Systematic Understanding of the Mechanisms of Flos Chrysanthemi Indici-mediated Effects on Hypertension via Computational Target Fishing

Author(s): Ye-Hui Chen, Shan-Shan Lei, Bo Li, Rong Luo, Xinglishang He, Yu-Zhi Wang, Fu-Chen Zhou, Gui-Yuan Lv*, Su-Hong Chen*

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 23 , Issue 2 , 2020

Become EABM
Become Reviewer

Abstract:

Aims and Objective: Hypertension-induced stroke and coronary artery disease are significant causes of global morbidity and mortality. Metabolic hypertension has recently become the leading cause of hypertension. Flos Chrysanthemi Indici (CIF) has a long history as a treatment of hypertension as part of traditional Chinese medicine. However, its mechanisms of activity remain largely unknown. This study was aimed to uncover the potential anti-hypertensive mechanisms of CIF based on network pharmacology.

Materials and Methods: In this research, a systems pharmacology approach integrating the measurement of active compounds, target fishing, gene screening, Gene Ontology (GO) pathway analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology Based Annotation System (KOBAS) database analysis, and compound-target network construction were performed to explore the anti-hypertensive mechanisms of CIF.

Results: These studies revealed that 12 bioactive compounds in CIF had good druggability, 5 of which were flavonoids. After screening, 8 of those 12 bioactive compounds interacted with 118 hypertensionrelated target genes, which were mapped to 218 signal pathways. Network analysis showed that these targets were associated with improving insulin resistance, improving vascular function, inhibiting renninangiotensin- aldosterone system (RAAS), inhibiting the sympathetic nervous system (SNS) and regulating other physiological processes.

Conclusion: In summary, CIF is predicted to target multiple proteins and pathways to form a network that exerts systematic pharmacological effects in order to regulate blood pressure and metabolic disorder.

Keywords: Hypertension, Flos Chrysanthemi Indici, systematic pharmacology, metabolic hypertension, bioactive compound, flavonoids.

[1]
Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet, 2017, 389(10064), 37-55.
[http://dx.doi.org/10.1016/S0140-6736(16)31919-5] [PMID: 27863813]
[2]
Mills, K.T.; Bundy, J.D.; Kelly, T.N.; Reed, J.E.; Kearney, P.M.; Reynolds, K.; Jing, C.; Jiang, H. Global burden of hypertension: Analysis of population-based studies from 89 countries. J. Hypertens., 2015, 33(e. 1), 1.
[http://dx.doi.org/10.1097/01.hjh.0000469726.59998.cc]
[3]
Li, Y.; Yang, L.; Wang, L.; Zhang, M.; Huang, Z.; Deng, Q.; Zhou, M.; Chen, Z.; Wang, L. Burden of hypertension in China: A nationally representative survey of 174,621 adults. Int. J. Cardiol., 2017, 227(15), 516-523.
[http://dx.doi.org/10.1016/j.ijcard.2016.10.110] [PMID: 27856040]
[4]
Wang, Z.; Chen, Z.; Zhang, L.; Wang, X.; Hao, G.; Zhang, Z.; Shao, L.; Tian, Y.; Dong, Y.; Zheng, C.; Wang, J.; Zhu, M.; Weintraub, W.S.; Gao, R. Status of hypertension in China: results from the China hypertension survey, 2012-2015. Circulation, 2018, 137(22), 2344-2356.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.032380] [PMID: 29449338]
[5]
Liu, H.; Ploumis, A. Cervicogenic hypertension-A possible etiology and pathogenesis of essential hypertension. Hypothesis, 2012, 10 (1), e4.
[http://dx.doi.org/10.5779/hypothesis.v10i1.297]
[6]
Pool, P.E. The case for metabolic hypertension: is it time to restructure the hypertension paradigm? Prog. Cardiovasc. Dis., 1993, 36(1), 1-38.
[http://dx.doi.org/10.1016/0033-0620(93)90020-E] [PMID: 8321903]
[7]
Wu, Z.S.; Huo, Y.; Wang, W.; Zhao, L.Y.; Zhu, D.L. The education guide for Chinese patients with hypertension. Chin. J. Hypertens, 2013, 21(12), 1123-1149.
