Green Three-component Synthesis of Merocyanin Dyes Based on 4- Arylideneisoxazol-5(4H)-ones

Author(s): Fatemeh K. Damghani, Hamzeh Kiyani*, Seied A. Pourmousavi

Journal Name: Current Green Chemistry

Volume 7 , Issue 2 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

A one-pot three-component reaction promoted by choline chloride: zinc(II) chloride deepeutectic solvent (ChCl-ZnCl2 DES) in an aqueous medium for the synthesis of several merocyanin dyes based on isoxazol-5(4H)-ones is presented. This three-component approach is efficient, clean, experimentally simple, convenient, safe, and environmentally friendly. This reaction was performed at room temperature without using energy sources such as heat, microwave and ultrasound waves. Nonuse of toxic solvents, available materials, one-vessel, no wasted reagents, simple preparation, and recyclability of DES are other important points of this method that is significant from the perspective of green chemistry.

Keywords: Choline chloride, deep-eutectic solvent, green synthesis, isoxazol-5(4H)-ones, three-component reaction, Zinc(II) chloride.

[1]
da Silveira Pinto, L.S.; Couri, M.R.C.; de Souza, M.V.N. Multicomponent reactions in the synthesis of complex fused coumarin derivatives. Curr. Org. Synth., 2018, 15, 21-37.
[http://dx.doi.org/10.2174/1570179414666170614124053]
[2]
Mani, K.S.; Kaminsky, W.; Rajendran, S.P. A facile atom economic one pot multicomponent synthesis of bioactive spiro-indenoquinoxaline pyrrolizines as potent antioxidants and anti-cancer agents. New J. Chem., 2018, 42, 301-310.
[http://dx.doi.org/10.1039/C7NJ02993D]
[3]
Kiyani, H. Recent advances in three-component cyclocondensation of dimedone with aldehydes and malononitrile for construction of tetrahydrobenzo[b]pyrans using organocatalysts. Curr. Org. Synth., 2018, 15, 1043-1072.
[http://dx.doi.org/10.2174/1570179415666181031124459]
[4]
Singh, M.S.; Chowdhury, S. Recent developments in solvent-free multicomponent reactions: A perfect synergy for eco-compatible organic synthesis. RSC Advances, 2012, 2, 4547-4592.
[http://dx.doi.org/10.1039/c2ra01056a]
[5]
Wollweber, H.J.; Wentrup, C. 4-alkylideneisoxazol-5-ones. Synthesis, tautomerism, and rearrangement to pyrroles. J. Org. Chem., 1985, 50, 2041-2047.
[http://dx.doi.org/10.1021/jo00212a007]
[6]
Capreti, N.M.R.; Jurberg, I.D. Michael addition of soft carbon nucleophiles to alkylidene isoxazol-5-ones: a divergent entry to β-branched carbonyl compounds. Org. Lett., 2015, 17(10), 2490-2493.
[http://dx.doi.org/10.1021/acs.orglett.5b01004] [PMID: 25928191]
[7]
Stivanin, M.L.; Duarte, M.; Sartori, C.; Capreti, N.M.R.; Angolini, C.F.F.; Jurberg, I.D. An aminocatalyzed Michael addition/iron-mediated decarboxylative cyclization sequence for the preparation of 2,3,4,6-tetrasubstituted pyridines: scope and mechanistic insights. J. Org. Chem., 2017, 82(19), 10319-10330.
[http://dx.doi.org/10.1021/acs.joc.7b01789] [PMID: 28905627]
[8]
Liu, Z.; Han, B.; Liu, Q.; Zhang, W.; Yang, L.; Liu, Z.L.; Yu, W. Selective reduction of the exocyclic double bond of isoxazolones and pyrazolones by Hantzsch 1,4-dihydropyridine. Synlett, 2005, 1579-1580.
[9]
Jurberg, I.D. An aminocatalyzed stereoselective strategy for the formal α‐propargylation of ketones. Chemistry, 2017, 23(41), 9716-9720.
[http://dx.doi.org/10.1002/chem.201701433] [PMID: 28452091]
[10]
Kappe, C.O.; Kvaskoff, D.; Moloney, D.W.J.; Flammang, R.; Wentrup, C. Iminopropadienethiones, Ar−NCCCS. J. Org. Chem., 2001, 66(5), 1827-1831.
[http://dx.doi.org/10.1021/jo001595j] [PMID: 11262134]
[11]
Dias-Jurberg, I.; Gagosz, F.; Zard, S.Z. Unusual approach to branched 3-alkynylamides and to 1,5-dihydropyrrol-2-ones. Org. Lett., 2010, 12(3), 416-419.
[http://dx.doi.org/10.1021/ol902472r] [PMID: 20067299]
[12]
Cui, B.D.; Li, S.W.; Zuo, J.; Wu, Z.J.; Zhang, X.M.; Yuan, W.C. Quinine-catalyzed asymmetric domino Michael-cyclization reaction for the synthesis of spirocyclic oxindoles bearing two spiro quaternary centers and three consecutive stereocenters. Tetrahedron, 2014, 70, 1895-1902.
[http://dx.doi.org/10.1016/j.tet.2014.01.036]
[13]
Sabitha, G.; Reddy, M.M.; Archana, B.; Yadav, J.S. A convenient synthesis of benzopyranacetylenes. Synth. Commun., 1998, 28, 573-581.
[http://dx.doi.org/10.1080/00397919808005928]
[14]
Tu, S.; Zhang, J.; Jia, R.; Jiang, B.; Zhang, Y.; Jiang, H. An efficient route for the synthesis of a new class of pyrido[2,3-d]pyrimidine derivatives. Org. Biomol. Chem., 2007, 5(9), 1450-1453.
[http://dx.doi.org/10.1039/b617201f] [PMID: 17464415]
[15]
Wazalwar, S.S.; Banpurkar, A.R.; Perdih, F. Aqueous phase synthesis, crystal structure and biological study of isoxazole extensions of pyrazole-4-carbaldehyde derivatives. J. Mol. Struct., 2017, 1150, 258-267.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.094]
[16]
Banpurkar, A.R.; Wazalwar, S.S.; Perdih, F. Aqueous phase synthesis, crystal structure and antimicrobial activity of 4-(substituted phenylazo)-3-methyl-4H-isoxazol-5-one azo dyes. Bull. Chem. Soc. Ethiop., 2018, 32, 249-257.
[http://dx.doi.org/10.4314/bcse.v32i2.6]
[17]
Konkala, V.S.; Dubey, P.K. One-pot synthesis of 3-phenyl-4-pyrazolylmethylene-isoxazol-(5H)-ones catalyzed by sodium benzoate in aqueous media under the influence of ultrasound waves: A green chemistry approach. J. Heterocycl. Chem., 2017, 54, 2483-2492.
[http://dx.doi.org/10.1002/jhet.2848]
[18]
Ratnakar Reddy, K.; Sambasiva Rao, P.; Jitender Dev, G.; Poornachandra, Y.; Ganesh Kumar, C.; Shanthan Rao, P.; Narsaiah, B. Synthesis of novel 1,2,3-triazole/isoxazole functionalized 2H-Chromene derivatives and their cytotoxic activity. Bioorg. Med. Chem. Lett., 2014, 24(7), 1661-1663.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.069] [PMID: 24641975]
[19]
Lavanya, M.; Jagadeesh, M.; Babu, H.J.; Karvembu, R.; Rashmi, H.K.; Devi, P.U.M.; Reddy, A.V. Synthesis, crystal structure, DNA binding and antitumor studies of β-diketonate complexes of divalent copper, zinc and palladium. Inorg. Chim. Acta, 2018, 469, 76-86.
[http://dx.doi.org/10.1016/j.ica.2017.08.056]
[20]
Padmaja, A.; Rajasekhar, C.; Muralikrishna, A.; Padmavathi, V. Synthesis and antioxidant activity of oxazolyl/thiazolylsulfonylmethyl pyrazoles and isoxazoles. Eur. J. Med. Chem., 2011, 46(10), 5034-5038.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.010] [PMID: 21864949]
[21]
Kafle, B.; Aher, N.G.; Khadka, D.; Park, H.; Cho, H. Isoxazol-5(4H)one derivatives as PTP1B inhibitors showing an anti-obesity effect. Chem. Asian J., 2011, 6(8), 2073-2079.
[http://dx.doi.org/10.1002/asia.201100154] [PMID: 21656690]
[22]
Kafle, B.; Cho, H. Isoxazolone derivatives as potent inhibitors of PTP1B. Bull. Korean Chem. Soc., 2012, 33, 275-277.
[http://dx.doi.org/10.5012/bkcs.2012.33.1.275]
[23]
Ishioka, T.; Kubo, A.; Koiso, Y.; Nagasawa, K.; Itai, A.; Hashimoto, Y. Novel non-steroidal/non-anilide type androgen antagonists with an isoxazolone moiety. Bioorg. Med. Chem., 2002, 10(5), 1555-1566.
[http://dx.doi.org/10.1016/S0968-0896(01)00421-7] [PMID: 11886817]
[24]
Ishioka, T.; Tanatani, A.; Nagasawa, K.; Hashimoto, Y. Anti-androgens with full antagonistic activity toward human prostate tumor LNCaP cells with mutated androgen receptor. Bioorg. Med. Chem. Lett., 2003, 13(16), 2655-2658.
[http://dx.doi.org/10.1016/S0960-894X(03)00575-4] [PMID: 12873487]
[25]
Tang, M.; Odejinmi, S.I.; Allette, Y.M.; Vankayalapati, H.; Lai, K. Identification of novel small molecule inhibitors of 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) kinase of Gram-negative bacteria. Bioorg. Med. Chem., 2011, 19(19), 5886-5895.
[http://dx.doi.org/10.1016/j.bmc.2011.08.012] [PMID: 21903402]
[26]
Breuer, S.; Chang, M.W.; Yuan, J.; Torbett, B.E. Identification of HIV-1 inhibitors targeting the nucleocapsid protein. J. Med. Chem., 2012, 55(11), 4968-4977.
[http://dx.doi.org/10.1021/jm201442t] [PMID: 22587465]
[27]
Kömürcü, Ş.G.; Rollas, S.; Yilmaz, N.; Cevikbaş, A. Synthesis of 3-methyl-4-[(2,4-dihydro-4-substituted-3H-1,2,4-triazole-3-thione-5-yl) phenylhydrazono]-5-isoxazolone and evaluation of their antimicrobial activities. Drug Metabol. Drug Interact., 1995, 12(2), 161-169.
[http://dx.doi.org/10.1515/DMDI.1995.12.2.161] [PMID: 8591694]
[28]
Hallenbach, W.; Guth, O.; Seitz, T.; Wrolowsky, H.J.; Desbordes, P.; Wachendorff-Neumann, U.; Dahmen, P.; Voerste, E.; Lösel, P.; Malssm, O.; Rama, R.; Hadano, H. 2012.US Patent, Pub. No.: US 2012/0065063A1.
[29]
Hallenbach, W.; Guth, O.; Seitz, T.; Wrolowsky, H.J.; Desbordes, P.; Wachendorff-Neumann, U.; Dahmen, P.; Voerste, E.; Lösel, P.; Malssm, O.; Rama, R.; Hadano, H. 2011.WIPO Patent Application WO/2011/161035A1.
[30]
da Silva, A.F.; Fernandes, A.A.G.; Thurow, S.; Stivanin, M.L.; Jurberg, I.D. Isoxazol-5-ones as strategic building blocks in organic synthesis. Synthesis, 2018, 50, 2473-2489.
[http://dx.doi.org/10.1055/s-0036-1589534]
[31]
Zhang, X.H.; Wang, L.Y.; Zhan, Y.H.; Fu, Y.L.; Zhai, G.H.; Wen, Z.Y. Synthesis and structural studies of 4-[(5-methoxy-1H-indole-3-yl)-methylene]-3-methyl-isoxazole-5-one by X-ray crystallography, NMR spectroscopy, and DFT calculations. J. Mol. Struct., 2011, 994, 371-378.
[http://dx.doi.org/10.1016/j.molstruc.2011.03.052]
[32]
Zhang, X.H.; Zhan, Y.H.; Chen, D.; Wang, F.; Wang, L.Y. Merocyanine dyes containing an isoxazolone nucleus: Synthesis, X-ray crystal structures, spectroscopic properties and DFT studies. Dyes Pigments, 2012, 93, 1408-1415.
[http://dx.doi.org/10.1016/j.dyepig.2011.10.003]
[33]
Aret, E.; Meekes, H.; Vlieg, E.; Deroover, G. Polymorphic behavior of a yellow isoxazolone dye. Dyes Pigments, 2007, 72, 339-344.
[http://dx.doi.org/10.1016/j.dyepig.2005.09.018]
[34]
Saikh, F.; Das, J.; Ghosh, S. Synthesis of 3-methyl-4-arylmethylene isoxazole-5(4H)-ones by visible light in aqueous ethanol. Tetrahedron Lett., 2013, 54, 4679-4682.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.086]
[35]
Kiyani, H.; Ghorbani, F. Potassium phthalimide as efficient basic organocatalyst for the synthesis of 3,4-disubstituted isoxazol-5(4H)-ones in aqueous medium. J. Saudi Chem. Soc., 2017, 21, S112-S119.
[http://dx.doi.org/10.1016/j.jscs.2013.11.002]
[36]
Kiyani, H.; Ghorbani, F. Efficient tandem synthesis of a variety of pyran-annulated heterocycles, 3,4-disubstituted isoxazol-5(4H)-ones, and α,β-unsaturated nitriles catalyzed by potassium hydrogen phthalate in water. Res. Chem. Intermed., 2015, 41, 7847-7882.
[http://dx.doi.org/10.1007/s11164-014-1863-7]
[37]
Kiyani, H.; Jabbari, M.; Mosallanezhad, A. Efficient three-component synthesis of 3,4-disubstituted isoxazol-5(4H)-ones in green media. Jordan J. Chem., 2014, 9, 279-288.
[http://dx.doi.org/10.12816/0025980]
[38]
Kiyani, H.; Darbandi, H.; Mosallanezhad, A.; Ghorbani, F. 2-Hydroxy-5-sulfobenzoic acid: an efficient organocatalyst for the three-component synthesis of 1-amidoalkyl-2-naphthols and 3,4-disubstituted isoxazol-5(4H)-ones. Res. Chem. Intermed., 2015, 41, 7561-7579.
[http://dx.doi.org/10.1007/s11164-014-1844-x]
[39]
Kiyani, H.; Ghorbani, F.; Kanaani, A.; Ajloo, D.; Vakili, M. N-Bromosuccinimide (NBS)-promoted, three component synthesis of α,β-unsaturated isoxazol-5(4H)-ones, and spectroscopic investigation and computational study of 3-methyl-4-(thiophen-2-ylmethylene)isoxazol-5(4H)-one. Res. Chem. Intermed., 2015, 41, 7739-7773.
[http://dx.doi.org/10.1007/s11164-014-1857-5]
[40]
Maddila, S.N.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. Ag/SiO2 as a recyclable catalyst for the facile green synthesis of 3-methyl-4-(phenyl)methylene-isoxazole-5(4H)-ones. Res. Chem. Intermed., 2016, 42, 2553-2566.
[http://dx.doi.org/10.1007/s11164-015-2167-2]
[41]
Vekariya, R.H.; Patel, K.D.; Patel, H.D. Fruit juice of Citrus Limon as a biodegradable and reusable catalyst for facile, eco-friendly and green synthesis of 3,4-disubstituted isoxazol-5(4H)-ones and dihydropyrano[2,3-c]pyrazole derivatives. Res. Chem. Intermed., 2016, 42, 7559-7579.
[http://dx.doi.org/10.1007/s11164-016-2553-4]
[42]
Safari, J.; Ahmadzadeh, M.; Zarnegar, Z. Sonochemical synthesis of 3-methyl-4-arylmethylene isoxazole-5(4H)-ones by amine-modified montmorillonite nanoclay. Catal. Commun., 2016, 86, 91-95.
[http://dx.doi.org/10.1016/j.catcom.2016.08.018]
[43]
Liu, Q.; Zhang, Y.N. One-pot synthesis of 3-methyl-4-arylmethylene-isoxazol-5(4H)-ones catalyzed by sodium benzoate in aqueous media: A green chemistry strategy. Bull. Korean Chem. Soc., 2011, 32, 3559-3560.
[http://dx.doi.org/10.5012/bkcs.2011.32.10.3559]
[44]
(a)Mirzazadeh, M.; Mahdavinia, G.H. Fast and efficient synthesis of 4-arylidene-3-phenylisoxazol-5-ones. E-J. Chem., 2012, 9, 425-429.
[http://dx.doi.org/10.1155/2012/562138]
(b)Kim, S.J.; Yang, J.; Lee, S.; Park, C.; Kang, D.; Akter, J.; Ullah, S.; Kim, Y.J.; Chun, P.; Moon, H.R. The tyrosinase inhibitory effects of isoxazolone derivatives with a (Z)-β-phenyl-α, β-unsaturated carbonyl scaffold. Bioorg. Med. Chem., 2018, 26(14), 3882-3889.
[http://dx.doi.org/10.1016/j.bmc.2018.05.047] [PMID: 29907470]
[45]
Kiyani, H.; Ghorbani, F. Boric acid-catalyzed multi-component reaction for efficient synthesis of 4H-isoxazol-5-ones in aqueous medium. Res. Chem. Intermed., 2015, 41, 2653-2664.
[http://dx.doi.org/10.1007/s11164-013-1411-x]
[46]
Ahmadzadeh, M.; Zarnegar, Z.; Safari, J. Sonochemical synthesis of methyl-4-(hetero)arylmethylene isoxazole-5(4H)-ones using SnII-montmorillonite. Green Chem. Lett. Rev., 2018, 11, 78-85.
[http://dx.doi.org/10.1080/17518253.2018.1434564]
[47]
Kiyani, H.; Samimi, H.A. Nickel-catalyzed one-pot, three-component synthesis of 3,4-disubstituted isoxazole-5(4H)-ones in aqueous medium. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2017, 44, 1011-1021.
[48]
Rikani, A.B.; Setamdideh, D. One-pot and three-component synthesis of isoxazol-5(4H)-one derivatives in the presence of citric acid. Orient. J. Chem., 2016, 32, 1433-1437.
[http://dx.doi.org/10.13005/ojc/320317]
[49]
Vekariya, R.H.; Patel, H.D. Facile, eco-friendly and one-pot synthesis of 3,4-disubstituted isoxazol-5(4H)-ones using starch solution as a reaction media. Indian J. Chem., 2017, 56B, 890-896.
[50]
Patil, M.S.; Mudalian, C.; Chaturbhuj, G.U. Sulfated polyborate catalyzed expeditious and efficient three-component synthesis of 3-methyl-4-(hetero)arylmethylene isoxazole-5(4H)-ones. Tetrahedron Lett., 2017, 58, 3256-3261.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.019]
[51]
Laroum, R.; Debache, A. New eco-friendly procedure for the synthesis of 4-arylmethylene-isoxazol-5(4H)-ones catalyzed by pyridinium p-toluenesulfonate (PPTS) in aqueous medium. Synth. Commun., 2018, 48, 1876-1882.
[http://dx.doi.org/10.1080/00397911.2018.1473440]
[52]
Lohar, T.; Kumbhar, A.; Barge, M.; Salunkhe, R. DABCO functionalized dicationic ionic liquid (DDIL): A novel green benchmark in multicomponent synthesis of heterocyclic scaffolds under sustainable reaction conditions. J. Mol. Liq., 2016, 224, 1102-1108.
[http://dx.doi.org/10.1016/j.molliq.2016.10.039]
[53]
Liu, Q.; Hou, X. One-pot three-component synthesis of 3-methyl-4-arylmethylene-isoxazol-5(4H)-ones catalyzed by sodium sulfide. Phosphorus Sulfur Silicon Relat. Elem., 2012, 187, 448-453.
[http://dx.doi.org/10.1080/10426507.2011.621003]
[54]
Kiyani, H.; Ghorbani, F. Expeditious green synthesis of 3,4-disubstituted isoxazole-5(4H)-ones catalyzed by nano-MgO. Res. Chem. Intermed., 2016, 42, 6831-6844.
[http://dx.doi.org/10.1007/s11164-016-2498-7]
[55]
Ablajan, K.; Xiamuxi, H. Efficient one-pot synthesis of β-unsaturated isoxazol-5-ones and pyrazol-5-ones under ultrasonic irradiation. Synth. Commun., 2012, 42, 1128-1136.
[http://dx.doi.org/10.1080/00397911.2010.535949]
[56]
Ablajan, K.; Xiamuxi, H. The convenient synthesis of 4-arylmethylidene-4,5-dihydro-3-phenylisoxazol-5-ones. Chin. Chem. Lett., 2011, 22, 151-154.
[http://dx.doi.org/10.1016/j.cclet.2010.09.023]
[57]
Kiyani, H.; Mosallanezhad, A. Sulfanilic acid-catalyzed synthesis of 4-arylidene-3-substituted isoxazole-5(4H)-ones. Curr. Org. Synth., 2018, 15, 715-722.
[http://dx.doi.org/10.2174/1570179415666180423150259]
[58]
Mosallanezhad, A.; Kiyani, H. KI-Mediated three-component reaction of hydroxylamine hydrochloride with aaryl/heteroaryl aldehydes and two β-oxoesters. Orbital: Electron. J. Chem., 2018, 10, 133-139.
[59]
Vaidya, S.P.; Shridhar, G.; Ladage, S.; Ravishankar, L. A facile synthesis of isoxazolone derivatives catalyzed by cerium chloride heptahydrate in ethyl lactate as a solvent: a green methodology. Curr. Green Chem., 2016, 3, 160-167.
[http://dx.doi.org/10.2174/2213346103666160526130509]
[60]
Dekamin, M.G.; Peyman, S.Z. Phthalimide-N-oxyl salts: Efficient organocatalysts for facile synthesis of (Z)-3-methyl-4-(arylmethylene)-isoxazole-5(4H)-one derivatives in water. Monatsh. Chem., 2016, 147, 445-450.
[http://dx.doi.org/10.1007/s00706-015-1565-x]
[61]
Pourmousavi, S.A.; Fattahi, H.R.; Ghorbani, F.; Kanaani, A. Ajloo. D. A green and efficient synthesis of isoxazol-5(4H)-one derivatives in water and a DFT study. J. Iran. Chem. Soc., 2018, 15, 455-469.
[http://dx.doi.org/10.1007/s13738-017-1246-2]
[62]
Mosallanezhad, A.; Kiyani, H. Green synthesis of 3-substituted-4-arylmethylideneisoxazol-5(4H)-one derivatives catalyzed by salicylic acid. Curr. Organocatal., 2019, 6, 28-35.
[http://dx.doi.org/10.2174/2213337206666190214161332]
[63]
Kasar, S.B.; Thopate, S.R. Ultrasonically assisted efficient and green protocol for the synthesis of 4H-isoxazol-5-ones using itaconic acid as a homogeneous and reusable organocatalyst. Curr. Organocatal., 2019, 6, 1.
[http://dx.doi.org/10.2174/2213337206666190411115402]
[64]
Nakkalwar, S.L. Shivaji, Patwari, B.; Patel, M.M.; Jadhav, V. B. Iodine catalyzed highly efficient one pot three component Synthesis of 4-arylidene-3-methylisoxazol-5(4H)-one in aqueous medium. Curr. Green Chem., 2018, 5, 121-126.
[http://dx.doi.org/10.2174/2213346105666180711151320]
[65]
Gao, G.; Wang, P.; Liu, P.; Zhang, W.; Mo, L.; Zhang, Z. Deep eutectic solvent catalyzed one-pot synthesis of 4,7-dihydro-1H-pyrazolo[3,4-b]pyridine-5-carbonitriles. Youji Huaxue, 2018, 38, 846-854.
[http://dx.doi.org/10.6023/cjoc201711014]
[66]
Nguyen, H.T.; Chau, D.K.N.; Tran, P.H. A green and efficient method for the synthesis of pyrroles using a deep eutectic solvent ([CholineCl][ZnCl2]3) under solvent-free sonication. New J. Chem., 2017, 41, 12481-12489.
[http://dx.doi.org/10.1039/C7NJ02396K]
[67]
Hong, S.; Lian, H.; Sun, X.; Pan, D.; Carranza, A.; Pojman, J.A.; Mota-Morales, J.D. Zinc-based deep eutectic solvent-mediated hydroxylation and demethoxylation of lignin for the production of wood adhesive. RSC Advances, 2016, 6, 89599-89608.
[http://dx.doi.org/10.1039/C6RA18290A]
[68]
Khandelwal, S.; Tailor, Y.K.; Kumar, M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J. Mol. Liq., 2016, 215, 345-386.
[http://dx.doi.org/10.1016/j.molliq.2015.12.015]
[69]
Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev., 2012, 41(21), 7108-7146.
[http://dx.doi.org/10.1039/c2cs35178a] [PMID: 22806597]
[70]
Vidal, C.; Merz, L.; García-Álvarez, J. Deep eutectic solvents: Biorenewable reaction media for Au(I)-catalysed cycloisomerisations and one-pot tandem cycloisomerisation/Diels–Alder reactions. Green Chem., 2015, 17, 3870-3878.
[http://dx.doi.org/10.1039/C5GC00656B]
[71]
Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev., 2014, 114(21), 11060-11082.
[http://dx.doi.org/10.1021/cr300162p] [PMID: 25300631]
[72]
Liu, P.; Hao, J.W.; Mo, L.P.; Zhang, Z.H. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Advances, 2015, 5, 48675-48704.
[http://dx.doi.org/10.1039/C5RA05746A]
[73]
García-Álvarez, J. Deep eutectic mixtures: Promising sustainable solvents for metal‐catalysed and metal‐mediated organic reactions. Eur. J. Inorg. Chem., 2015, 2015, 5147-5157.
[http://dx.doi.org/10.1002/ejic.201500892]
[74]
Ruan, H.; Lv, Y.; Yu, S.; Lv, C.; An, Y. Water assisted and choline chloride-dimethylurea deep eutectic salts as catalyst towards the attractive reaction of indole, benzaldehyde, and malononitrile. Heterocycles, 2018, 96, 1266-1274.
[http://dx.doi.org/10.3987/COM-18-13913]
[75]
Zhang, H.; Tang, B.; Row, K. Extraction of catechin compounds from green tea with a new green solvent. Chem. Res. Chin. Univ., 2014, 30, 37-41.
[http://dx.doi.org/10.1007/s40242-014-3339-0]
[76]
Preethi, T.; Padmapriya, M.P.; Abarna, B.; Rajarajeswari, G.R. Choline chloride-zinc chloride ionic liquid as a green template for the sol-gel synthesis of mesoporous titania. RSC Advances, 2017, 7, 10081-10091.
[http://dx.doi.org/10.1039/C6RA28478G]
[77]
(a)Nishtala, V.B.; Basavoju, S. ZnCl2+Urea, the deep eutectic solvent promoted synthesis of the spirooxindolopyrans and xanthenes through a pseudo-three-component approach. Synth. Commun., 2019, 49, 2342-2349.
[http://dx.doi.org/10.1080/00397911.2019.1620784]
(b)Padvi, S.A.; Dalal, D.S. Choline chloride-ZnCl2: Recyclable and efficient deep eutectic solvent for the [2+3] cycloaddition reaction of organic nitriles with sodium azide. Synth. Commun., 2017, 47, 779-787.
[http://dx.doi.org/10.1080/00397911.2017.1285033]
(c)Bhosle, M.R.; Shaikh, M.A.; Nipate, D.; Khillare, L.D.; Bondle, G.M.; Sangshetti, J.N. ChCl:2ZnCl2 catalyzed efficient synthesis of new sulfonyl decahydroacridine-1,8-diones via one-pot multicomponent reactions to discover potent antimicrobial agents. Polycycl. Aromat. Comp., . 2019.
Qin, H.; Hu, X.; Wang, J.; Cheng, H.; Chen, L.; Qi, Z. Overview of acidic deep eutectic solvents on synthesis, properties and applications; Green Energy Environ, 2019.
[http://dx.doi.org/10.1016/j.gee.2019.03.002]
(e)Migliorati, V.; Sessa, F.; D’Angelo, P. Deep eutectic solvents: A structural point of view on the role of the cation. Chem. Phys. Lett., 2019.
[http://dx.doi.org/10.1016/j.cpletx.2018.100001]
(f)Perrone, S.; Capua, M.; Messa, F.; Salomone, A.; Troisi, L. Green synthesis of 2-pyrazinones in deep eutectic solvents: From α-chloro oximes to peptidomimetic scaffolds. Tetrahedron, 2017, 73, 6193-6198.
[http://dx.doi.org/10.1016/j.tet.2017.09.013]
[78]
Qu, W.; Häkkinen, R.; Allen, J.; D’Agostino, C.; Abbott, A.P. Globular and fibrous proteins modified with deep eutectic solvents: Materials for drug delivery. Molecules, 2019, 24(19), 3583.
[http://dx.doi.org/10.3390/molecules24193583] [PMID: 31590314]
[79]
(a)Ping, Y.; Chen, Z.; Ding, Q.; Zheng, Q.; Lin, Y.; Peng, Y. Ru-catalyzed ortho-oxidative alkenylation of 2-arylbenzo[d]thiazoles in aqueous solution of anionic surfactant sodium dodecylbenzenesulfonate (SDBS). Tetrahedron, 2017, 73, 594-603.
[http://dx.doi.org/10.1016/j.tet.2016.12.050]
(b)Lin, Y.; Liu, Y.; Zheng, Y.; Nie, R.; Guo, L.; Wu, Y. Green and efficient synthesis of N-sulfenyl sulfoximines in water. ACS Sustain. Chem.& Eng., 2018, 6, 13644-13649.
[http://dx.doi.org/10.1021/acssuschemeng.8b03549]
(c)Kitanosono, T.; Masuda, K.; Xu, P.; Kobayashi, S. Catalytic organic reactions in water toward sustainable society. Chem. Rev., 2018, 118(2), 679-746.
[http://dx.doi.org/10.1021/acs.chemrev.7b00417] [PMID: 29218984]
[80]
(a)Sun, M.; Jiang, J.; