischer-Posovszky, P.; Wabitsch, M.; Yki-Järvinen, H.; Olkkonen, V.M. MicroRNA-192* impairs adipocyte triglyceride storage. Biochim. Biophys. Acta, 2016, 1861(4), 342-351.
[http://dx.doi.org/10.1016/j.bbalip.2015.12.019] [PMID: 26747651]
[80]
Wang, R.; Hong, J.; Cao, Y.; Shi, J.; Gu, W.; Ning, G.; Zhang, Y.; Wang, W. Elevated circulating microRNA-122 is associated with obesity and insulin resistance in young adults. Eur. J. Endocrinol., 2015, 172(3), 291-300.
[http://dx.doi.org/10.1530/EJE-14-0867] [PMID: 25515554]
[81]
Turchinovich, A.; Weiz, L.; Langheinz, A.; Burwinkel, B. Characterization of extracellular circulating microRNA. Nucleic Acids Res., 2011, 39(16), 7223-7233.
[http://dx.doi.org/10.1093/nar/gkr254] [PMID: 21609964]
[82]
Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; Tait, J.F.; Tewari, M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA, 2011, 108(12), 5003-5008.
[http://dx.doi.org/10.1073/pnas.1019055108] [PMID: 21383194]
[83]
Cheng, L.; Sharples, R.A.; Scicluna, B.J.; Hill, A.F. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J. Extracell. Vesicles, 2014, 3, 23743.
[http://dx.doi.org/10.3402/jev.v3.23743] [PMID: 24683445]
[84]
Higuchi, C.; Nakatsuka, A.; Eguchi, J.; Teshigawara, S.; Kanzaki, M.; Katayama, A.; Yamaguchi, S.; Takahashi, N.; Murakami, K.; Ogawa, D.; Sasaki, S.; Makino, H.; Wada, J. Identification of circulating miR-101, miR-375 and miR-802 as biomarkers for type 2 diabetes. Metabolism, 2015, 64(4), 489-497.
[http://dx.doi.org/10.1016/j.metabol.2014.12.003] [PMID: 25726255]
[85]
Petri, A.; Lindow, M.; Kauppinen, S. MicroRNA silencing in primates: towards development of novel therapeutics. Cancer Res., 2009, 69(2), 393-395.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2749] [PMID: 19147547]
[86]
Hennessy, E.J.; Moore, K.J. Using microRNA as an alternative treatment for hyperlipidemia and cardiovascular disease: cardio-miRs in the pipeline. J. Cardiovasc. Pharmacol., 2013, 62(3), 247-254.
[http://dx.doi.org/10.1097/FJC.0b013e31829d48bf] [PMID: 23743768]
[87]
Wang, Z. The guideline of the design and validation of MiRNA mimics. Methods Mol. Biol., 2011, 676, 211-223.
[http://dx.doi.org/10.1007/978-1-60761-863-8_15] [PMID: 20931400]
[88]
Bramsen, J.B.; Laursen, M.B.; Nielsen, A.F.; Hansen, T.B.; Bus, C.; Langkjaer, N.; Babu, B.R.; Højland, T.; Abramov, M.; Van Aerschot, A.; Odadzic, D.; Smicius, R.; Haas, J.; Andree, C.; Barman, J.; Wenska, M.; Srivastava, P.; Zhou, C.; Honcharenko, D.; Hess, S.; Müller, E.; Bobkov, G.V.; Mikhailov, S.N.; Fava, E.; Meyer, T.F.; Chattopadhyaya, J.; Zerial, M.; Engels, J.W.; Herdewijn, P.; Wengel, J.; Kjems, J. A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res., 2009, 37(9), 2867-2881.
[http://dx.doi.org/10.1093/nar/gkp106] [PMID: 19282453]
[89]
Fasanaro, P.; Greco, S.; Ivan, M.; Capogrossi, M.C.; Martelli, F. microRNA: emerging therapeutic targets in acute ischemic diseases. Pharmacol. Ther., 2010, 125(1), 92-104.
[http://dx.doi.org/10.1016/j.pharmthera.2009.10.003] [PMID: 19896977]
[90]
Kasinski, A.L.; Slack, F.J. Arresting the culprit: Targeted antagomirs delivery to sequester oncogenic miR-221 in HCC. Mol. Ther. Nucleic Acids, 2012., 1e12
[http://dx.doi.org/10.1038/mtna.2012.2] [PMID: 23343881]
[91]
Lindow, M.; Kauppinen, S. Discovering the first microRNA-targeted drug. J. Cell Biol., 2012, 199(3), 407-412.
[http://dx.doi.org/10.1083/jcb.201208082] [PMID: 23109665]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 7
Year: 2020
Page: [626 - 635]
Pages: 10
DOI: 10.2174/1389557520666200122124445
Price: $65

Article Metrics

PDF: 17
HTML: 1