[8]
Li, B.; Yang, Z.B.; Lei, S.S.; Su, J.; Jin, Z.W.; Chen, S.H.; Lv, G.Y. Combined antihypertensive effect of paeoniflorin enriched extract and metoprolol in spontaneously hypertensive rats. Pharmacogn. Mag., 2018, 14(53), 44-52.
[http://dx.doi.org/10.4103/pm.pm_483_16] [PMID: 29576700]
[9]
Huang, T.H.; Kota, B.P.; Razmovski, V.; Roufogalis, B.D. Herbal or natural medicines as modulators of peroxisome proliferator-activated receptors and related nuclear receptors for therapy of metabolic syndrome. Basic Clin. Pharmacol. Toxicol., 2005, 96(1), 3-14.
[http://dx.doi.org/10.1111/j.1742-7843.2005.pto960102.x] [PMID: 15667590]
[10]
Hassani, F.V.; Shirani, K.; Hosseinzadeh, H. Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: a review. Naunyn Schmiedebergs Arch. Pharmacol., 2016, 389(9), 931-949.
[http://dx.doi.org/10.1007/s00210-016-1256-0] [PMID: 27178264]
[11]
Tang, W.; Eisenbrand, G. Chrysanthemum indicum L. and C. morifolium Ramat. In: Chinese Drugs of Plant Origin; Springer: Berlin, Heidelberg, 1992; pp. 309-313.
[http://dx.doi.org/10.1007/978-3-642-73739-8_40]
[12]
Lv, G.Y.; Zhang, Y.P.; Gao, J.L.; Yu, J.J.; Lei, J.; Zhang, Z.R.; Li, B.; Zhan, R.J.; Chen, S.H. Combined antihypertensive effect of luteolin and buddleoside enriched extracts in spontaneously hypertensive rats. J. Ethnopharmacol., 2013, 150(2), 507-513.
[http://dx.doi.org/10.1016/j.jep.2013.08.058] [PMID: 24080032]
[13]
Fang, H.; Guo, Q.; Shen, H. Pre-treatment in determining total polysaccharide in flos Chrysanthemum indicum by response surface design. Zhongguo Zhongyao Zazhi, 2009, 34(13), 1665-1667.
[PMID: 19873776]
[14]
Liu, W.; Zhang, Q.; He, Y.H.; Dong, Y.; Zhang, H.; Liu, Y. Comparison of antihypertensive effect of leonurus japonicus decoction, wild chrysanthemum decoction and compound decoction of them on hypertensive rats. J. Shandong. Univ. Tradit. Chin. Med., 2015, 39(6), 555-556.
[15]
Ji, X.; Chen, S.H.; Lv, G.Y.; Geng, Z.G.; Li, X.Y. Effect of compound juming combined with nifedipine on blood pressure and vasoactive substances in aged SHR rats. J. Zhejiang. Chin. Med. Univ., 2013, 37(2), 116-120.
[16]
Huang, Y.; Su, Y.; Chen, L.; She, Y.L.; Zhao, Z.Y.; Zhao, Y.Z. Experimental study of flos Chrysanthemi indici particles on the effects of anti-inflammation and analgesia. J. Gansu. Coll. Tradit. Chin. Med., 2009, 26(5), 5-6.
[17]
Zhang, J.Y.; Zhang, L.; Jin, Y.; Cheng, W.M.; Guo, L.; Zhou, Y.H.; Peng, L.; Zhang, X.; Li, J. Anti-inflammatory and mechanisms of total flavonoids in Chrysanthemum indicum Flos. Acta. Univ. Med. Anhui, 2005, 40(5), 405-408.
[18]
Zhang, Z.Y.; Fang, X.P.; Diao, Z.H.; Zeng, R.H.; Mei, X.G. Anti-respiratory syncytial virus effect of the extraction of Chrysanthemum indicum in vitro. Pharm. J. Chin. PLA, 2006, 22(4), 273-276.
[19]
Chen, C.Q.; Qu, Y.D.; Shan, G.S. Effects of Chrysanthemum indicum flos extracts on regulation of blood lipid. J. Jilin. Med. Coll., 2010, 31(6), 321-324.
