Prognostic Role of Hedgehog-GLI1 Signaling Pathway in Aggressive and Metastatic Breast Cancers

Author(s): Prasuja Rokkam, Shailender Gugalavath, Deepak Kakara Gift Kumar, Rahul Kumar Vempati, Rama Rao Malla*

Journal Name: Current Drug Metabolism

Volume 21 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Glioma-associated oncogene homolog 1 (GLI1) is reported as an amplified gene in human glioblastoma cells. It is a krupple like transcription factor, belonging to the zinc finger family. The basic function of GLI1 is normal neural development at various stages of human. The GLI1 gene was first mapped on the chromosome sub-bands 12q13.3-14.1. Further, single nucleotide polymorphism is mostly observed in translating a region of 5’ and 3’- UTR of GLI1 gene in addition to two post-transcriptional splice variants, GLIΔN and tGLI. Additionally, it also regulates a plethora of gene which mediates crucial cellular processes like proliferation, differentiation, oncogenesis, EMT, and metastasis. It also regulates tumor tolerance, chemoresistance, and radioresistance. Aberrant expression of GLI1 predicts the poor survival of breast cancer patients. GLI1 is an essential mediator of the SHH signaling pathway regulating self-renewal of stem cells, angiogenesis, and expression of FOXS1, CYR61. GLI1 mediated HH pathway can induce apoptosis. Hence, GLI1 can be a future diagnostic, prognostic marker, and as well as a potent target of therapeutics in breast cancer.

Keywords: Breast cancer, carcinogenesis, EMT, GLI1, HH signaling pathway, resistance.

[1]
Dahmane, N.; Sánchez, P.; Gitton, Y.; Palma, V.; Sun, T.; Beyna, M.; Weiner, H.; Ruiz i Altaba, A. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development, 2001, 128(24), 5201-5212.
[PMID: 11748155]
[2]
Kinzler, K.W.; Bigner, S.H.; Bigner, D.D.; Trent, J.M.; Law, M.L.; O’Brien, S.J.; Wong, A.J.; Vogelstein, B. Identification of an amplified, highly expressed gene in a human glioma. Science, 1987, 236(4797), 70-73.
[http://dx.doi.org/10.1126/science.3563490] [PMID: 3563490]
[3]
Kinzler, K.W.; Ruppert, J.M.; Bigner, S.H.; Vogelstein, B. The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature, 1988, 332(6162), 371-374.
[http://dx.doi.org/10.1038/332371a0] [PMID: 2832761]
[4]
Kinzler, K.W.; Vogelstein, B. The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol. Cell. Biol., 1990, 10(2), 634-642.
[http://dx.doi.org/10.1128/MCB.10.2.634] [PMID: 2105456]
[5]
Didiasova, M.; Schaefer, L. Targeting GLI transcription factors in cancer. Molecules, 2018, 23(5), 1003.
[http://dx.doi.org/10.3390/molecules23051003]
[6]
Echelard, Y.; Epstein, D.J.; St-Jacques, B.; Shen, L.; Mohler, J.; McMahon, J.A.; McMahon, A.P. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell, 1993, 75(7), 1417-1430.
[http://dx.doi.org/10.1016/0092-8674(93)90627-3] [PMID: 7916661]
[7]
Roelink, H.; Augsburger, A.; Heemskerk, J.; Korzh, V.; Norlin, S.; Ruiz i Altaba, A.; Tanabe, Y.; Placzek, M.; Edlund, T.; Jessell, T.M. Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell, 1994, 76(4), 761-775.
[http://dx.doi.org/10.1016/0092-8674(94)90514-2] [PMID: 8124714]
[8]
Dahmane, N.; Ruiz i Altaba, A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development, 1999, 126(14), 3089-3100.
[PMID: 10375501]
[9]
Clement, V.; Sanchez, P.; de Tribolet, N.; Radovanovic, I.; Ruiz i Altaba, A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol., 2007, 17(2), 165-172.
[http://dx.doi.org/10.1016/j.cub.2006.11.033] [PMID: 17196391]
[10]
Kasper, M.; Regl, G.; Frischauf, A.M.; Aberger, F. GLI transcription factors: mediators of oncogenic Hedgehog signalling. Eur. J. Cancer, 2006, 42(4), 437-445.
[http://dx.doi.org/10.1016/j.ejca.2005.08.039] [PMID: 16406505]
[11]
Xie, J. Hedgehog signaling pathway: development of antagonists for cancer therapy. Curr. Oncol. Rep., 2008, 10(2), 107-113.
[http://dx.doi.org/10.1007/s11912-008-0018-7] [PMID: 18377823]
[12]
Gordon, A.T.; Brinkschmidt, C.; Anderson, J.; Coleman, N.; Dockhorn-Dworniczak, B.; Pritchard-Jones, K.; Shipley, J. A novel and consistent amplicon at 13q31 associated with alveolar rhabdomyosarcoma. Genes Chromosomes Cancer, 2000, 28(2), 220-226.
[http://dx.doi.org/10.1002/(SICI)1098-2264(200006)28:2<220::AID-GCC11>3.0.CO;2-T] [PMID: 10825007]
[13]
Lees, C.W.; Zacharias, W.J.; Tremelling, M.; Noble, C.L.; Nimmo, E.R.; Tenesa, A.; Cornelius, J.; Torkvist, L.; Kao, J.; Farrington, S.; Drummond, H.E.; Ho, G.T.; Arnott, I.D.; Appelman, H.D.; Diehl, L.; Campbell, H.; Dunlop, M.G.; Parkes, M.; Howie, S.E.; Gumucio, D.L.; Satsangi, J. Analysis of germline GLI1 variation implicates hedgehog signalling in the regulation of intestinal inflammatory pathways. PLoS Med., 2008, 5(12), e239
[http://dx.doi.org/10.1371/journal.pmed.0050239] [PMID: 19071955]
[14]
Shimokawa, T.; Tostar, U.; Lauth, M.; Palaniswamy, R.; Kasper, M.; Toftgård, R.; Zaphiropoulos, P.G. Novel human glioma-associated oncogene 1 (GLI1) splice variants reveal distinct mechanisms in the terminal transduction of the hedgehog signal. J. Biol. Chem., 2008, 283(21), 14345-14354.
[http://dx.doi.org/10.1074/jbc.M800299200] [PMID: 18378682]
[15]
Lo, H.W.; Zhu, H.; Cao, X.; Aldrich, A.; Ali-Osman, F. A novel splice variant of GLI1 that promotes glioblastoma cell migration and invasion. Cancer Res., 2009, 69(17), 6790-6798.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0886] [PMID: 19706761]
[16]
Wang, X.Q.; Rothnagel, J.A. Post-transcriptional regulation of the gli1 oncogene by the expression of alternative 5′ untranslated regions. J. Biol. Chem., 2001, 276(2), 1311-1316.
[http://dx.doi.org/10.1074/jbc.M005191200] [PMID: 11032829]
[17]
Dahlén, A.; Fletcher, C.D.; Mertens, F.; Fletcher, J.A.; Perez-Atayde, A.R.; Hicks, M.J.; Debiec-Rychter, M.; Sciot, R.; Wejde, J.; Wedin, R.; Mandahl, N.; Panagopoulos, I. Activation of the GLI oncogene through fusion with the beta-actin gene (ACTB) in a group of distinctive pericytic neoplasms: pericytoma with t(7;12). Am. J. Pathol., 2004, 164(5), 1645-1653.
[http://dx.doi.org/10.1016/S0002-9440(10)63723-6] [PMID: 15111311]
[18]
Dahlén, A.; Mertens, F.; Mandahl, N.; Panagopoulos, I. Molecular genetic characterization of the genomic ACTB-GLI fusion in pericytoma with t(7;12). Biochem. Biophys. Res. Commun., 2004, 325(4), 1318-1323.
[http://dx.doi.org/10.1016/j.bbrc.2004.10.172] [PMID: 15555571]
[19]
Arheden, K.; Rønne, M.; Mandahl, N.; Heim, S.; Kinzler, K.W.; Vogelstein, B.; Mitelman, F. In situ hybridization localizes the human putative oncogene GLI to chromosome subbands 12q13.3-14.1. Hum. Genet., 1989, 82(1), 1-2.
[http://dx.doi.org/10.1007/BF00288260] [PMID: 2497059]
[20]
Roberts, W.M.; Douglass, E.C.; Peiper, S.C.; Houghton, P.J.; Look, A.T. Amplification of the gli gene in childhood sarcomas. Cancer Res., 1989, 49(19), 5407-5413.
[PMID: 2766305]
[21]
Tornillo, L.; Duchini, G.; Carafa, V.; Lugli, A.; Dirnhofer, S.; Di Vizio, D.; Boscaino, A.; Russo, R.; Tapia, C.; Schneider-Stock, R.; Sauter, G.; Insabato, L.; Terracciano, L.M. Patterns of gene amplification in gastrointestinal stromal tumors (GIST). Lab. Invest., 2005, 85(7), 921-931.
[http://dx.doi.org/10.1038/labinvest.3700284] [PMID: 15864317]
[22]
Arheden, K.; Nilbert, M.; Heim, S.; Mandahl, N.; Mitelman, F. No amplification or rearrangement of INT1, GLI, or COL2A1 in uterine leiomyomas with t(12;14)(q14-15;q23-24). Cancer Genet. Cytogenet., 1989, 39(2), 195-201.
[http://dx.doi.org/10.1016/0165-4608(89)90186-6] [PMID: 2752373]
[23]
Hynes, M.; Stone, D.M.; Dowd, M.; Pitts-Meek, S.; Goddard, A.; Gurney, A.; Rosenthal, A. Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli-1. Neuron, 1997, 19(1), 15-26.
[http://dx.doi.org/10.1016/S0896-6273(00)80344-X] [PMID: 9247260]
[24]
Kogerman, P.; Grimm, T.; Kogerman, L.; Krause, D.; Undén, A.B.; Sandstedt, B.; Toftgård, R.; Zaphiropoulos, P.G. Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat. Cell Biol., 1999, 1(5), 312-319.
[http://dx.doi.org/10.1038/13031] [PMID: 10559945]
[25]
Scales, S.J.; de Sauvage, F.J. Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol. Sci., 2009, 30(6), 303-312.
[http://dx.doi.org/10.1016/j.tips.2009.03.007] [PMID: 19443052]
[26]
Santoni, M.; Romagnoli, E.; Saladino, T.; Foghini, L.; Guarino, S.; Capponi, M.; Giannini, M.; Cognigni, P.D.; Ferrara, G.; Battelli, N. Triple negative breast cancer: Key role of Tumor-Associated Macrophages in regulating the activity of anti-PD-1/PD-L1 agents. Biochim. Biophys. Acta Rev. Cancer, 2018, 1869(1), 78-84.
[http://dx.doi.org/10.1016/j.bbcan.2017.10.007] [PMID: 29126881]
[27]
Chun, H.W.; Hong, R. Significance of the hedgehog pathway-associated proteins Gli-1 and Gli-2 and the epithelial-mesenchymal transition-associated proteins Twist and E-cadherin in hepatocellular carcinoma. Oncol. Lett., 2016, 12(3), 1753-1762.
[http://dx.doi.org/10.3892/ol.2016.4884] [PMID: 27602109]
[28]
Nye, M.D.; Almada, L.L.; Fernandez-Barrena, M.G.; Marks, D.L.; Elsawa, S.F.; Vrabel, A.; Tolosa, E.J.; Ellenrieder, V.; Fernandez-Zapico, M.E. The transcription factor GLI1 interacts with SMAD proteins to modulate transforming growth factor β-induced gene expression in a p300/CREB-binding protein-associated factor (PCAF)-dependent manner. J. Biol. Chem., 2014, 289(22), 15495-15506.
[http://dx.doi.org/10.1074/jbc.M113.545194] [PMID: 24739390]
[29]
Asaoka, Y.; Kanai, F.; Ichimura, T.; Tateishi, K.; Tanaka, Y.; Ohta, M.; Seto, M.; Tada, M.; Ijichi, H.; Ikenoue, T.; Kawabe, T.; Isobe, T.; Yaffe, M.B.; Omata, M. Identification of a suppressive mechanism for Hedgehog signaling through a novel interaction of Gli with 14-3-3. J. Biol. Chem., 2010, 285(6), 4185-4194.
[http://dx.doi.org/10.1074/jbc.M109.038232] [PMID: 19996099]
[30]
Sheng, T.; Chi, S.; Zhang, X.; Xie, J. Regulation of Gli1 localization by the cAMP/protein kinase A signaling axis through a site near the nuclear localization signal. J. Biol. Chem., 2006, 281(1), 9-12.
[http://dx.doi.org/10.1074/jbc.C500300200] [PMID: 16293631]
[31]
Zhu, H.; Lo, H.W. The human glioma-associated oncogene homolog 1 (GLI1) family of transcription factors in gene regulation and diseases. Curr. Genomics, 2010, 11(4), 238-245.
[http://dx.doi.org/10.2174/138920210791233108] [PMID: 21119888]
[32]
McMillan, R.; Matsui, W. Molecular pathways: the hedgehog signaling pathway in cancer. Clin. Cancer Res., 2012, 18(18), 4883-4888.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2509] [PMID: 22718857]
[33]
Hui, C.C.; Angers, S. Gli proteins in development and disease. Annu. Rev. Cell Dev. Biol., 2011, 27(1), 513-537.
[http://dx.doi.org/10.1146/annurev-cellbio-092910-154048] [PMID: 21801010]
[34]
Corbit, K.C.; Aanstad, P.; Singla, V.; Norman, A.R.; Stainier, D.Y.R.; Reiter, J.F. Vertebrate Smoothened functions at the primary cilium. Nature, 2005, 437(7061), 1018-1021.
[http://dx.doi.org/10.1038/nature04117] [PMID: 16136078]
[35]
Gupta, S.; Takebe, N.; Lorusso, P. Targeting the Hedgehog pathway in cancer. Ther. Adv. Med. Oncol., 2010, 2(4), 237-250.
[http://dx.doi.org/10.1177/1758834010366430] [PMID: 21789137]
[36]
Dennler, S.; André, J.; Alexaki, I.; Li, A.; Magnaldo, T.; ten Dijke, P.; Wang, X.J.; Verrecchia, F.; Mauviel, A. Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res., 2007, 67(14), 6981-6986.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0491] [PMID: 17638910]
[37]
Kriegshäuser, G.; Auner, V.; Zeillinger, R. New and potential clinical applications of KRAS as a cancer biomarker. Expert Opin. Med. Diagn., 2010, 4(5), 383-395.
[http://dx.doi.org/10.1517/17530059.2010.510512] [PMID: 23496197]
[38]
Ji, Z.; Mei, F.C.; Xie, J.; Cheng, X. Oncogenic KRAS activates hedgehog signaling pathway in pancreatic cancer cells. J. Biol. Chem., 2007, 282(19), 14048-14055.
[http://dx.doi.org/10.1074/jbc.M611089200] [PMID: 17353198]
[39]
Rajurkar, M.; De Jesus-Monge, W.E.; Driscoll, D.R.; Appleman, V.A.; Huang, H.; Cotton, J.L.; Klimstra, D.S.; Zhu, L.J.; Simin, K.; Xu, L.; McMahon, A.P.; Lewis, B.C.; Mao, J. The activity of Gli transcription factors is essential for Kras-induced pancreatic tumorigenesis. Proc. Natl. Acad. Sci. USA, 2012, 109(17), E1038-E1047.
[http://dx.doi.org/10.1073/pnas.1114168109] [PMID: 22493246]
[40]
Yoon, J.W.; Gallant, M.; Lamm, M.L.; Iannaccone, S.; Vieux, K.F.; Proytcheva, M.; Hyjek, E.; Iannaccone, P.; Walterhouse, D. Noncanonical regulation of the Hedgehog mediator GLI1 by c-MYC in Burkitt lymphoma. Mol. Cancer Res., 2013, 11(6), 604-615.
[http://dx.doi.org/10.1158/1541-7786.MCR-12-0441] [PMID: 23525267]
[41]
Beauchamp, E.; Bulut, G.; Abaan, O.; Chen, K.; Merchant, A.; Matsui, W.; Endo, Y.; Rubin, J.S.; Toretsky, J.; Uren, A. GLI1 is a direct transcriptional target of EWS-FLI1 oncoprotein. J. Biol. Chem., 2009, 284(14), 9074-9082.
[http://dx.doi.org/10.1074/jbc.M806233200] [PMID: 19189974]
[42]
Stecca, B.; Ruiz I Altaba, A. A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers. EMBO J., 2009, 28(6), 663-676.
[http://dx.doi.org/10.1038/emboj.2009.16] [PMID: 19214186]
[43]
Agarwal, N.K.; Qu, C.; Kunkalla, K.; Liu, Y.; Vega, F. Transcriptional regulation of serine/threonine protein kinase (AKT) genes by glioma-associated oncogene homolog 1. J. Biol. Chem., 2013, 288(21), 15390-15401.
[http://dx.doi.org/10.1074/jbc.M112.425249] [PMID: 23580656]
[44]
Aberger, F.; Ruiz I Altaba, A. Context-dependent signal integration by the GLI code: the oncogenic load, pathways, modifiers and implications for cancer therapy. Semin. Cell Dev. Biol., 2014, 33, 93-104.
[http://dx.doi.org/10.1016/j.semcdb.2014.05.003] [PMID: 24852887]
[45]
Stecca, B.; Mas, C.; Clement, V.; Zbinden, M.; Correa, R.; Piguet, V.; Beermann, F.; Ruiz I Altaba, A. Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc. Natl. Acad. Sci. USA, 2007, 104(14), 5895-5900.
[http://dx.doi.org/10.1073/pnas.0700776104] [PMID: 17392427]
[46]
Harrison, W.; Cochrane, B.; Neill, G.; Philpott, M. The oncogenic GLI transcription factors facilitate keratinocyte survival and transformation upon exposure to genotoxic agents. Oncogene, 2014, 33(19), 2432-2440.
[http://dx.doi.org/10.1038/onc.2013.199] [PMID: 23792444]
[47]
Frappart, P.O.; Lee, Y.; Russell, H.R.; Chalhoub, N.; Wang, Y.D.; Orii, K.E.; Zhao, J.; Kondo, N.; Baker, S.J.; McKinnon, P.J. Recurrent genomic alterations characterize medulloblastoma arising from DNA double-strand break repair deficiency. Proc. Natl. Acad. Sci. USA, 2009, 106(6), 1880-1885.
[http://dx.doi.org/10.1073/pnas.0806882106] [PMID: 19164512]
[48]
Mazzà, D.; Infante, P.; Colicchia, V.; Greco, A.; Alfonsi, R.; Siler, M.; Antonucci, L.; Po, A.; De Smaele, E.; Ferretti, E.; Capalbo, C.; Bellavia, D.; Canettieri, G.; Giannini, G.; Screpanti, I.; Gulino, A.; Di Marcotullio, L. PCAF ubiquitin ligase activity inhibits Hedgehog/Gli1 signaling in p53-dependent response to genotoxic stress. Cell Death Differ., 2013, 20(12), 1688-1697.
[http://dx.doi.org/10.1038/cdd.2013.120] [PMID: 24013724]
[49]
Palle, K.; Mani, C.; Tripathi, K.; Athar, M. Aberrant GLI1 activation in DNA damage response, carcinogenesis and chemoresistance. Cancers (Basel), 2015, 7(4), 2330-2351.
[http://dx.doi.org/10.3390/cancers7040894] [PMID: 26633513]
[50]
Mazumdar, T.; Devecchio, J.; Agyeman, A.; Shi, T.; Houghton, J.A. Blocking Hedgehog survival signaling at the level of the GLI genes induces DNA damage and extensive cell death in human colon carcinoma cells. Cancer Res., 2011, 71(17), 5904-5914.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4173] [PMID: 21747117]
[51]
Shi, T.; Mazumdar, T.; Devecchio, J.; Duan, Z.H.; Agyeman, A.; Aziz, M.; Houghton, J.A. cDNA microarray gene expression profiling of hedgehog signaling pathway inhibition in human colon cancer cells. PLoS One, 2010, 5(10)e13054
[http://dx.doi.org/10.1371/journal.pone.0013054] [PMID: 20957031]
[52]
Cretnik, M.; Musani, V.; Oreskovic, S.; Leovic, D.; Levanat, S. The Patched gene is epigenetically regulated in ovarian dermoids and fibromas, but not in basocellular carcinomas. Int. J. Mol. Med., 2007, 19(6), 875-883.
[http://dx.doi.org/10.3892/ijmm.19.6.875] [PMID: 17487419]
[53]
Wolf, I.; Bose, S.; Desmond, J.C.; Lin, B.T.; Williamson, E.A.; Karlan, B.Y.; Koeffler, H.P. Unmasking of epigenetically silenced genes reveals DNA promoter methylation and reduced expression of PTCH in breast cancer. Breast Cancer Res. Treat., 2007, 105(2), 139-155.
[http://dx.doi.org/10.1007/s10549-006-9440-4] [PMID: 17295047]
[54]
Du, P.; Ye, H.R.; Gao, J.; Chen, W.; Wang, Z.C.; Jiang, H.H.; Xu, J.; Zhang, J.W.; Zhang, J.C.; Cui, L. Methylation of PTCH1a gene in a subset of gastric cancers. World J. Gastroenterol., 2009, 15(30), 3799-3806.
[http://dx.doi.org/10.3748/wjg.15.3799] [PMID: 19673023]
[55]
Tada, M.; Kanai, F.; Tanaka, Y.; Tateishi, K.; Ohta, M.; Asaoka, Y.; Seto, M.; Muroyama, R.; Fukai, K.; Imazeki, F.; Kawabe, T.; Yokosuka, O.; Omata, M. Down-regulation of hedgehog-interacting protein through genetic and epigenetic alterations in human hepatocellular carcinoma. Clin. Cancer Res., 2008, 14(12), 3768-3776.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1181] [PMID: 18559595]
[56]
Martin, S.T.; Sato, N.; Dhara, S.; Chang, R.; Hustinx, S.R.; Abe, T.; Maitra, A.; Goggins, M. Aberrant methylation of the Human Hedgehog interacting protein (HHIP) gene in pancreatic neoplasms. Cancer Biol. Ther., 2005, 4(7), 728-733.
[http://dx.doi.org/10.4161/cbt.4.7.1802] [PMID: 15970691]
[57]
Taylor, R.; Long, J.; Yoon, J.W.; Childs, R.; Sylvestersen, K.B.; Nielsen, M.L.; Leong, K.F.; Iannaccone, S.; Walterhouse, D.O.; Robbins, D.J.; Iannaccone, P. Regulation of GLI1 by cis DNA elements and epigenetic marks. DNA Repair (Amst.), 2019, 79, 10-21.
[http://dx.doi.org/10.1016/j.dnarep.2019.04.011] [PMID: 31085420]
[58]
Wu, J.; Di, D.; Zhao, C.; Liu, Y.; Chen, H.; Gong, Y.; Zhao, X.; Chen, H. Role of glioma-associated GLI1 oncogene in carcinogenesis and cancertargeted therapy. Curr. Cancer Drug Targets, 2018, 18(6), 558-566.
[http://dx.doi.org/10.2174/1568009618666171129223533] [PMID: 29189160]
[59]
Dahmane, N.; Lee, J.; Robins, P.; Heller, P.; Ruiz i Altaba, A. Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature, 1997, 389(6653), 876-881.
[http://dx.doi.org/10.1038/39918] [PMID: 9349822]
[60]
Goodrich, L.V.; Milenković, L.; Higgins, K.M.; Scott, M.P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science, 1997, 277(5329), 1109-1113.
[http://dx.doi.org/10.1126/science.277.5329.1109] [PMID: 9262482]
[61]
Hui, M.; Cazet, A.; Nair, R.; Watkins, D.N.; O’Toole, S.A.; Swarbrick, A. The Hedgehog signalling pathway in breast development, carcinogenesis and cancer therapy. Breast Cancer Res., 2013, 15(2), 203.
[http://dx.doi.org/10.1186/bcr3401] [PMID: 23547970]
[62]
Chen, M.; Carkner, R.; Buttyan, R. The hedgehog/Gli signaling paradigm in prostate cancer. Expert Rev. Endocrinol. Metab., 2011, 6(3), 453-467.
[http://dx.doi.org/10.1586/eem.11.24] [PMID: 21776292]
[63]
Yang, H.; Hu, L.; Liu, Z.; Qin, Y.; Li, R.; Zhang, G.; Zhao, B.; Bi, C.; Lei, Y.; Bai, Y. Inhibition of Gli1-mediated prostate cancer cell proliferation by inhibiting the mTOR/S6K1 signaling pathway. Oncol. Lett., 2017, 14(6), 7970-7976.
[http://dx.doi.org/10.3892/ol.2017.7254] [PMID: 29250185]
[64]
Bermudez, O.; Hennen, E.; Koch, I.; Lindner, M.; Eickelberg, O. Gli1 mediates lung cancer cell proliferation and Sonic Hedgehog-dependent mesenchymal cell activation. PLoS One, 2013, 8(5)e63226
[http://dx.doi.org/10.1371/journal.pone.0063226] [PMID: 23667589]
[65]
Hogenson, T.L.; Lauth, M.; Pasca diMagliano, M.; Fernandez-Zapico, M.E. Back to the drawing board: Re-thinking the role of GLI1 in pancreatic carcinogenesis. F1000 Res., 2014, 3, 238.
[http://dx.doi.org/10.12688/f1000research.5324.1] [PMID: 25352983]
[66]
Schnidar, H.; Eberl, M.; Klingler, S.; Mangelberger, D.; Kasper, M.; Hauser-Kronberger, C.; Regl, G.; Kroismayr, R.; Moriggl, R.; Sibilia, M.; Aberger, F. Epidermal growth factor receptor signaling synergizes with Hedgehog/GLI in oncogenic transformation via activation of the MEK/ERK/JUN pathway. Cancer Res., 2009, 69(4), 1284-1292.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2331] [PMID: 19190345]
[67]
Santini, R.; Vinci, M.C.; Pandolfi, S.; Penachioni, J.Y.; Montagnani, V.; Olivito, B.; Gattai, R.; Pimpinelli, N.; Gerlini, G.; Borgognoni, L.; Stecca, B. Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells. Stem Cells, 2012, 30(9), 1808-1818.
[http://dx.doi.org/10.1002/stem.1160] [PMID: 22730244]
[68]
Ma, X.L.; Sun, H.J.; Wang, Y.S.; Huang, S.H.; Xie, J.W.; Zhang, H.W. Study of Sonic hedgehog signaling pathway related molecules in gastric carcinoma. World J. Gastroenterol., 2006, 12(25), 3965-3969.
[http://dx.doi.org/10.3748/wjg.v12.i25.3965] [PMID: 16810741]
[69]
Yoshizaki, A.; Nakayama, T.; Naito, S.; Wen, C.Y.; Sekine, I. Expressions of sonic hedgehog, patched, smoothened and Gli-1 in human intestinal stromal tumors and their correlation with prognosis. World J. Gastroenterol., 2006, 12(35), 5687-5691.
[http://dx.doi.org/10.3748/wjg.v12.i35.5687] [PMID: 17007023]
[70]
Brunner, M.; Thurnher, D.; Pammer, J.; Heiduschka, G.; Petzelbauer, P.; Schmid, C.; Schneider, S.; Erovic, B.M. Expression of hedgehog signaling molecules in Merkel cell carcinoma. Head Neck, 2010, 32(3), 333-340.
[PMID: 19644931]
[71]
Bakry, O.A.; Samaka, R.M.; Shoeib, M.A.; Megahed, D.M. Immunolocalization of glioma-associated oncogene homolog 1 in non melanoma skin cancer. Ultrastruct. Pathol., 2015, 39(2), 135-146.
[http://dx.doi.org/10.3109/01913123.2014.970723] [PMID: 25350271]
[72]
Duan, F.; Lin, M.; Li, C.; Ding, X.; Qian, G.; Zhang, H.; Ge, S.; Fan, X.; Li, J. Effects of inhibition of hedgehog signaling on cell growth and migration of uveal melanoma cells. Cancer Biol. Ther., 2014, 15(5), 544-559.
[http://dx.doi.org/10.4161/cbt.28157] [PMID: 24553082]
[73]
Yang, Q.; Shen, S.S.; Zhou, S.; Ni, J.; Chen, D.; Wang, G.; Li, Y. STAT3 activation and aberrant ligand-dependent sonic hedgehog signaling in human pulmonary adenocarcinoma. Exp. Mol. Pathol., 2012, 93(2), 227-236.
[http://dx.doi.org/10.1016/j.yexmp.2012.04.009] [PMID: 22554932]
[74]
Hong, Z.; Bi, A.; Chen, D.; Gao, L.; Yin, Z.; Luo, L. Activation of hedgehog signaling pathway in human non-small cell lung cancers. Pathol. Oncol. Res., 2014, 20(4), 917-922.
[http://dx.doi.org/10.1007/s12253-014-9774-x] [PMID: 24710823]
[75]
Fei, D.L.; Sanchez-Mejias, A.; Wang, Z.; Flaveny, C.; Long, J.; Singh, S.; Rodriguez-Blanco, J.; Tokhunts, R.; Giambelli, C.; Briegel, K.J.; Schulz, W.A.; Gandolfi, A.J.; Karagas, M.; Zimmers, T.A.; Jorda, M.; Bejarano, P.; Capobianco, A.J.; Robbins, D.J. Hedgehog signaling regulates bladder cancer growth and tumorigenicity. Cancer Res., 2012, 72(17), 4449-4458.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-4123] [PMID: 22815529]
[76]
Xie, F.; Xu, X.; Xu, A.; Liu, C.; Liang, F.; Xue, M.; Bai, L. Aberrant activation of Sonic hedgehog signaling in chronic cholecystitis and gallbladder carcinoma. Hum. Pathol., 2014, 45(3), 513-521.
[http://dx.doi.org/10.1016/j.humpath.2013.10.017] [PMID: 24440094]
[77]
Dimitrova, K.; Stoehr, M.; Dehghani, F.; Dietz, A.; Wichmann, G.; Bertolini, J.; Mozet, C. Overexpression of the Hedgehog signalling pathway in head and neck squamous cell carcinoma. Onkologie, 2013, 36(5), 279-286.
[http://dx.doi.org/10.1159/000350322] [PMID: 23689223]
[78]
Chung, M.K.; Kim, H.J.; Lee, Y.S.; Han, M.E.; Yoon, S.; Baek, S.Y.; Kim, B.S.; Kim, J.B.; Oh, S.O. Hedgehog signaling regulates proliferation of prostate cancer cells via stathmin1. Clin. Exp. Med., 2010, 10(1), 51-57.
[http://dx.doi.org/10.1007/s10238-009-0068-7] [PMID: 19779961]
[79]
Li, X.; Deng, W.; Nail, C.D.; Bailey, S.K.; Kraus, M.H.; Ruppert, J.M.; Lobo-Ruppert, S.M. Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation. Oncogene, 2006, 25(4), 609-621.
[http://dx.doi.org/10.1038/sj.onc.1209077] [PMID: 16158046]
[80]
Li, X.; Deng, W.; Lobo-Ruppert, S.M.; Ruppert, J.M. Gli1 acts through Snail and E-cadherin to promote nuclear signaling by beta-catenin. Oncogene, 2007, 26(31), 4489-4498.
[http://dx.doi.org/10.1038/sj.onc.1210241] [PMID: 17297467]
[81]
Riaz, S.K.; Ke, Y.; Wang, F.; Kayani, M.A.; Malik, M.F.A. Influence of SHH/GLI1 axis on EMT mediated migration and invasion of breast cancer cells. Sci. Rep., 2019, 9(1), 6620.
[http://dx.doi.org/10.1038/s41598-019-43093-x] [PMID: 31036836]
[82]
Liao, X.; Siu, M.K.; Au, C.W.; Chan, Q.K.; Chan, H.Y.; Wong, E.S.; Ip, P.P.; Ngan, H.Y.; Cheung, A.N. Aberrant activation of hedgehog signaling pathway contributes to endometrial carcinogenesis through beta-catenin. Mod. Pathol., 2009, 22(6), 839-847.
[http://dx.doi.org/10.1038/modpathol.2009.45] [PMID: 19329935]
[83]
Liao, X.; Siu, M.K.; Au, C.W.; Wong, E.S.; Chan, H.Y.; Ip, P.P.; Ngan, H.Y.; Cheung, A.N. Aberrant activation of hedgehog signaling pathway in ovarian cancers: effect on prognosis, cell invasion and differentiation. Carcinogenesis, 2009, 30(1), 131-140.
[http://dx.doi.org/10.1093/carcin/bgn230] [PMID: 19028702]
[84]
Neill, G.W.; Harrison, W.J.; Ikram, M.S.; Williams, T.D.; Bianchi, L.S.; Nadendla, S.K.; Green, J.L.; Ghali, L.; Frischauf, A.M.; O’Toole, E.A.; Aberger, F.; Philpott, M.P. GLI1 repression of ERK activity correlates with colony formation and impaired migration in human epidermal keratinocytes. Carcinogenesis, 2008, 29(4), 738-746.
[http://dx.doi.org/10.1093/carcin/bgn037] [PMID: 18281251]
[85]
Jeng, K.S.; Sheen, I.S.; Jeng, W.J.; Lin, C.C.; Lin, C.K.; Su, J.C.; Yu, M.C.; Fang, H.Y. High expression of patched homolog-1 messenger RNA and glioma-associated oncogene-1 messenger RNA of sonic hedgehog signaling pathway indicates a risk of postresection recurrence of hepatocellular carcinoma. Ann. Surg. Oncol., 2013, 20(2), 464-473.
[http://dx.doi.org/10.1245/s10434-012-2593-y] [PMID: 22911366]
[86]
Cui, D.; Xu, Q.; Wang, K.; Che, X. Gli1 is a potential target for alleviating multidrug resistance of gliomas. J. Neurol. Sci., 2010, 288(1-2), 156-166.
[http://dx.doi.org/10.1016/j.jns.2009.09.006] [PMID: 19818966]
[87]
Liu, G.; Yuan, X.; Zeng, Z.; Tunici, P.; Ng, H.; Abdulkadir, I.R.; Lu, L.; Irvin, D.; Black, K.L.; Yu, J.S. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol. Cancer, 2006, 5, 67.
[http://dx.doi.org/10.1186/1476-4598-5-67] [PMID: 17140455]
[88]
Ulasov, I.V.; Nandi, S.; Dey, M.; Sonabend, A.M.; Lesniak, M.S. Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy. Mol. Med., 2011, 17(1-2), 103-112.
[http://dx.doi.org/10.2119/molmed.2010.00062] [PMID: 20957337]
[89]
Steg, A.D.; Katre, A.A.; Bevis, K.S.; Ziebarth, A.; Dobbin, Z.C.; Shah, M.M.; Alvarez, R.D.; Landen, C.N. Smoothened antagonists reverse taxane resistance in ovarian cancer. Mol. Cancer Ther., 2012, 11(7), 1587-1597.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-1058] [PMID: 22553355]
[90]
Zhang, L.; Jiao, M.; Li, L.; Wu, D.; Wu, K.; Li, X.; Zhu, G.; Dang, Q.; Wang, X.; Hsieh, J.T.; He, D. Tumorspheres derived from prostate cancer cells possess chemoresistant and cancer stem cell properties. J. Cancer Res. Clin. Oncol., 2012, 138(4), 675-686.
[http://dx.doi.org/10.1007/s00432-011-1146-2] [PMID: 22237455]
[91]
Zhang, L.; Li, L.; Jiao, M.; Wu, D.; Wu, K.; Li, X.; Zhu, G.; Yang, L.; Wang, X.; Hsieh, J.T.; He, D. Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog-Gli1 pathway. Cancer Lett., 2012, 323(1), 48-57.
[http://dx.doi.org/10.1016/j.canlet.2012.03.037] [PMID: 22484470]
[92]
Huang, Y.; Fang, J.; Lu, W.; Wang, Z.; Wang, Q.; Hou, Y.; Jiang, X.; Reizes, O.; Lathia, J.; Nussinov, R.; Eng, C.; Cheng, F. A systems pharmacology approach uncovers wogonoside as an angiogenesis inhibitor of triple-negative breast cancer by targeting hedgehog signaling. Cell Chem. Biol., 2019, 26(8), 1143-1158.e6.
[http://dx.doi.org/10.1016/j.chembiol.2019.05.004] [PMID: 31178408]
[93]
Katoh, M. Genomic testing, tumor microenvironment and targeted therapy of Hedgehog-related human cancers. Clin. Sci. (Lond.), 2019, 133(8), 953-970.
[http://dx.doi.org/10.1042/CS20180845] [PMID: 31036756]
[94]
Kameda, C.; Tanaka, H.; Yamasaki, A.; Nakamura, M.; Koga, K.; Sato, N.; Kubo, M.; Kuroki, S.; Tanaka, M.; Katano, M. The Hedgehog pathway is a possible therapeutic target for patients with estrogen receptor-negative breast cancer. Anticancer Res., 2009, 29(3), 871-879.
[PMID: 19414322]
[95]
Lei, J.; Fan, L.; Wei, G.; Chen, X.; Duan, W.; Xu, Q.; Sheng, W.; Wang, K.; Li, X. Gli-1 is crucial for hypoxia-induced epithelial-mesenchymal transition and invasion of breast cancer. Tumour Biol., 2015, 36(4), 3119-3126.
[http://dx.doi.org/10.1007/s13277-014-2948-z] [PMID: 25501705]
[96]
Das, S.; Samant, R.S.; Shevde, L.A. Nonclassical activation of Hedgehog signaling enhances multidrug resistance and makes cancer cells refractory to Smoothened-targeting Hedgehog inhibition. J. Biol. Chem., 2013, 288(17), 11824-11833.
[http://dx.doi.org/10.1074/jbc.M112.432302] [PMID: 23508962]
[97]
Sims-Mourtada, J.; Izzo, J.G.; Ajani, J.; Chao, K.S. Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport. Oncogene, 2007, 26(38), 5674-5679.
[http://dx.doi.org/10.1038/sj.onc.1210356] [PMID: 17353904]
[98]
Singh, R.R.; Kunkalla, K.; Qu, C.; Schlette, E.; Neelapu, S.S.; Samaniego, F.; Vega, F. ABCG2 is a direct transcriptional target of hedgehog signaling and involved in stroma-induced drug tolerance in diffuse large B-cell lymphoma. Oncogene, 2011, 30(49), 4874-4886.
[http://dx.doi.org/10.1038/onc.2011.195] [PMID: 21625222]
[99]
Huang, F.T.; Zhuan-Sun, Y.X.; Zhuang, Y.Y.; Wei, S.L.; Tang, J.; Chen, W.B.; Zhang, S.N. Inhibition of hedgehog signaling depresses self-renewal of pancreatic cancer stem cells and reverses chemoresistance. Int. J. Oncol., 2012, 41(5), 1707-1714.
[http://dx.doi.org/10.3892/ijo.2012.1597] [PMID: 22923052]
[100]
Amable, L.; Fain, J.; Gavin, E.; Reed, E. Gli1 contributes to cellular resistance to cisplatin through altered cellular accumulation of the drug. Oncol. Rep., 2014, 32(2), 469-474.
[http://dx.doi.org/10.3892/or.2014.3257] [PMID: 24926795]
[101]
Rizvi, S.; Demars, C.J.; Comba, A.; Gainullin, V.G.; Rizvi, Z.; Almada, L.L.; Wang, K.; Lomberk, G.; Fernández-Zapico, M.E.; Buttar, N.S. Combinatorial chemoprevention reveals a novel smoothened-independent role of GLI1 in esophageal carcinogenesis. Cancer Res., 2010, 70(17), 6787-6796.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0197] [PMID: 20647328]
[102]
Dormoy, V.; Béraud, C.; Lindner, V.; Coquard, C.; Barthelmebs, M.; Brasse, D.; Jacqmin, D.; Lang, H.; Massfelder, T. Vitamin D3 triggers antitumor activity through targeting hedgehog signaling in human renal cell carcinoma. Carcinogenesis, 2012, 33(11), 2084-2093.
[http://dx.doi.org/10.1093/carcin/bgs255] [PMID: 22843547]
[103]
Gan, G.N.; Eagles, J.; Keysar, S.B.; Wang, G.; Glogowska, M.J.; Altunbas, C.; Anderson, R.T.; Le, P.N.; Morton, J.J.; Frederick, B.; Raben, D.; Wang, X.J.; Jimeno, A. Hedgehog signaling drives radioresistance and stroma-driven tumor repopulation in head and neck squamous cancers. Cancer Res., 2014, 74(23), 7024-7036.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1346] [PMID: 25297633]
[104]
Xie, S.Y.; Li, G.; Han, C.; Yu, Y.Y.; Li, N. RKIP reduction enhances radioresistance by activating the Shh signaling pathway in non-small-cell lung cancer. OncoTargets Ther., 2017, 10, 5605-5619.
[http://dx.doi.org/10.2147/OTT.S149200] [PMID: 29200875]
[105]
Qu, W.; Wang, Y.; Wu, Q.; Hao, D.; Li, D. Emodin impairs radioresistance of human osteosarcoma cells by suppressing sonic hedgehog signaling. Med. Sci. Monit., 2017, 23, 5767-5773.
[http://dx.doi.org/10.12659/MSM.907453] [PMID: 29203762]
[106]
Han, B.; Qu, Y.; Jin, Y.; Yu, Y.; Deng, N.; Wawrowsky, K.; Zhang, X.; Li, N.; Bose, S.; Wang, Q.; Sakkiah, S.; Abrol, R.; Jensen, T.W.; Berman, B.P.; Tanaka, H.; Johnson, J.; Gao, B.; Hao, J.; Liu, Z.; Buttyan, R.; Ray, P.S.; Hung, M.C.; Giuliano, A.E.; Cui, X. FOXC1 activates smoothened-independent hedgehog signaling in basal-like breast cancer. Cell Rep., 2015, 13(5), 1046-1058.
[http://dx.doi.org/10.1016/j.celrep.2015.09.063] [PMID: 26565916]
[107]
Colavito, S.A.; Zou, M.R.; Yan, Q.; Nguyen, D.X.; Stern, D.F. Significance of glioma-associated oncogene homolog 1 (GLI1) expression in claudin-low breast cancer and crosstalk with the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway. Breast Cancer Res., 2014, 16(5), 444.
[http://dx.doi.org/10.1186/s13058-014-0444-4] [PMID: 25252859]
[108]
Li, X.; Wang, X.; Xie, C.; Zhu, J.; Meng, Y.; Chen, Y.; Li, Y.; Jiang, Y.; Yang, X.; Wang, S.; Chen, J.; Zhang, Q.; Geng, S.; Wu, J.; Zhong, C.; Zhao, Y. Sonic hedgehog and Wnt/β-catenin pathways mediate curcumin inhibition of breast cancer stem cells. Anticancer Drugs, 2018, 29(3), 208-215.
[PMID: 29356693]
[109]
Mukherjee, S.; Frolova, N.; Sadlonova, A.; Novak, Z.; Steg, A.; Page, G.P.; Welch, D.R.; Lobo-Ruppert, S.M.; Ruppert, J.M.; Johnson, M.R.; Frost, A.R. Hedgehog signaling and response to cyclopamine differ in epithelial and stromal cells in benign breast and breast cancer. Cancer Biol. Ther., 2006, 5(6), 674-683.
[http://dx.doi.org/10.4161/cbt.5.6.2906] [PMID: 16855373]
[110]
Bhateja, P.; Cherian, M.; Majumder, S.; Ramaswamy, B. The Hedgehog Signaling Pathway: A Viable Target in Breast Cancer? Cancers (Basel), 2019, 11(8)E1126
[http://dx.doi.org/10.3390/cancers11081126] [PMID: 31394751]
[111]
Sun, Y.; Wang, Y.; Fan, C.; Gao, P.; Wang, X.; Wei, G.; Wei, J. Estrogen promotes stemness and invasiveness of ER-positive breast cancer cells through Gli1 activation. Mol. Cancer, 2014, 13, 137.
[http://dx.doi.org/10.1186/1476-4598-13-137] [PMID: 24889938]
[112]
Norum, J.H.; Frings, O.; Kasper, M.; Bergholtz, H.; Zell Thime, H.; Bergström, Å.; Andersson, A.; Kuiper, R.; Fredlund, E.; Sørlie, T.; Toftgård, R. GLI1-induced mammary gland tumours are transplantable and maintain major molecular features. Int. J. Cancer, 2020, 146(4), 1125-1138.
[http://dx.doi.org/10.1002/ijc.32522] [PMID: 31219615]
[113]
Thomas, Z.I.; Gibson, W.; Sexton, J.Z.; Aird, K.M.; Ingram, S.M.; Aldrich, A.; Lyerly, H.K.; Devi, G.R.; Williams, K.P. Targeting GLI1 expression in human inflammatory breast cancer cells enhances apoptosis and attenuates migration. Br. J. Cancer, 2011, 104(10), 1575-1586.
[http://dx.doi.org/10.1038/bjc.2011.133] [PMID: 21505458]
[114]
Sirkisoon, S.R.; Carpenter, R.L.; Rimkus, T.; Doheny, D.; Zhu, D.; Aguayo, N.R.; Xing, F.; Chan, M.; Ruiz, J.; Metheny-Barlow, L.J.; Strowd, R.; Lin, J.; Regua, A.T.; Arrigo, A.; Anguelov, M.; Pasche, B. TGLI1 transcription factor mediates breast cancer brain metastasis via activating metastasis-initiating cancer stem cells and astrocytes in the tumor microenvironment. Oncogene, 2020, 39(1), 64-78.
[115]
Henke, D.M.; Shaw, C.A.; Wu, M.F.; Hilsenbeck, S.G.; White, L.D.; Lewis, M.T.; Ford, H.L. EMT cells increase breast cancer metastasis via paracrine GLI activation in neighbouring tumour cells. Nat. Commun., 2017, 12(8), 15773.
[116]
Spivak-Kroizman, T.R.; Hostetter, G.; Posner, R.; Aziz, M.; Hu, C.; Demeure, M.J.; Von Hoff, D.; Hingorani, S.R.; Palculict, T.B.; Izzo, J.; Kiriakova, G.M.; Abdelmelek, M.; Bartholomeusz, G.; James, B.P.; Powis, G. Hypoxia triggers hedgehog-mediated tumor-stromal interactions in pancreatic cancer. Cancer Res., 2013, 73(11), 3235-3247.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1433] [PMID: 23633488]
[117]
Niewiadomski, P.; Kong, J.H.; Ahrends, R.; Ma, Y.; Humke, E.W.; Khan, S.; Teruel, M.N.; Novitch, B.G.; Rohatgi, R. Gli protein activity is controlled by multisite phosphorylation in vertebrate Hedgehog signaling. Cell Rep., 2014, 6(1), 168-181.
[http://dx.doi.org/10.1016/j.celrep.2013.12.003] [PMID: 24373970]
[118]
Li, Y.; Yang, W.; Yang, Q.; Zhou, S. Nuclear localization of GLI1 and elevated expression of FOXC2 in breast cancer is associated with the basal-like phenotype. Histol. Histopathol., 2012, 27(4), 475-484.
[PMID: 22374725]
[119]
Wang, B.; Yu, T.; Hu, Y.; Xiang, M.; Peng, H.; Lin, Y.; Han, L.; Zhang, L. Prognostic role of Gli1 expression in breast cancer: a meta-analysis. Oncotarget, 2017, 8(46), 81088-81097.
[http://dx.doi.org/10.18632/oncotarget.19080] [PMID: 29113369]
[120]
Ni, W.; Yang, Z.; Qi, W.; Cui, C.; Cui, Y.; Xuan, Y. Gli1 is a potential cancer stem cell marker and predicts poor prognosis in ductal breast carcinoma. Hum. Pathol., 2017, 69, 38-45.
[http://dx.doi.org/10.1016/j.humpath.2017.08.038] [PMID: 28965964]
[121]
Diao, Y.; Rahman, M.F.; Vyatkin, Y.; Azatyan, A.; St Laurent, G.; Kapranov, P.; Zaphiropoulos, P.G. Identification of novel GLI1 target genes and regulatory circuits in human cancer cells. Mol. Oncol., 2018, 12(10), 1718-1734.
[http://dx.doi.org/10.1002/1878-0261.12366] [PMID: 30098229]
[122]
Kurebayashi, J.; Kanomata, N.; Koike, Y.; Ohta, Y.; Saitoh, W.; Kishino, E. Comprehensive immunohistochemical analyses on expression levels of hedgehog signaling molecules in breast cancers. Breast Cancer, 2018, 25(6), 759-767.
[http://dx.doi.org/10.1007/s12282-018-0884-2] [PMID: 29946869]
[123]
Gonnissen, A.; Isebaert, S.; Haustermans, K. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget, 2015, 6(16), 13899-13913.
[http://dx.doi.org/10.18632/oncotarget.4224] [PMID: 26053182]
[124]
Hyman, J.M.; Firestone, A.J.; Heine, V.M.; Zhao, Y.; Ocasio, C.A.; Han, K.; Sun, M.; Rack, P.G.; Sinha, S.; Wu, J.J.; Solow-Cordero, D.E.; Jiang, J.; Rowitch, D.H.; Chen, J.K. Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc. Natl. Acad. Sci. USA, 2009, 106(33), 14132-14137.
[http://dx.doi.org/10.1073/pnas.0907134106] [PMID: 19666565]
[125]
Wolff, F.; Loipetzberger, A.; Gruber, W.; Esterbauer, H.; Aberger, F.; Frischauf, A.M. Imiquimod directly inhibits Hedgehog signalling by stimulating adenosine receptor/protein kinase A-mediated GLI phosphorylation. Oncogene, 2013, 32(50), 5574-5581.
[http://dx.doi.org/10.1038/onc.2013.343] [PMID: 23995793]
[126]
Jeng, K.S.; Jeng, C.J.; Sheen, I.S.; Wu, S.H.; Lu, S.J.; Wang, C.H.; Chang, C.F. Glioma-associated oncogene homolog inhibitors have the potential of suppressing cancer stem cells of breast cancer. Int. J. Mol. Sci., 2018, 19(5), pii: E1375
[http://dx.doi.org/10.3390/ijms19051375]
[127]
Rudolph, M.; Sizemore, S.T.; Lu, Y.; Teng, K.Y.; Basree, M.M.; Reinbolt, R.; Timmers, C.D.; Leone, G.; Ostrowski, M.C.; Majumder, S.; Ramaswamy, B. A hedgehog pathway-dependent gene signature is associated with poor clinical outcomes in Luminal A breast cancer. Breast Cancer Res. Treat., 2018, 169(3), 457-467.
[http://dx.doi.org/10.1007/s10549-018-4718-x]
[128]
Sirkisoon, S.R.; Carpenter, R.L.; Rimkus, T.; Anderson, A.; Harrison, A.; Lange, A.M.; Jin, G.; Watabe, K.; Lo, H.W. Interaction between STAT3 and GLI1/tGLI1 oncogenic transcription factors promotes the aggressiveness of triple-negative breast cancers and HER2-enriched breast cancer. Oncogene, 2018, 37(19), 2502-2514.
[http://dx.doi.org/10.1038/s41388-018-0132-4] [PMID: 29449694]
[129]
Di Mauro, C.; Rosa, R.; D’Amato, V.; Ciciola, P.; Servetto, A.; Marciano, R.; Orsini, R.C.; Formisano, L.; De Falco, S.; Cicatiello, V.; Di Bonito, M.; Cantile, M.; Collina, F.; Chambery, A.; Veneziani, B.M.; De Placido, S.; Bianco, R. Hedgehog signalling pathway orchestrates angiogenesis in triple-negative breast cancers. Br. J. Cancer, 2017, 116(11), 1425-1435.
[http://dx.doi.org/10.1038/bjc.2017.116] [PMID: 28441382]
[130]
Oladapo, H.O.; Tarpley, M.; Sauer, S.J.; Addo, K.A.; Ingram, S.M.; Strepay, D.; Ehe, B.K.; Chdid, L.; Trinkler, M.; Roques, J.R.; Darr, D.B.; Fleming, J.M.; Devi, G.R.; Williams, K.P. Pharmacological targeting of GLI1 inhibits proliferation, tumor emboli formation and in vivo tumor growth of inflammatory breast cancer cells. Cancer Lett., 2017, 411, 136-149.
[http://dx.doi.org/10.1016/j.canlet.2017.09.033] [PMID: 28965853]
[131]
Riaz, S.K.; Khan, J.S.; Shah, S.T.A.; Wang, F.; Ye, L.; Jiang, W.G.; Malik, M.F.A. Involvement of hedgehog pathway in early onset, aggressive molecular subtypes and metastatic potential of breast cancer. Cell Commun. Signal., 2018, 16(1), 3.
[http://dx.doi.org/10.1186/s12964-017-0213-y] [PMID: 29329585]
[132]
Koike, Y.; Ohta, Y.; Saitoh, W.; Yamashita, T.; Kanomata, N.; Moriya, T.; Kurebayashi, J. Anti-cell growth and anti-cancer stem cell activities of the non-canonical hedgehog inhibitor GANT61 in triple-negative breast cancer cells. Breast Cancer, 2017, 24(5), 683-693.
[http://dx.doi.org/10.1007/s12282-017-0757-0] [PMID: 28144905]
[133]
Agyeman, A.; Jha, B.K.; Mazumdar, T.; Houghton, J.A. Mode and specificity of binding of the small molecule GANT61 to GLI determines inhibition of GLI-DNA binding. Oncotarget, 2014, 5(12), 4492-4503.
[http://dx.doi.org/10.18632/oncotarget.2046] [PMID: 24962990]
[134]
Fiaschi, M.; Rozell, B.; Bergström, A.; Toftgård, R. Development of mammary tumors by conditional expression of GLI1. Cancer Res., 2009, 69(11), 4810-4817.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3938] [PMID: 19458072]
[135]
Harris, L.G.; Pannell, L.K.; Singh, S.; Samant, R.S.; Shevde, L.A. Increased vascularity and spontaneous metastasis of breast cancer by hedgehog signaling mediated upregulation of cyr61. Oncogene, 2012, 31(28), 3370-3380.
[http://dx.doi.org/10.1038/onc.2011.496] [PMID: 22056874]
[136]
Cui, W.; Wang, L.H.; Wen, Y.Y.; Song, M.; Li, B.L.; Chen, X.L.; Xu, M.; An, S.X.; Zhao, J.; Lu, Y.Y.; Mi, X.Y.; Wang, E.H. Expression and regulation mechanisms of Sonic Hedgehog in breast cancer. Cancer Sci., 2010, 101(4), 927-933.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01495.x] [PMID: 20180807]
[137]
Li, W.; Sun, Q.; Song, L.; Gao, C.; Liu, F.; Chen, Y.; Jiang, Y. Discovery of 1-(3-aryl-4-chlorophenyl)-3-(p-aryl)urea derivatives against breast cancer by inhibiting PI3K/Akt/mTOR and Hedgehog signalings. Eur. J. Med. Chem., 2017, 141, 721-733.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.002] [PMID: 29107429]
[138]
Jafari, S.M.; Joshaghani, H.R.; Panjehpour, M.; Aghaei, M. Apoptosis and cell cycle regulatory effects of adenosine by modulation of GLI-1 and ERK1/2 pathways in CD44(+) and CD24(-) breast cancer stem cells. Cell Prolif., 2017, 50(4)
[139]
Zhao, H.; Tang, H.; Xiao, Q.; He, M.; Zhao, L.; Fu, Y.; Wu, H.; Yu, Z.; Jiang, Q.; Yan, Y.; Jin, F.; Wei, M. The Hedgehog signaling pathway is associated with poor prognosis in breast cancer patients with the CD44+/CD24‑ phenotype. Mol. Med. Rep., 2016, 14(6), 5261-5270.
[http://dx.doi.org/10.3892/mmr.2016.5856] [PMID: 27779682]
[140]
Bao, C.; Kim, M.C.; Chen, J.; Song, J.; Ko, H.W.; Lee, H.J. Sulforaphene interferes with human breast cancer cell migration and invasion through inhibition of hedgehog signaling. J. Agric. Food Chem., 2016, 64(27), 5515-5524.
[http://dx.doi.org/10.1021/acs.jafc.6b02195] [PMID: 27327035]
[141]
Sun, M.; Zhang, N.; Wang, X.; Li, Y.; Qi, W.; Zhang, H.; Li, Z.; Yang, Q. Hedgehog pathway is involved in nitidine chloride induced inhibition of epithelial-mesenchymal transition and cancer stem cells-like properties in breast cancer cells. Cell Biosci., 2016, 6, 44.
[http://dx.doi.org/10.1186/s13578-016-0104-8] [PMID: 27313840]
[142]
Villegas, V.E.; Rondón-Lagos, M.; Annaratone, L.; Castellano, I.; Grismaldo, A.; Sapino, A.; Zaphiropoulos, P.G. Tamoxifen treatment of breast cancer cells: Impact on hedgehog/GLI1 signaling. Int. J. Mol. Sci., 2016, 17(3), 308.
[http://dx.doi.org/10.3390/ijms17030308] [PMID: 26927093]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 1
Year: 2020
Page: [33 - 43]
Pages: 11
DOI: 10.2174/1389200221666200122120625
Price: $65

Article Metrics

PDF: 21
HTML: 1