Pharmacological Strategies for Insulin Sensitivity in Obesity and Cancer: Thiazolidinediones and Metformin

Author(s): Luana A. Biondo, Alexandre A. S. Teixeira, Karen C. de O. S. Ferreira, Jose C. R. Neto*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 9 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Chronic diseases, such as obesity and cancer, have high prevalence rates. Both diseases have hyperinsulinemia, hyperglycemia, high levels of IGF-1 and inflammatory cytokines in common. Therefore, these can be considered triggers for cancer development and growth. In addition, low-grade inflammation that modulates the activation of immune cells, cellular metabolism, and production of cytokines and chemokines are common in obesity, cancer, and insulin resistance. Pharmacological strategies are necessary when a change in lifestyle does not improve glycemic homeostasis. In this regard, thiazolidinediones (TZD) possess multiple molecular targets and regulate PPARγ in obesity and cancer related to insulin resistance, while metformin acts through the AMPK pathway.

Objective: The aim of this study was to review TZD and metformin as pharmacological treatments for insulin resistance associated with obesity and cancer.

Conclusion: Thiazolidinediones restored adiponectin secretion and leptin sensitivity, reduced lipid droplets in hepatocytes and orexigen peptides in the hypothalamus. In cancer cells, TZD reduced proliferation, production of reactive oxygen species, and inflammation by acting through the mTOR and NFκB pathways. Metformin has similar effects, though these are AMPK-dependent. In addition, both drugs can be efficient against certain side effects caused by chemotherapy.

Keywords: Insulin resistance, obesity, cancer, metformin, thiazolidinediones, chemotherapy.

[1]
Finucane MM, Stevens GA, Cowan MJ, et al. Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Body Mass Index). National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet 2011; 377(9765): 557-67.
[http://dx.doi.org/10.1016/S0140-6736(10)62037-5] [PMID: 21295846]
[2]
Fasshauer M, Blüher M. Adipokines in health and disease. Trends Pharmacol Sci 2015; 36(7): 461-70.
[http://dx.doi.org/10.1016/j.tips.2015.04.014] [PMID: 26022934]
[3]
Joost H-G. Diabetes and cancer: epidemiology and potential mechanisms. Diab Vasc Dis Res 2014; 11(6): 390-4.
[http://dx.doi.org/10.1177/1479164114550813] [PMID: 25268021]
[4]
Li C, Kong D. Cancer risks from diabetes therapies: evaluating the evidence. Pharmacol Ther 2014; 144(1): 71-81.
[http://dx.doi.org/10.1016/j.pharmthera.2014.05.006] [PMID: 24844968]
[5]
Kolb R, Sutterwala FS, Zhang W. Obesity and cancer: inflammation bridges the two. Curr Opin Pharmacol 2016; 29: 77-89.
[http://dx.doi.org/10.1016/j.coph.2016.07.005] [PMID: 27429211]
[6]
Dibaba DT, Judd SE, Gilchrist SC, et al. Association between obesity and biomarkers of inflammation and metabolism with cancer mortality in a prospective cohort study. Metabolism 2019; 94: 69-76.
[http://dx.doi.org/10.1016/j.metabol.2019.01.007] [PMID: 30802456]
[7]
Himbert C, Delphan M, Scherer D, Bowers LW, Hursting S, Ulrich CM. Signals from the adipose microenvironment and the obesity-cancer link-a systematic review. Cancer Prev Res (Phila) 2017; 10(9): 494-506.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0322] [PMID: 28864539]
[8]
Setayesh T, Mišík M, Langie SAS, et al. Impact of weight loss strategies on obesity-induced DNA damage. Mol Nutr Food Res 2019; 63(17): e1900045
[http://dx.doi.org/10.1002/mnfr.201900045] [PMID: 31141317]
[9]
Lorenzati B, Zucco C, Miglietta S, Lamberti F, Bruno G. Oral Hypoglycemic drugs: pathophysiological basis of their mechanism of actionoral hypoglycemic drugs: pathophysiological basis of their mechanism of action. Pharmaceuticals (Basel) 2010; 3(9): 3005-20.
[http://dx.doi.org/10.3390/ph3093005] [PMID: 27713388]
[10]
Yau H, Rivera K, Lomonaco R, Cusi K. The future of thiazolidinedione therapy in the management of type 2 diabetes mellitus. Curr Diab Rep 2013; 13(3): 329-41.
[http://dx.doi.org/10.1007/s11892-013-0378-8] [PMID: 23625197]
[11]
Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R. Diabetes and cancer. Endocr Relat Cancer 2009; 16(4): 1103-23.
[http://dx.doi.org/10.1677/ERC-09-0087] [PMID: 19620249]
[12]
Li A, Qiu M, Zhou H, Wang T, Guo W. PTEN, insulin resistance and cancer. Curr Pharm Des 2017; 23(25): 3667-76.
[http://dx.doi.org/10.2174/1381612823666170704124611] [PMID: 28677502]
[13]
Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol 2019; 234(6): 8152-61.
[http://dx.doi.org/10.1002/jcp.27603] [PMID: 30317615]
[14]
Kang S, Tsai LT-Y, Rosen ED. Nuclear mechanisms of insulin resistance. Trends Cell Biol 2016; 26(5): 341-51.
[http://dx.doi.org/10.1016/j.tcb.2016.01.002] [PMID: 26822036]
[15]
Nagaraju GP, Aliya S, Alese OB. Role of adiponectin in obesity related gastrointestinal carcinogenesis. Cytokine Growth Factor Rev 2015; 26(1): 83-93.
[http://dx.doi.org/10.1016/j.cytogfr.2014.06.007] [PMID: 25007742]
[16]
Miller RA, Chu Q, Le Lay J, et al. Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling. J Clin Invest 2011; 121(6): 2518-28.
[http://dx.doi.org/10.1172/JCI45942] [PMID: 21606593]
[17]
Muppala S, Konduru SKP, Merchant N, et al. Adiponectin: Its role in obesity-associated colon and prostate cancers. Crit Rev Oncol Hematol 2017; 116: 125-33.
[http://dx.doi.org/10.1016/j.critrevonc.2017.06.003] [PMID: 28693794]
[18]
Fryer LGD, Parbu-Patel A, Carling D. The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 2002; 277(28): 25226-32.
[http://dx.doi.org/10.1074/jbc.M202489200] [PMID: 11994296]
[19]
Fröhlich E, Wahl R. Chemotherapy and chemoprevention by thiazolidinediones. BioMed Res Int 2015; 2015: 845340
[http://dx.doi.org/10.1155/2015/845340] [PMID: 25866814]
[20]
Janani C, Ranjitha Kumari BD. PPAR gamma gene--a review. Diabetes Metab Syndr 2015; 9(1): 46-50.
[http://dx.doi.org/10.1016/j.dsx.2014.09.015] [PMID: 25450819]
[21]
Mughal A, Kumar D, Vikram A. Effects of Thiazolidinediones on metabolism and cancer: Relative influence of PPARγ and IGF-1 signaling. Eur J Pharmacol 2015; 768: 217-25.
[http://dx.doi.org/10.1016/j.ejphar.2015.10.057] [PMID: 26542126]
[22]
Heudobler D, Rechenmacher M, Lüke F, et al. Peroxisome proliferator-activated receptors (PPAR)γ agonists as master modulators of tumor tissue. Int J Mol Sci 2018; 19(11): 3540.
[http://dx.doi.org/10.3390/ijms19113540] [PMID: 30424016]
[23]
Silva AR, Gonçalves-de-Albuquerque CF, Pérez AR, Carvalho VF. Immune-endocrine interactions related to a high risk of infections in chronic metabolic diseases: The role of PPAR gamma. Eur J Pharmacol 2019; 854: 272-81.
[http://dx.doi.org/10.1016/j.ejphar.2019.04.008] [PMID: 30974105]
[24]
Deng R, Nie A, Jian F, et al. Acute exposure of beta-cells to troglitazone decreases insulin hypersecretion via activating AMPK. Biochim Biophys Acta 2014; 1840(1): 577-85.
[http://dx.doi.org/10.1016/j.bbagen.2013.10.021] [PMID: 24144566]
[25]
Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998; 47(4): 507-14.
[http://dx.doi.org/10.2337/diabetes.47.4.507] [PMID: 9568680]
[26]
Nagaraju GP, Rajitha B, Aliya S, et al. The role of adiponectin in obesity-associated female-specific carcinogenesis. Cytokine Growth Factor Rev 2016; 31: 37-48.
[http://dx.doi.org/10.1016/j.cytogfr.2016.03.014] [PMID: 27079372]
[27]
Wu J, Wu JJ, Yang LJ, Wei LX, Zou DJ. Rosiglitazone protects against palmitate-induced pancreatic beta-cell death by activation of autophagy via 5′-AMP-activated protein kinase modulation. Endocrine 2013; 44(1): 87-98.
[http://dx.doi.org/10.1007/s12020-012-9826-5] [PMID: 23109223]
[28]
Meshkani R, Sadeghi A, Taheripak G, Zarghooni M, Gerayesh-Nejad S, Bakhtiyari S. Rosiglitazone, a PPARγ agonist, ameliorates palmitate-induced insulin resistance and apoptosis in skeletal muscle cells. Cell Biochem Funct 2014; 32(8): 683-91.
[http://dx.doi.org/10.1002/cbf.3072] [PMID: 25431031]
[29]
Jang JY, Bae H, Lee YJ, et al. Structural basis for the enhanced anti-diabetic efficacy of lobeglitazone on PPARγ. Sci Rep 2018; 8(1): 1-1.
[http://dx.doi.org/10.1038/s41598-017-18274-1]
[30]
Kim SG, Kim DM, Woo J-T, et al. Efficacy and safety of lobeglitazone monotherapy in patients with type 2 diabetes mellitus over 24-weeks: a multicenter, randomized, double-blind, parallel-group, placebo controlled trial. PLoS One 2014; 9(4): e92843
[http://dx.doi.org/10.1371/journal.pone.0092843] [PMID: 24736628]
[31]
Kim SH, Kim SG, Kim DM, et al. Safety and efficacy of lobeglitazone monotherapy in patients with type 2 diabetes mellitus over 52 weeks: An open-label extension study. Diabetes Res Clin Pract 2015; 110(3): e27-30.
[http://dx.doi.org/10.1016/j.diabres.2015.09.009] [PMID: 26458774]
[32]
Schretter J. Prescribing Information. Available at: https://www.drugs.com/pro/
[33]
Turner RM, Kwok CS, Chen-Turner C, Maduakor CA, Singh S, Loke YK. Thiazolidinediones and associated risk of bladder cancer: a systematic review and meta-analysis. Br J Clin Pharmacol 2014; 78(2): 258-73.
[http://dx.doi.org/10.1111/bcp.12306] [PMID: 24325197]
[34]
Levin D, Bell S, Sund R, et al. Pioglitazone and bladder cancer risk: a multipopulation pooled, cumulative exposure analysis. Diabetologia 2015; 58(3): 493-504.
[http://dx.doi.org/10.1007/s00125-014-3456-9] [PMID: 25481707]
[35]
Lewis JD, Habel LA, Quesenberry CP, et al. Pioglitazone use and risk of bladder cancer and other common cancers in persons with diabetes. JAMA 2015; 314(3): 265-77.
[http://dx.doi.org/10.1001/jama.2015.7996] [PMID: 26197187]
[36]
World Health Organization. Cancer. Available at: https://www.who.int/news-room/fact-sheets/detail/cancer
[37]
Cetinkalp S, Simsir IY, Sahin F, Saydam G, Ural AU, Yilmaz C. Can an oral antidiabetic (rosiglitazone) be of benefit in leukemia treatment? Saudi Pharm J 2015; 23(1): 14-21.
[http://dx.doi.org/10.1016/j.jsps.2013.12.009] [PMID: 25685038]
[38]
Ferwana M, Firwana B, Hasan R, et al. Pioglitazone and risk of bladder cancer: a meta-analysis of controlled studies. Diabet Med 2013; 30(9): 1026-32.
[http://dx.doi.org/10.1111/dme.12144] [PMID: 23350856]
[39]
Bojková B, Orendáš P, Kubatka P, et al. Positive and negative effects of glitazones in carcinogenesis: experimental models vs. clinical practice. Pathol Res Pract 2014; 210(8): 465-72.
[http://dx.doi.org/10.1016/j.prp.2014.06.003] [PMID: 25023882]
[40]
Kostapanos MS, Elisaf MS, Mikhailidis DP. Pioglitazone and cancer: angel or demon? Curr Pharm Des 2013; 19(27): 4913-29.
[http://dx.doi.org/10.2174/13816128113199990294] [PMID: 23278487]
[41]
Davidson MB, Pan D. An updated meta-analysis of pioglitazone exposure and bladder cancer and comparison to the drug’s effect on cardiovascular disease and non-alcoholic steatohepatitis. Diabetes Res Clin Pract 2018; 135: 102-10.
[http://dx.doi.org/10.1016/j.diabres.2017.11.002] [PMID: 29146119]
[42]
Demetri GD, Fletcher CD, Mueller E, et al. Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proc Natl Acad Sci USA 1999; 96(7): 3951-6.
[http://dx.doi.org/10.1073/pnas.96.7.3951] [PMID: 10097144]
[43]
Matthaei S, Stumvoll M, Kellerer M, Häring HU. Pathophysiology and pharmacological treatment of insulin resistance. Endocr Rev 2000; 21(6): 585-618.
[http://dx.doi.org/10.1210/er.21.6.585] [PMID: 11133066]
[44]
Stein LL, Dong MH, Loomba R. Insulin sensitizers in nonalcoholic fatty liver disease and steatohepatitis: Current status. Adv Ther 2009; 26(10): 893-907.
[http://dx.doi.org/10.1007/s12325-009-0072-z] [PMID: 19921118]
[45]
Bermúdez V, Finol F, Parra N, et al. PPAR-gamma agonists and their role in type 2 diabetes mellitus management. Am J Ther 2010; 17(3): 274-83.
[http://dx.doi.org/10.1097/MJT.0b013e3181c08081] [PMID: 20216208]
[46]
Wang QA, Zhang F, Jiang L, et al. Peroxisome proliferator-activated receptor γ and its role in adipocyte homeostasis and thiazolidinedione-mediated insulin sensitization. Mol Cell Biol 2018; 15: 38(10)
[http://dx.doi.org/10.1128/MCB.00677-17]
[47]
Betteridge DJ. Effects of pioglitazone on lipid and lipoprotein metabolism. Diabetes Obes Metab 2007; 9(5): 640-7.
[http://dx.doi.org/10.1111/j.1463-1326.2007.00715.x] [PMID: 17697057]
[48]
Yang K-J, Noh J-R, Kim Y-H, et al. Differential modulatory effects of rosiglitazone and pioglitazone on white adipose tissue in db/db mice. Life Sci 2010; 87(13-14): 405-10.
[http://dx.doi.org/10.1016/j.lfs.2010.08.002] [PMID: 20723549]
[49]
Zhao Z, Lee Y-J, Kim S-K, et al. Rosiglitazone and fenofibrate improve insulin sensitivity of pre-diabetic OLETF rats by reducing malonyl-CoA levels in the liver and skeletal muscle. Life Sci 2009; 84(19-20): 688-95.
[http://dx.doi.org/10.1016/j.lfs.2009.02.021] [PMID: 19250943]
[50]
Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 2003; 100(14): 8466-71.
[http://dx.doi.org/10.1073/pnas.1032913100] [PMID: 12832613]
[51]
Richardson DK, Kashyap S, Bajaj M, et al. Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J Biol Chem 2005; 280(11): 10290-7.
[http://dx.doi.org/10.1074/jbc.M408985200] [PMID: 15598661]
[52]
Crunkhorn S, Dearie F, Mantzoros C, et al. Peroxisome proliferator activator receptor gamma coactivator-1 expression is reduced in obesity: potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation. J Biol Chem 2007; 282(21): 15439-50.
[http://dx.doi.org/10.1074/jbc.M611214200] [PMID: 17416903]
[53]
Besse-Patin A, Jeromson S, Levesque-Damphousse P, Secco B, Laplante M, Estall JL. PGC1A regulates the IRS1:IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin. Proc Natl Acad Sci USA 2019; 116(10): 4285-90.
[http://dx.doi.org/10.1073/pnas.1815150116] [PMID: 30770439]
[54]
Koliaki C, Szendroedi J, Kaul K, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab 2015; 21(5): 739-46.
[http://dx.doi.org/10.1016/j.cmet.2015.04.004] [PMID: 25955209]
[55]
Estall JL, Kahn M, Cooper MP, et al. Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression. Diabetes 2009; 58(7): 1499-508.
[http://dx.doi.org/10.2337/db08-1571] [PMID: 19366863]
[56]
Takahashi Y, Sugimoto K, Inui H, Fukusato T. Current pharmacological therapies for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 2015; 21(13): 3777-85.
[http://dx.doi.org/10.3748/wjg.v21.i13.3777] [PMID: 25852263]
[57]
Campbell IW, Mariz S. Beta-cell preservation with thiazolidinediones. Diabetes Res Clin Pract 2007; 76(2): 163-76.
[http://dx.doi.org/10.1016/j.diabres.2006.08.015] [PMID: 17052795]
[58]
Finegood DT, McArthur MD, Kojwang D, et al. Beta-cell mass dynamics in Zucker diabetic fatty rats. Rosiglitazone prevents the rise in net cell death. Diabetes 2001; 50(5): 1021-9.
[http://dx.doi.org/10.2337/diabetes.50.5.1021] [PMID: 11334404]
[59]
Lupi R, Del Guerra S, Marselli L, et al. Rosiglitazone prevents the impairment of human islet function induced by fatty acids: evidence for a role of PPARgamma2 in the modulation of insulin secretion. Am J Physiol Endocrinol Metab 2004; 286(4): E560-7.
[http://dx.doi.org/10.1152/ajpendo.00561.2002] [PMID: 14625208]
[60]
Lamounier RN, Coimbra CN, White P, et al. Apoptosis rate and transcriptional response of pancreatic islets exposed to the PPAR gamma agonist Pioglitazone. Diabetol Metab Syndr 2013; 5(1): 1.
[http://dx.doi.org/10.1186/1758-5996-5-1] [PMID: 23298687]
[61]
Kim G, Lee Y-H, Yun MR, et al. Effects of lobeglitazone, a novel thiazolidinedione, on adipose tissue remodeling and brown and beige adipose tissue development in db/db mice. Int J Obes 2005 2018; 42(3): 542–51.
[62]
Zeender E, Maedler K, Bosco D, Berney T, Donath MY, Halban PA. Pioglitazone and sodium salicylate protect human beta-cells against apoptosis and impaired function induced by glucose and interleukin-1beta. J Clin Endocrinol Metab 2004; 89(10): 5059-66.
[http://dx.doi.org/10.1210/jc.2004-0446] [PMID: 15472206]
[63]
Heimberg H, Heremans Y, Jobin C, et al. Inhibition of cytokine-induced NF-kappaB activation by adenovirus-mediated expression of a NF-kappaB super-repressor prevents beta-cell apoptosis. Diabetes 2001; 50(10): 2219-24.
[http://dx.doi.org/10.2337/diabetes.50.10.2219] [PMID: 11574401]
[64]
Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol (Lausanne) 2016; 7: 30.
[http://dx.doi.org/10.3389/fendo.2016.00030] [PMID: 27148161]
[65]
Hulsmans M, Geeraert B, Arnould T, Tsatsanis C, Holvoet P. PPAR agonist-induced reduction of Mcp1 in atherosclerotic plaques of obese, insulin-resistant mice depends on adiponectin-induced Irak3 expression. PLoS One 2013; 8(4): e62253
[http://dx.doi.org/10.1371/journal.pone.0062253] [PMID: 23620818]
[66]
Chu NV, Kong APS, Kim DD, et al. Differential effects of metformin and troglitazone on cardiovascular risk factors in patients with type 2 diabetes. Diabetes Care 2002; 25(3): 542-9.
[http://dx.doi.org/10.2337/diacare.25.3.542] [PMID: 11874944]
[67]
Dandona P, Aljada A, Mohanty P, et al. Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J Clin Endocrinol Metab 2001; 86(7): 3257-65.
[PMID: 11443198]
[68]
Mohanty P, Aljada A, Ghanim H, et al. Evidence for a potent antiinflammatory effect of rosiglitazone. J Clin Endocrinol Metab 2004; 89(6): 2728-35.
[http://dx.doi.org/10.1210/jc.2003-032103] [PMID: 15181049]
[69]
Ghanim H, Dhindsa S, Aljada A, Chaudhuri A, Viswanathan P, Dandona P. Low-dose rosiglitazone exerts an antiinflammatory effect with an increase in adiponectin independently of free fatty acid fall and insulin sensitization in obese type 2 diabetics. J Clin Endocrinol Metab 2006; 91(9): 3553-8.
[http://dx.doi.org/10.1210/jc.2005-2609] [PMID: 16804037]
[70]
Mohapatra J, Sharma M, Singh S, et al. Subtherapeutic dose of pioglitazone reduces expression of inflammatory adipokines in db/db mice. Pharmacology 2009; 84(4): 203-10.
[http://dx.doi.org/10.1159/000235996] [PMID: 19738399]
[71]
Honda T, Kaikita K, Tsujita K, et al. Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates myocardial ischemia-reperfusion injury in mice with metabolic disorders. J Mol Cell Cardiol 2008; 44(5): 915-26.
[http://dx.doi.org/10.1016/j.yjmcc.2008.03.004] [PMID: 18436235]
[72]
Ishida H, Takizawa M, Ozawa S, et al. Pioglitazone improves insulin secretory capacity and prevents the loss of beta-cell mass in obese diabetic db/db mice: Possible protection of beta cells from oxidative stress. Metabolism 2004; 53(4): 488-94.
[http://dx.doi.org/10.1016/j.metabol.2003.11.021] [PMID: 15045697]
[73]
Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007; 447(7148): 1116-20.
[http://dx.doi.org/10.1038/nature05894] [PMID: 17515919]
[74]
Silveira LS, Antunes B de MM, Minari ALA, Dos Santos RVT, Neto JCR, Lira FS. Macrophage polarization: implications on metabolic diseases and the role of exercise. Crit Rev Eukaryot Gene Expr 2016; 26(2): 115-32.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2016015920] [PMID: 27480774]
[75]
Chen Z, Yuan P, Sun X, et al. Pioglitazone decreased renal calcium oxalate crystal formation by suppressing M1 macrophage polarization via PPAR-γ-microRNA-23 axis. Am J Physiol Renal Physiol 2019; 317(1): F137-51.
[http://dx.doi.org/10.1152/ajprenal.00047.2019]
[76]
Marchesini G, Brizi M, Morselli-Labate AM, et al. Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 1999; 107(5): 450-5.
[http://dx.doi.org/10.1016/S0002-9343(99)00271-5] [PMID: 10569299]
[77]
Zivkovic AM, German JB, Sanyal AJ. Comparative review of diets for the metabolic syndrome: implications for nonalcoholic fatty liver disease. Am J Clin Nutr 2007; 86(2): 285-300.
[http://dx.doi.org/10.1093/ajcn/86.2.285] [PMID: 17684197]
[78]
Milić S, Stimac D. Nonalcoholic fatty liver disease/steatohepatitis: epidemiology, pathogenesis, clinical presentation and treatment. Dig Dis 2012; 30(2): 158-62.
[http://dx.doi.org/10.1159/000336669] [PMID: 22722431]
[79]
Lee YH, Cho Y, Lee BW, et al. Nonalcoholic fatty liver disease in diabetes. part i: epidemiology and diagnosis. Diabetes Metab J 2019; 43(1): 31-45.
[http://dx.doi.org/10.4093/dmj.2019.0011] [PMID: 30793550]
[80]
Mayerson AB, Hundal RS, Dufour S, et al. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 2002; 51(3): 797-802.
[http://dx.doi.org/10.2337/diabetes.51.3.797] [PMID: 11872682]
[81]
Ratziu V, Charlotte F, Bernhardt C, et al. LIDO Study Group. Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology 2010; 51(2): 445-53.
[http://dx.doi.org/10.1002/hep.23270] [PMID: 19877169]
[82]
Torres DM, Jones FJ, Shaw JC, Williams CD, Ward JA, Harrison SA. Rosiglitazone versus rosiglitazone and metformin versus rosiglitazone and losartan in the treatment of nonalcoholic steatohepatitis in humans: a 12-month randomized, prospective, open- label trial. Hepatology 2011; 54(5): 1631-9.
[http://dx.doi.org/10.1002/hep.24558] [PMID: 21748770]
[83]
Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009; 58(7): 1509-17.
[http://dx.doi.org/10.2337/db08-1637] [PMID: 19366864]
[84]
García-Ruiz I, Rodríguez-Juan C, Díaz-Sanjuán T, Martínez MA, Muñoz-Yagüe T, Solís-Herruzo JA. Effects of rosiglitazone on the liver histology and mitochondrial function in ob/ob mice. Hepatology 2007; 46(2): 414-23.
[http://dx.doi.org/10.1002/hep.21687] [PMID: 17654601]
[85]
Rull A, Geeraert B, Aragonès G, et al. Rosiglitazone and fenofibrate exacerbate liver steatosis in a mouse model of obesity and hyperlipidemia. A transcriptomic and metabolomic study. J Proteome Res 2014; 13(3): 1731-43.
[http://dx.doi.org/10.1021/pr401230s] [PMID: 24479691]
[86]
Morán-Salvador E, López-Parra M, García-Alonso V, et al. Role for PPARγ in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB J 2011; 25(8): 2538-50.
[http://dx.doi.org/10.1096/fj.10-173716] [PMID: 21507897]
[87]
Cusi K. Treatment of patients with type 2 diabetes and non-alcoholic fatty liver disease: current approaches and future directions. Diabetologia 2016; 59(6): 1112-20.
[http://dx.doi.org/10.1007/s00125-016-3952-1] [PMID: 27101131]
[88]
Jia C, Huan Y, Liu S, et al. Effect of chronic pioglitazone treatment on hepatic gene expression profile in obese C57BL/6J mice. Int J Mol Sci 2015; 16(6): 12213-29.
[http://dx.doi.org/10.3390/ijms160612213] [PMID: 26035752]
[89]
Peng J, Huan Y, Jiang Q, Sun S-J, Jia C-M, Shen Z-F. Effects and potential mechanisms of pioglitazone on lipid metabolism in obese diabetic KKAy mice. PPAR Res 2014; 2014: 538183
[http://dx.doi.org/10.1155/2014/538183] [PMID: 24799887]
[90]
Ochiai M, Matsuo T. Pioglitazone-induced increase in the stearoyl-CoA desaturation index and fat accumulation in rat muscles are not related to lipoprotein lipase activity. J Oleo Sci 2013; 62(9): 745-54.
[http://dx.doi.org/10.5650/jos.62.745] [PMID: 24005019]
[91]
Choi B-H, Jin Z, Yi C-O, et al. Effects of lobeglitazone on insulin resistance and hepatic steatosis in high-fat diet-fed mice. PLoS One 2018; 13(7): e0200336
[http://dx.doi.org/10.1371/journal.pone.0200336] [PMID: 29979770]
[92]
Elstner E, Müller C, Koshizuka K, et al. Ligands for peroxisome proliferator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci USA 1998; 95(15): 8806-11.
[http://dx.doi.org/10.1073/pnas.95.15.8806] [PMID: 9671760]
[93]
Yang FG, Zhang ZW, Xin DQ, et al. Peroxisome proliferator-activated receptor gamma ligands induce cell cycle arrest and apoptosis in human renal carcinoma cell lines. Acta Pharmacol Sin 2005; 26(6): 753-61.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00753.x] [PMID: 15916743]
[94]
Li X-H, Li J-J, Zhang H-W, et al. Nimesulide inhibits tumor growth in mice implanted hepatoma: overexpression of Bax over Bcl-2. Acta Pharmacol Sin 2003; 24(10): 1045-50.
[PMID: 14531950]
[95]
Nagamine M, Okumura T, Tanno S, et al. PPAR gamma ligand-induced apoptosis through a p53-dependent mechanism in human gastric cancer cells. Cancer Sci 2003; 94(4): 338-43.
[http://dx.doi.org/10.1111/j.1349-7006.2003.tb01443.x] [PMID: 12824901]
[96]
Alsafadi S, Tourpin S, André F, Vassal G, Ahomadegbe J-C. P53 family: at the crossroads in cancer therapy. Curr Med Chem 2009; 16(32): 4328-44.
[http://dx.doi.org/10.2174/092986709789578196] [PMID: 19754415]
[97]
Wu K, Yang Y, Liu D, et al. Activation of PPARγ suppresses proliferation and induces apoptosis of esophageal cancer cells by inhibiting TLR4-dependent MAPK pathway. Oncotarget 2016; 7(28): 44572-82.
[http://dx.doi.org/10.18632/oncotarget.10067] [PMID: 27323819]
[98]
Blanquicett C, Roman J, Hart CM. Thiazolidinediones as anti-cancer agents. Cancer Ther 2008; 6(A): 25-34.
[99]
Dong Y, Sui L, Tai Y, Sugimoto K, Tokuda M. The overexpression of cyclin-dependent kinase (CDK) 2 in laryngeal squamous cell carcinomas. Anticancer Res 2001; 21(1A): 103-8.
[PMID: 11299721]
[100]
Chen F, Harrison LE. Ciglitazone-induced cellular anti-proliferation increases p27kip1 protein levels through both increased transcriptional activity and inhibition of proteasome degradation. Cell Signal 2005; 17(7): 809-16.
[http://dx.doi.org/10.1016/j.cellsig.2004.11.002] [PMID: 15763423]
[101]
He Q, Pang R, Song X, et al. Rosiglitazone suppresses the growth and invasiveness of SGC-7901 gastric cancer cells and angiogenesis in vitro via PPARgamma dependent and independent mechanisms. PPAR Res 2008; 2008: 649808
[http://dx.doi.org/10.1155/2008/649808] [PMID: 18810275]
[102]
Leung WK, Bai AHC, Chan VYW, et al. Effect of peroxisome proliferator activated receptor gamma ligands on growth and gene expression profiles of gastric cancer cells. Gut 2004; 53(3): 331-8.
[http://dx.doi.org/10.1136/gut.2003.021105] [PMID: 14960510]
[103]
Cao X, He L, Li Y. Effects of PPARγ agonistrosiglitazone on human retinoblastoma cell in vitro and in vivo. Int J Clin Exp Pathol 2015; 8(10): 12549-56.
[PMID: 26722443]
[104]
Ueno T, Teraoka N, Takasu S, et al. Suppressive effect of pioglitazone, a PPAR gamma ligand, on azoxymethane-induced colon aberrant crypt foci in KK-Ay mice. Asian Pac J Cancer Prev 2012; 13(8): 4067-73.
[http://dx.doi.org/10.7314/APJCP.2012.13.8.4067] [PMID: 23098518]
[105]
Lin C-F, Young K-C, Bai C-H, et al. Rosiglitazone regulates anti-inflammation and growth inhibition via PTEN. BioMed Res Int 2014; 2014: 787924
[http://dx.doi.org/10.1155/2014/787924] [PMID: 24757676]
[106]
Sabatino L, Fucci A, Pancione M, Colantuoni V. PPARG Epigenetic deregulation and its role in colorectal tumorigenesis. PPAR Res 2012; 2012: 687492
[http://dx.doi.org/10.1155/2012/687492] [PMID: 22848209]
[107]
Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 2007; 7(8): 573-84.
[http://dx.doi.org/10.1038/nrc2167] [PMID: 17625587]
[108]
Mahmoud MF, El Shazly SM. Pioglitazone protects against cisplatin induced nephrotoxicity in rats and potentiates its anticancer activity against human renal adenocarcinoma cell lines. Food Chem Toxicol 2013; 51: 114-22.
[http://dx.doi.org/10.1016/j.fct.2012.09.006] [PMID: 22989705]
[109]
Tikoo K, Kumar P, Gupta J. Rosiglitazone synergizes anticancer activity of cisplatin and reduces its nephrotoxicity in 7, 12-dimethyl benzaanthracene (DMBA) induced breast cancer rats. BMC Cancer 2009; 9: 107.
[http://dx.doi.org/10.1186/1471-2407-9-107] [PMID: 19356226]
[110]
Zhang H, Jing X, Wu X, et al. Suppression of multidrug resistance by rosiglitazone treatment in human ovarian cancer cells through downregulation of FZD1 and MDR1 genes. Anticancer Drugs 2015; 26(7): 706-15.
[http://dx.doi.org/10.1097/CAD.0000000000000236] [PMID: 26053275]
[111]
Chung SJ, Nagaraju GP, Nagalingam A, et al. ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Autophagy 2017; 13(8): 1386-403.
[http://dx.doi.org/10.1080/15548627.2017.1332565] [PMID: 28696138]
[112]
Arunachalam S, Kim S-Y, Kim M-S, et al. Adriamycin inhibits adipogenesis through the modulation of PPARγ and restoration of adriamycin-mediated inhibition of adipogenesis by PPARγ over-expression. Toxicol Mech Methods 2012; 22(7): 540-6.
[http://dx.doi.org/10.3109/15376516.2012.692110] [PMID: 22563975]
[113]
Pichiah PBT, Sankarganesh A, Kalaiselvi S, et al. Adriamycin induced spermatogenesis defect is due to the reduction in epididymal adipose tissue mass: a possible hypothesis. Med Hypotheses 2012; 78(2): 218-20.
[http://dx.doi.org/10.1016/j.mehy.2011.10.027] [PMID: 22098724]
[114]
Wang C-Z, Zhang Y, Li X-D, et al. PPARγ agonist suppresses TLR4 expression and TNF-α production in LPS stimulated monocyte leukemia cells. Cell Biochem Biophys 2011; 60(3): 167-72.
[http://dx.doi.org/10.1007/s12013-010-9136-6] [PMID: 21104157]
[115]
Pich C, Meylan P, Mastelic-Gavillet B, et al. Induction of paracrine signaling in metastatic melanoma cells by pparγ agonist rosiglitazone activates stromal cells and enhances tumor growth. Cancer Res 2018; 78(22): 6447-61.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0912] [PMID: 30185551]
[116]
Zou B, Qiao L, Wong BCY. Current understanding of the role of PPARγ in gastrointestinal cancers. PPAR Res 2009; 2009: 816957
[http://dx.doi.org/10.1155/2009/816957] [PMID: 19884989]
[117]
Martin H. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat Res 2010; 690(1-2): 57-63.
[http://dx.doi.org/10.1016/j.mrfmmm.2009.09.009] [PMID: 20973164]
[118]
Janssen JAMJL, Varewijck AJ. Insulin analogs and cancer: a note of caution. Front Endocrinol (Lausanne) 2014; 5: 79.
[http://dx.doi.org/10.3389/fendo.2014.00079] [PMID: 24904529]
[119]
He G, Sung YM, Digiovanni J, Fischer SM. Thiazolidinediones inhibit insulin-like growth factor-i-induced activation of p70S6 kinase and suppress insulin-like growth factor-I tumor-promoting activity. Cancer Res 2006; 66(3): 1873-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3111] [PMID: 16452250]
[120]
Rui M, Fu T, Liu Y, Huang H, Fu J. [Effect of rosiglitazone on the expression of HIF1α and IGF1 mRNA in myeloma]. Zhonghua Xue Ye Xue Za Zhi 2014; 35(7): 641-4.
[PMID: 25052610]
[121]
Zheng J, Woo S-L, Hu X, et al. Metformin and metabolic diseases: a focus on hepatic aspects. Front Med 2015; 9(2): 173-86.
[http://dx.doi.org/10.1007/s11684-015-0384-0] [PMID: 25676019]
[122]
Shu Y, Sheardown SA, Brown C, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 2007; 117(5): 1422-31.
[http://dx.doi.org/10.1172/JCI30558] [PMID: 17476361]
[123]
Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes 2014; 7: 241-53.
[PMID: 25018645]
[124]
Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000; 348(Pt 3): 607-14.
[http://dx.doi.org/10.1042/bj3480607] [PMID: 10839993]
[125]
Lee JO, Lee SK, Kim JH, et al. Metformin regulates glucose transporter 4 (GLUT4) translocation through AMP-activated protein kinase (AMPK)-mediated Cbl/CAP signaling in 3T3-L1 preadipocyte cells. J Biol Chem 2012; 287(53): 44121-9.
[http://dx.doi.org/10.1074/jbc.M112.361386] [PMID: 23135276]
[126]
Malin SK, Kashyap SR. Effects of metformin on weight loss: potential mechanisms. Curr Opin Endocrinol Diabetes Obes 2014; 21(5): 323-9.
[http://dx.doi.org/10.1097/MED.0000000000000095] [PMID: 25105996]
[127]
Lv W-S, Wen J-P, Li L, et al. The effect of metformin on food intake and its potential role in hypothalamic regulation in obese diabetic rats. Brain Res 2012; 1444: 11-9.
[http://dx.doi.org/10.1016/j.brainres.2012.01.028] [PMID: 22325091]
[128]
Stevanovic D, Janjetovic K, Misirkic M, et al. Intracerebroventricular administration of metformin inhibits ghrelin-induced Hypothalamic AMP-kinase signalling and food intake. Neuroendocrinology 2012; 96(1): 24-31.
[http://dx.doi.org/10.1159/000333963] [PMID: 22343549]
[129]
Ye W, Ramos EH, Wong BC, Belsham DD. Beneficial effects of metformin and/or salicylate on palmitate- or TNFα-induced neuroinflammatory marker and neuropeptide gene regulation in immortalized NPY/AgRP neurons. PLoS One 2016; 11(11): e0166973
[http://dx.doi.org/10.1371/journal.pone.0166973] [PMID: 27893782]
[130]
King PJ. The hypothalamus and obesity. Curr Drug Targets 2005; 6(2): 225-40.
[http://dx.doi.org/10.2174/1389450053174587] [PMID: 15777192]
[131]
Gruzdeva O, Borodkina D, Uchasova E, Dyleva Y, Barbarash O. Leptin resistance: underlying mechanisms and diagnosis. Diabetes Metab Syndr Obes 2019; 12: 191-8.
[http://dx.doi.org/10.2147/DMSO.S182406] [PMID: 30774404]
[132]
Sherling DH, Perumareddi P, Hennekens CH. Metabolic Syndrome. J Cardiovasc Pharmacol Ther 2017; 22(4): 365-7.
[http://dx.doi.org/10.1177/1074248416686187] [PMID: 28587579]
[133]
Aguilar-Salinas CA, Viveros-Ruiz T. Recent advances in managing/understanding the metabolic syndrome. F1000 Res 2019; 8: 8.
[http://dx.doi.org/10.12688/f1000research.17122.1] [PMID: 31001415]
[134]
El Messaoudi S, Rongen GA, Riksen NP. Metformin therapy in diabetes: the role of cardioprotection. Curr Atheroscler Rep 2013; 15(4): 314.
[http://dx.doi.org/10.1007/s11883-013-0314-z] [PMID: 23423523]
[135]
Luo F, Das A, Chen J, Wu P, Li X, Fang Z. Metformin in patients with and without diabetes: a paradigm shift in cardiovascular disease management. Cardiovasc Diabetol 2019; 18(1): 54.
[http://dx.doi.org/10.1186/s12933-019-0860-y] [PMID: 31029144]
[136]
Meaney E, Vela A, Samaniego V, et al. Metformin, arterial function, intima-media thickness and nitroxidation in metabolic syndrome: the mefisto study. Clin Exp Pharmacol Physiol 2008; 35(8): 895-903.
[http://dx.doi.org/10.1111/j.1440-1681.2008.04920.x] [PMID: 18346173]
[137]
Zhang F, Sun W, Chen J, et al. SREBP-2, a new target of metformin? Drug Des Devel Ther 2018; 12: 4163-70.
[http://dx.doi.org/10.2147/DDDT.S190094] [PMID: 30584280]
[138]
Murdolo G, Bartolini D, Tortoioli C, Piroddi M, Iuliano L, Galli F. Lipokines and oxysterols: novel adipose-derived lipid hormones linking adipose dysfunction and insulin resistance. Free Radic Biol Med 2013; 65(65): 811-20.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.08.007] [PMID: 23954331]
[139]
Stolarczyk E. Adipose tissue inflammation in obesity: a metabolic or immune response? Curr Opin Pharmacol 2017; 37: 35-40.
[http://dx.doi.org/10.1016/j.coph.2017.08.006] [PMID: 28843953]
[140]
Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol 2017; 13(11): 633-43.
[http://dx.doi.org/10.1038/nrendo.2017.90] [PMID: 28799554]
[141]
Zhou J, Massey S, Story D, Li L. Metformin: an old drug with new applications. Int J Mol Sci 2018; 19(10): E2863
[http://dx.doi.org/10.3390/ijms19102863] [PMID: 30241400]
[142]
de Souza Teixeira AA, Souza CO, Biondo LA, et al. Short-term treatment with metformin reduces hepatic lipid accumulation but induces liver inflammation in obese mice. Inflammopharmacology 2018; 26(4): 1103-15.
[http://dx.doi.org/10.1007/s10787-018-0443-7] [PMID: 29450671]
[143]
Andrews M, Soto N, Arredondo M. Effect of metformin on the expression of tumor necrosis factor-alpha, Toll like receptors 2/4 and C reactive protein in obese type-2 diabetic patients. Rev Med Chil 2013; 140(11): 1377-82.
[144]
Loomba R, Lutchman G, Kleiner DE, et al. Clinical trial: pilot study of metformin for the treatment of non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2009; 29(2): 172-82.
[http://dx.doi.org/10.1111/j.1365-2036.2008.03869.x] [PMID: 18945255]
[145]
Said A, Akhter A. Meta-analysis of randomized controlled trials of pharmacologic agents in non-alcoholic steatohepatitis. Ann Hepatol 2017; 16(4): 538-47.
[http://dx.doi.org/10.5604/01.3001.0010.0284]
[146]
Woo SL, Xu H, Li H, et al. Metformin ameliorates hepatic steatosis and inflammation without altering adipose phenotype in diet-induced obesity. PLoS One 2014; 9(3): e91111
[147]
Barbero-Becerra VJ, Santiago-Hernandez JJ, Villegas-Lopez FA, Mendez-Sanchez N, Uribe M, Chavez-Tapia NC. Mechanisms involved in the protective effects of metformin against nonalcoholic fatty liver disease. Curr Med Chem 2012; 19(18): 2918-23.
[http://dx.doi.org/10.2174/092986712800672094] [PMID: 22519397]
[148]
Zhou J, Massey S, Story D. Metformin: an old drug with new applications. 2018; 19(10): 1-15.
[149]
Giovannucci E, Harlan DM, Archer MC, et al. Diabetes and cancer: a consensus report. CA Cancer J Clin 2010; 60(4): 207-21.
[150]
Yue W, Yang CS, DiPaola RS, Tan X-L. Repurposing of metformin and aspirin by targeting AMPK-mTOR and inflammation for pancreatic cancer prevention and treatment. Cancer Prev Res (Phila) 2014; 7(4): 388-97.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0337] [PMID: 24520038]
[151]
Shi J, Liu B, Wang H, Zhang T, Yang L. Association of metformin use with ovarian cancer incidence and prognosis: a systematic review and meta-analysis. Int J Gynecol Cancer 2019; 29(1): 140-6.
[http://dx.doi.org/10.1136/ijgc-2018-000060] [PMID: 30640696]
[152]
Bodmer M, Becker C, Meier C, Jick SS, Meier CR. Use of antidiabetic agents and the risk of pancreatic cancer: a case-control analysis. Am J Gastroenterol 2012; 107(4): 620-6.
[http://dx.doi.org/10.1038/ajg.2011.483]
[153]
Shen P, Reineke LC, Knutsen E, et al. Metformin blocks MYC protein synthesis in colorectal cancer via mTOR-4EBP-eIF4E and MNK1-eIF4G-eIF4E signaling. Mol Oncol 2018; 12(11): 1856-70.
[http://dx.doi.org/10.1002/1878-0261.12384] [PMID: 30221473]
[154]
Mogavero A, Maiorana MV, Zanutto S, et al. Metformin transiently inhibits colorectal cancer cell proliferation as a result of either AMPK activation or increased ROS production. Sci Rep 2017; 7(1): 15992.
[http://dx.doi.org/10.1038/s41598-017-16149-z] [PMID: 29167573]
[155]
Zhang P, Li H, Tan X, Chen L, Wang S. Association of metformin use with cancer incidence and mortality: a meta-analysis. Cancer Epidemiol 2013; 37(3): 207-18.
[http://dx.doi.org/10.1016/j.canep.2012.12.009]
[156]
Kuo Y-J, Sung F-C, Hsieh P-F, Chang H-P, Wu K-L, Wu H-C. Metformin reduces prostate cancer risk among men with benign prostatic hyperplasia: A nationwide population-based cohort study. Cancer Med 2019; 8(5): 2514-23.
[http://dx.doi.org/10.1002/cam4.2025] [PMID: 30968600]
[157]
Arunachalam S, Tirupathi Pichiah PB, Achiraman S. Doxorubicin treatment inhibits PPARγ and may induce lipotoxicity by mimicking a type 2 diabetes-like condition in rodent models. FEBS Lett 2013; 587(2): 105-10.
[http://dx.doi.org/10.1016/j.febslet.2012.11.019] [PMID: 23219922]
[158]
Tan B-X, Yao W-X, Ge J, et al. Prognostic influence of metformin as first-line chemotherapy for advanced nonsmall cell lung cancer in patients with type 2 diabetes. Cancer 2011; 117(22): 5103-11.
[http://dx.doi.org/10.1002/cncr.26151] [PMID: 21523768]
[159]
Dowling RJO, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 2007; 67(22): 10804-12.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2310] [PMID: 18006825]
[160]
Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 2006; 66(21): 10269-73.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1500] [PMID: 17062558]
[161]
Buzzai M, Jones RG, Amaravadi RK, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 2007; 67(14): 6745-52.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4447] [PMID: 17638885]
[162]
Huang X, Wullschleger S, Shpiro N, et al. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J 2008; 412(2): 211-21.
[http://dx.doi.org/10.1042/BJ20080557] [PMID: 18387000]
[163]
Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin cardiomyopathy. Cardiology 2010; 115(2): 155-62.
[http://dx.doi.org/10.1159/000265166] [PMID: 20016174]
[164]
Berthiaume JM, Wallace KB. Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol 2007; 23(1): 15-25.
[http://dx.doi.org/10.1007/s10565-006-0140-y] [PMID: 17009097]
[165]
Kasapović J, Pejić S, Stojiljković V, et al. Antioxidant status and lipid peroxidation in the blood of breast cancer patients of different ages after chemotherapy with 5-fluorouracil, doxorubicin and cyclophosphamide. Clin Biochem 2010; 43(16-17): 1287-93.
[http://dx.doi.org/10.1016/j.clinbiochem.2010.08.009] [PMID: 20713039]
[166]
Wallace KB. Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol Toxicol 2003; 93(3): 105-15.
[http://dx.doi.org/10.1034/j.1600-0773.2003.930301.x] [PMID: 12969434]
[167]
Asensio-López MC, Lax A, Pascual-Figal DA, Valdés M, Sánchez-Más J. Metformin protects against doxorubicin-induced cardiotoxicity: involvement of the adiponectin cardiac system. Free Radic Biol Med 2011; 51(10): 1861-71.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.08.015] [PMID: 21907790]
[168]
Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009; 69(19): 7507-11.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2994] [PMID: 19752085]
[169]
de Lima Junior EA, Yamashita AS, Pimentel GD, et al. Doxorubicin caused severe hyperglycaemia and insulin resistance, mediated by inhibition in AMPk signalling in skeletal muscle. J Cachexia Sarcopenia Muscle 2016; 7(5): 615-25.
[http://dx.doi.org/10.1002/jcsm.12104] [PMID: 27239415]
[170]
Biondo LA, Lima EA. Junior, Souza CO, et al. Impact of doxorubicin treatment on the physiological functions of white adipose tissue. PLoS One 2016; 11(3): e0151548.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4807778/
[171]
Biondo LA, Batatinha HA, Souza CO, et al. Metformin mitigates fibrosis and glucose intolerance induced by doxorubicin in subcutaneous adipose tissue. Front Pharmacol 2018; 9: 452.
[http://dx.doi.org/10.3389/fphar.2018.00452] [PMID: 29867463]
[172]
de Lima EA, de Sousa LGO, de S Teixeira AA, Marshall AG, Zanchi NE, Neto JCR. Aerobic exercise, but not metformin, prevents reduction of muscular performance by AMPk activation in mice on doxorubicin chemotherapy. J Cell Physiol 2018; 233(12): 9652-62.
[http://dx.doi.org/10.1002/jcp.26880] [PMID: 29953589]
[173]
Rocha GZ, Dias MM, Ropelle ER, et al. Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res 2011; 17(12): 3993-4005.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2243] [PMID: 21543517]
[174]
Chang J, Jung HH, Yang JY, et al. Protective effect of metformin against cisplatin-induced ototoxicity in an auditory cell line. J Assoc Res Otolaryngol 2014; 15(2): 149-58.
[http://dx.doi.org/10.1007/s10162-013-0431-y] [PMID: 24297263]
[175]
Rattan R, Graham RP, Maguire JL, Giri S, Shridhar V. Metformin suppresses ovarian cancer growth and metastasis with enhancement of cisplatin cytotoxicity in vivo. Neoplasia 2011; 13(5): 483-91.
[http://dx.doi.org/10.1593/neo.11148] [PMID: 21532889]
[176]
Hinduja S, Kraus KS, Manohar S, Salvi RJ. D-methionine protects against cisplatin-induced neurotoxicity in the hippocampus of the adult rat. Neurotox Res 2015; 27(3): 199-204.
[http://dx.doi.org/10.1007/s12640-014-9503-y] [PMID: 25488710]
[177]
Yang JC-H, Hirsh V, Schuler M, et al. Symptom control and quality of life in LUX-Lung 3: a phase III study of afatinib or cisplatin/pemetrexed in patients with advanced lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013; 31(27): 3342-50.
[http://dx.doi.org/10.1200/JCO.2012.46.1764] [PMID: 23816967]
[178]
Saisho Y. Metformin and inflammation: its potential beyond glucose-lowering effect. Endocr Metab Immune Disord Drug Targets 2015; 15(3): 196-205.
[179]
Kurelac I, Umesh Ganesh N, Iorio M, Porcelli AM, Gasparre G. The multifaceted effects of metformin on tumor microenvironment. Semin Cell Dev Biol 2019; 98: 90-7.
[http://dx.doi.org/10.1016/j.semcdb.2019.05.010] [PMID: 31091466]
[180]
Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9(11): 798-809.
[http://dx.doi.org/10.1038/nrc2734] [PMID: 19851315]
[181]
Koh S-J, Kim JM, Kim I-K, Ko SH, Kim JS. Anti-inflammatory mechanism of metformin and its effects in intestinal inflammation and colitis-associated colon cancer. J Gastroenterol Hepatol 2014; 29(3): 502-10.
[http://dx.doi.org/10.1111/jgh.12435] [PMID: 24716225]
[182]
Incio J, Suboj P, Chin SM, et al. Metformin reduces desmoplasia in pancreatic cancer by reprogramming stellate cells and tumor-associated macrophages. PLoS One 2015; 10(12): e0141392
[http://dx.doi.org/10.1371/journal.pone.0141392] [PMID: 26641266]
[183]
Hardie DG. AMP-activated protein kinase: a cellular energy sensor with a key role in metabolic disorders and in cancer. Biochem Soc Trans 2011; 39(1): 1-13.
[http://dx.doi.org/10.1042/BST0390001] [PMID: 21265739]
[184]
Bridges HR, Jones AJY, Pollak MN, Hirst J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem J 2014; 462(3): 475-87.
[http://dx.doi.org/10.1042/BJ20140620] [PMID: 25017630]
[185]
Biswas S, Chida AS, Rahman I. Redox modifications of protein-thiols: emerging roles in cell signaling. Biochem Pharmacol 2006; 71(5): 551-64.
[http://dx.doi.org/10.1016/j.bcp.2005.10.044] [PMID: 16337153]
[186]
Rai P, Young JJ, Burton DGA, Giribaldi MG, Onder TT, Weinberg RA. Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence. Oncogene 2011; 30(12): 1489-96.
[http://dx.doi.org/10.1038/onc.2010.520] [PMID: 21076467]
[187]
Schexnayder C, Broussard K, Onuaguluchi D, et al. Metformin inhibits migration and invasion by suppressing ros production and COX2 expression in MDA-MB-231 breast cancer cells. Int J Mol Sci 2018; 19(11): E3692
[http://dx.doi.org/10.3390/ijms19113692] [PMID: 30469399]
[188]
Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 2006; 29(2): 254-8.
[http://dx.doi.org/10.2337/diacare.29.02.06.dc05-1558] [PMID: 16443869]
[189]
Abo-Elmatty DM, Ahmed EA, Tawfik MK, Helmy SA. Metformin enhancing the antitumor efficacy of carboplatin against Ehrlich solid carcinoma grown in diabetic mice: Effect on IGF-1 and tumoral expression of IGF-1 receptors. Int Immunopharmacol 2017; 44: 72-86.
[http://dx.doi.org/10.1016/j.intimp.2017.01.002] [PMID: 28088698]
[190]
Al-Wahab Z, Mert I, Tebbe C, et al. Metformin prevents aggressive ovarian cancer growth driven by high-energy diet: similarity with calorie restriction. Oncotarget 2015; 6(13): 10908-23.
[http://dx.doi.org/10.18632/oncotarget.3434] [PMID: 25895126]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 9
Year: 2020
Published on: 22 April, 2020
Page: [932 - 945]
Pages: 14
DOI: 10.2174/1381612826666200122124116
Price: $65

Article Metrics

PDF: 32
HTML: 3