[20]
Zhang, Y.P.; Chen, S.H.; Lv, G.Y. Effective composition of flos chrysanthemi on blood hemorheology effect in spontaneously hypertensive rats. J. Zhejiang. Chin. Med. Univ., 2013, 37(4), 370- 374.
[21]
Wu, Q.; Chen, C.; Gu, W.; Gao, J.; Liu, Y. Influence of Chrysanthemum indium on collagen accumulation and signaling transduction pathways in left ventricular tissue of cardiac hypertrophy in rats. Zhongguo Zhongyao Zazhi, 2010, 35(5), 623-629.
[PMID: 20506826]
[22]
Zhuang, Z.J.; Shan, C.W.; Li, B.; Pang, M.X.; Wang, H.; Luo, Y.; Liu, Y.L.; Song, Y.; Wang, N.N.; Chen, S.H.; Shi, J.P.; Lv, G.Y. Linarin enriched extract attenuates liver injury and inflammation induced by high-fat high-cholesterol diet in rats. Evid. Based Complement. Alternat. Med., 2017, 20174701570
[http://dx.doi.org/10.1155/2017/4701570] [PMID: 28740538]
[23]
Rivera, L.; Morón, R.; Sánchez, M.; Zarzuelo, A.; Galisteo, M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring), 2008, 16(9), 2081-2087.
[http://dx.doi.org/10.1038/oby.2008.315] [PMID: 18551111]
[24]
Nguyen, M.T.; Awale, S.; Tezuka, Y.; Shi, L.; Zaidi, S.F.; Ueda, J.Y.; Tran, Q.L.; Murakami, Y.; Matsumoto, K.; Kadota, S. Hypouricemic effects of acacetin and 4,5-o-dicaffeoylquinic acid methyl ester on serum uric acid levels in potassium oxonate-pretreated rats. Biol. Pharm. Bull., 2005, 28(12), 2231-2234.
[http://dx.doi.org/10.1248/bpb.28.2231] [PMID: 16327155]
[25]
Lapi, D.; Vagnani, S.; Pignataro, G.; Esposito, E.; Paterni, M.; Colantuoni, A. Rat pial microvascular responses to transient bilateral common carotid artery occlusion and reperfusion: quercetin’s mechanism of action. Front. Physiol., 2012, 3, 99.
[http://dx.doi.org/10.3389/fphys.2012.00099] [PMID: 22557973]
[26]
Zhao, S.; Iyengar, R. Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol., 2012, 52(1), 505-521.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134520] [PMID: 22235860]
[27]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13-18.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[28]
Wu, X.J.; Zhou, X.B.; Chen, C.; Mao, W. Systematic investigation of quercetin for treating cardiovascular disease based on network pharmacology. Comb. Chem. High Throughput Screen., 2019, 22(6), 411-420.
[http://dx.doi.org/10.2174/1386207322666190717124507] [PMID: 31573877]
[29]
Song, Y.; Wang, H.; Pan, Y.; Liu, T. Investigating the multi-target pharmacological mechanism of Hedyotis diffusa willd acting on prostate cancer: a network pharmacology approach. Biomolecules, 2019, 9(10), 591.
[http://dx.doi.org/10.3390/biom9100591] [PMID: 31600936]
[30]
Bi, Y.H.; Zhang, L.H.; Chen, S.J.; Ling, Q.Z. Antitumor mechanisms of Curcumae rhizoma based on network pharmacology. Evid. Based Complement. Alternat. Med., 2018, 20184509892
[http://dx.doi.org/10.1155/2018/4509892] [PMID: 29636777]
[31]
Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; Sirota-Madi, A.; Olender, T.; Golan, Y.; Stelzer, G.; Harel, A.; Lancet, D. GeneCards Version 3: the human gene integrator. Database (Oxford), 2010, 2010baq020
[http://dx.doi.org/10.1093/database/baq020] [PMID: 20689021]
[32]
UniProt: a hub for protein information. Nucleic Acids Res., 2015, 43(Database issue), D204-D212.
[PMID: 25348405]
[33]
Lopes, C.T.; Franz, M.; Kazi, F.; Donaldson, S.L.; Morris, Q.; Bader, G.D. Cytoscape Web: an interactive web-based network browser. Bioinformatics, 2010, 26(18), 2347-2348.
[http://dx.doi.org/10.1093/bioinformatics/btq430] [PMID: 20656902]
[34]
Dennis, G., Jr; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol., 2003, 4(5), 3.
[http://dx.doi.org/10.1186/gb-2003-4-5-p3] [PMID: 12734009]
[35]
Beekmann, K.; Rubió, L.; de Haan, L.H.; Actis-Goretta, L.; van der Burg, B.; van Bladeren, P.J.; Rietjens, I.M. The effect of quercetin and kaempferol aglycones and glucuronides on peroxisome proliferator-activated receptor-gamma (PPAR-γ). Food Funct., 2015, 6(4), 1098-1107.
[http://dx.doi.org/10.1039/C5FO00076A] [PMID: 25765892]
[36]
Barroso, I.; Gurnell, M.; Crowley, V.E.; Agostini, M.; Schwabe, J.W.; Soos, M.A.; Maslen, G.L.; Williams, T.D.; Lewis, H.; Schafer, A.J.; Chatterjee, V.K.; O’Rahilly, S. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature, 1999, 402(6764), 880-883.
[http://dx.doi.org/10.1038/47254] [PMID: 10622252]
[37]
Valencia, D.M.; Naranjo, C.A.; Parra, M.V.; Caro, M.A.; Valencia, A.V.; Jaramillo, C.J.; Bedoya, G. [Association and interaction of AGT, AGTR1, ACE, ADRB2, DRD1, ADD1, ADD2, ATP2B1, TBXA2R and PTGS2 genes on the risk of hypertension in Antioquian population]. Biomedica, 2013, 33(4), 598-614.
[http://dx.doi.org/10.7705/biomedica.v33i4.1489] [PMID: 24652215]
[38]
Jin, H.S.; Hong, K.W.; Lim, J.E. Association between prostaglandin-endoperoxide synthase 2 (PTGS2) polymorphisms and blood pressure in korean population. Genomics Inform., 2008, 6(3), 110-116.
[http://dx.doi.org/10.5808/GI.2008.6.3.110]
[39]
Tang, J.M.; Shi, N.; Dong, K.; Brown, S.A.; Coleman, A.E.; Boegehold, M.A.; Chen, S.Y. Response gene to complement 32 maintains blood pressure homeostasis by regulating α-adrenergic receptor expression. Circ. Res., 2018, 123(9), 1080-1090.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313266] [PMID: 30355157]
[40]
Nguyen, V.T.; Wu, Y.; Guillory, A.N.; McConnell, B.K.; Fujise, K.; Huang, M.H. Delta-opioid augments cardiac contraction through β-adrenergic and CGRP-receptor co-signaling. Peptides, 2012, 33(1), 77-82.
[http://dx.doi.org/10.1016/j.peptides.2011.11.010] [PMID: 22108711]
[41]
Wu, X.; Han, T.; Gao, J.; Zhang, Y.; Zhao, S.; Sun, R.; Sun, C.; Niu, Y.; Li, Y. Association of serum calcium and insulin resistance with hypertension risk: a prospective population-based study. J. Am. Heart Assoc., 2019, 8(1)e009585
[http://dx.doi.org/10.1161/JAHA.118.009585] [PMID: 30596304]
[42]
Liu, X.Z.; Fan, J.; Pan, S.J. METS-IR, a novel simple insulin resistance indexes, is associated with hypertension in normal-weight Chinese adults. J. Clin. Hypertens. (Greenwich), 2019, 21(8), 1075-1081.
[http://dx.doi.org/10.1111/jch.13591] [PMID: 31282098]
[43]
Cerrito, M.G.; Scagliarini, A.; Froio, A.; Liloia, A.; Busnelli, M.; Giovannoni, R.; Otterbein, L.E.; Mainetti, L.; Villa, M.; Bach, F.H.; Leone, B.E.; Biasi, G.M.; Lavitrano, M. Heme oxygenase-1 inhibition prevents intimal hyperplasia enhancing nitric oxide-dependent apoptosis of vascular smooth muscle cells. Biol. Pharm. Bull., 2011, 34(8), 1204-1214.
[http://dx.doi.org/10.1248/bpb.34.1204] [PMID: 21804207]
[44]
Kitanaka, N.; Nakano, R.; Kitanaka, T.; Namba, S.; Konno, T.; Nakayama, T.; Sugiya, H. NF-κB p65 and p105 implicate in interleukin 1β-mediated COX-2 expression in melanoma cells. PLoS One, 2018, 13(12)e0208955
[http://dx.doi.org/10.1371/journal.pone.0208955] [PMID: 30562372]
[45]
Goepel, M.; Hecker, U.; Krege, S.; Rübben, H.; Michel, M.C. Saw palmetto extracts potently and noncompetitively inhibit human alpha1-adrenoceptors in vitro. Prostate, 1999, 38(3), 208-215.
[http://dx.doi.org/10.1002/(SICI)1097-0045(19990215)38:3<208:AID-PROS5>3.0.CO;2-4] [PMID: 10068345]
[46]
Luo, H.; Jiang, B.H.; King, S.M.; Chen, Y.C. Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids. Nutr. Cancer, 2008, 60(6), 800-809.
[http://dx.doi.org/10.1080/01635580802100851] [PMID: 19005980]
[47]
Montserrat-de la Paz, S.; Fernández-Arche, A.; Angel-Martín, M.; García-Giménez, M.D. The sterols isolated from evening primrose oil modulate the release of proinflammatory mediators. Phytomedicine, 2012, 19(12), 1072-1076.
[http://dx.doi.org/10.1016/j.phymed.2012.06.008] [PMID: 22819447]
[48]
Lajter, I.; Pan, S.P.; Nikles, S.; Ortmann, S.; Vasas, A.; Csupor-Löffler, B.; Forgó, P.; Hohmann, J.; Bauer, R. Inhibition of COX-2 and NF-κB1 gene expression, NO production, 5-LOX, and COX-1 and COX-2 enzymes by extracts and constituents of Onopordum acanthium. Planta Med., 2015, 81(14), 1270-1276.
[http://dx.doi.org/10.1055/s-0035-1546242] [PMID: 26383017]
[49]
García-Mediavilla, V.; Crespo, I.; Collado, P.S.; Esteller, A.; Sánchez-Campos, S.; Tuñón, M.J.; González-Gallego, J. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur. J. Pharmacol., 2007, 557(2-3), 221-229.
[http://dx.doi.org/10.1016/j.ejphar.2006.11.014] [PMID: 17184768]
[50]
Calabró, V.; Litterio, M.C.; Fraga, C.G.; Galleano, M.; Piotrkowski, B. Effects of quercetin on heart nitric oxide metabolism in l-NAME treated rats. Arch. Biochem. Biophys., 2018, 647, 47-53.
[http://dx.doi.org/10.1016/j.abb.2018.03.041] [PMID: 29621523]
[51]
DiBona, G.F. Sympathetic nervous system and hypertension. Hypertension, 2013, 61(3), 556-560.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.00633] [PMID: 23357181]
[52]
Bruno, R.M.; Sudano, I.; Ghiadoni, L.; Masi, L.; Taddei, S. Interactions between sympathetic nervous system and endogenous endothelin in patients with essential hypertension. Hypertension, 2011, 57(1), 79-84.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.163584] [PMID: 21059990]
[53]
Marcondes Santos, M.; Strunz, C.M.; Larsson, M.H. Correlation between activation of the sympathetic nervous system estimated by plasma concentrations of norepinephrine and doppler echocardiographic variables in dogs with acquired heart disease. Am. J. Vet. Res., 2006, 67(7), 1163-1168.
[http://dx.doi.org/10.2460/ajvr.67.7.1163] [PMID: 16817737]
[54]
Chiu, F.L.; Lin, J.K. Downregulation of androgen receptor expression by luteolin causes inhibition of cell proliferation and induction of apoptosis in human prostate cancer cells and xenografts. Prostate, 2008, 68(1), 61-71.
[http://dx.doi.org/10.1002/pros.20690] [PMID: 18008333]
[55]
Wu, Q.; Chen, C.X.; Gu, W.L.; Gao, J.P. Influnce of wild chrysanthemum on some neuroendocrine factors in ventricular remodeling induced by abdominal aortic banding in rats. Chin. J. Tradit. Chin. Med. Pharm, 2009, 24(9), 1140-1143.
[56]
Wang, X.; Chang, H.; Jiang, J.; Liu, Y.; Xiang, Y.; Yong, H.E.; Wang, R. Virtual screening research of high frequency antihypertensive traditional chinese medicinal constituents worked on β2-AR. Zhongguo Xiandai Zhongyao, 2015, 17(11), 1151-1154.
[57]
Guven, A.; Caliskan, M.; Ciftci, O.; Barutcu, I. Increased platelet activation and inflammatory response in patients with masked hypertension. Blood Coagul. Fibrinolysis, 2013, 24(2), 170-174.
[http://dx.doi.org/10.1097/MBC.0b013e32835aba36] [PMID: 23358199]
[58]
Kim, E.K.; Kwon, K.B.; Song, M.Y.; Han, M.J.; Lee, J.H.; Lee, Y.R.; Lee, J.H.; Ryu, D.G.; Park, B.H.; Park, J.W. Flavonoids protect against cytokine-induced pancreatic beta-cell damage through suppression of nuclear factor kappaB activation. Pancreas, 2007, 35(4), e1-e9.
[http://dx.doi.org/10.1097/mpa.0b013e31811ed0d2] [PMID: 18090225 ]
[59]
Kaneko, M.; Takimoto, H.; Sugiyama, T.; Seki, Y.; Kawaguchi, K.; Kumazawa, Y. Suppressive effects of the flavonoids quercetin and luteolin on the accumulation of lipid rafts after signal transduction via receptors. Immunopharmacol. Immunotoxicol., 2008, 30(4), 867-882.
[http://dx.doi.org/10.1080/08923970802135690] [PMID: 18720166]
[60]
Wu, C.H.; Wu, C.F.; Huang, H.W.; Jao, Y.C.; Yen, G.C. Naturally occurring flavonoids attenuate high glucose-induced expression of proinflammatory cytokines in human monocytic THP-1 cells. Mol. Nutr. Food Res., 2009, 53(8), 984-995.
[http://dx.doi.org/10.1002/mnfr.200800495] [PMID: 19557821]
[61]
Wu, Y.L.; Su, J.; Huang, P.; Chen, G.; Chen, S.H.; Lv, G.Y. Buddleoside prevents TNF-α-induced human aortic endothelial cells inflammatory injury through inhibiting TLR4/IκBα/NF-κB signaling pathway. Chin. J. Mod. Appl. Phar, 2017, 34(5), 637-643.
[62]
Aziz, N.; Kim, M.Y.; Cho, J.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol., 2018, 225, 342-358.
[http://dx.doi.org/10.1016/j.jep.2018.05.019] [PMID: 29801717]
[63]
Luo, J.; Zhang, C.; Liu, Q.; Ou, S.; Zhang, L.; Peng, X. Combinative effect of sardine peptides and quercetin alleviates hypertension through inhibition of angiotensin I converting enzyme activity and inflammation. Food Res. Int., 2017, 100(Pt 1), 579-585.
[http://dx.doi.org/10.1016/j.foodres.2017.07.019] [PMID: 28873724]
[64]
Loizou, S.; Lekakis, I.; Chrousos, G.P.; Moutsatsou, P. β-sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Mol. Nutr. Food Res., 2010, 54(4), 551-558.
[http://dx.doi.org/10.1002/mnfr.200900012] [PMID: 19937850]
[65]
Catterall, W.A.; Zheng, N. Deciphering voltage-gated Na(+) and Ca(2+) channels by studying prokaryotic ancestors. Trends Biochem. Sci., 2015, 40(9), 526-534.
[http://dx.doi.org/10.1016/j.tibs.2015.07.002] [PMID: 26254514]
[66]
Tran, K.C.; Leung, A.A.; Tang, K.L.; Quan, H.; Khan, N.A. Efficacy of calcium channel blockers on major cardiovascular outcomes for the treatment of hypertension in asian populations: a meta-analysis. Can. J. Cardiol., 2017, 33(5), 635-643.
[http://dx.doi.org/10.1016/j.cjca.2017.01.011] [PMID: 28377067 ]
[67]
McClellan, G.; Kulikovskaya, I.; Winegrad, S. Changes in cardiac contractility related to calcium-mediated changes in phosphorylation of myosin-binding protein C. Biophys. J., 2001, 81(2), 1083-1092.
[http://dx.doi.org/10.1016/S0006-3495(01)75765-7] [PMID: 11463649]
[68]
Luna-Vázquez, F.J.; Ibarra-Alvarado, C.; Camacho-Corona, M.D.R.; Rojas-Molina, A.; Rojas-Molina, J.I.; García, A.; Bah, M. Vasodilator activity of compounds isolated from plants used in mexican traditional medicine. Molecules, 2018, 23(6), 1474.
[http://dx.doi.org/10.3390/molecules23061474] [PMID: 29912156]
[69]
De Mello, W.C. Local renin angiotensin aldosterone systems and cardiovascular diseases. Med. Clin. North Am., 2017, 101(1), 117-127.
[http://dx.doi.org/10.1016/j.mcna.2016.08.017] [PMID: 27884223 ]
[70]
Su, J.; Xu, H.T.; Yu, J.J.; Gao, J.L.; Lei, J.; Yin, Q.S.; Li, B.; Pang, M.X.; Su, M.X.; Mi, W.J.; Chen, S.H.; Lv, G.Y. Luteolin ameliorates hypertensive vascular remodeling through inhibiting the proliferation and migration of vascular smooth muscle cells. Evid. Based Complement. Alternat. Med., 2015, 2015364876
[http://dx.doi.org/10.1155/2015/364876] [PMID: 26495010]
[71]
Guo, X.; Cheng, S.; Taylor, K.D.; Cui, J.; Hughes, R.; Quiñones, M.J.; Bulnes-Enriquez, I.; De la Rosa, R.; Aurea, G.; Yang, H.; Hsueh, W.; Rotter, J.I. Hypertension genes are genetic markers for insulin sensitivity and resistance. Hypertension, 2005, 45(4), 799-803.
[http://dx.doi.org/10.1161/01.HYP.0000154786.17416.ea] [PMID: 15699455]
[72]
Zhao, L.P.; Lv, A.K.; Zhang, Q. Insulin resistance and vascular endothelial dysfunction. Int. J. Cardiovasc. Dis, 2009, 36(1), 14-17.
[73]
Shen, Y.; Dai, Y.; Wang, X.Q.; Zhang, R.Y.; Lu, L.; Ding, F.H.; Shen, W.F. Searching for optimal blood pressure targets in type 2 diabetic patients with coronary artery disease. Cardiovasc. Diabetol., 2019, 18(1), 160.
[http://dx.doi.org/10.1186/s12933-019-0959-1] [PMID: 31733658]
[74]
Cheng, P.W.; Lin, Y.T.; Ho, W.Y.; Lu, P.J.; Chen, H.H.; Lai, C.C.; Sun, G.C.; Yeh, T.C.; Hsiao, M.; Tseng, C.J.; Liu, C.P. Fructose induced neurogenic hypertension mediated by overactivation of p38 MAPK to impair insulin signaling transduction caused central insulin resistance. Free Radic. Biol. Med., 2017, 112, 298-307.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.07.022] [PMID: 28754499]
[75]
Bai, Y.; Li, K.; Shao, J.; Luo, Q.; Jin, L.H. Flos Chrysanthemi indici extract improves a high-sucrose diet-induced metabolic disorder in Drosophila. Exp. Ther. Med., 2018, 16(3), 2564-2572.
[http://dx.doi.org/10.3892/etm.2018.6470] [PMID: 30186490]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 2
Year: 2020
Page: [92 - 110]
Pages: 19
DOI: 10.2174/1386207323666200122105410
Price: $65

Article Metrics

PDF: 17
HTML: 3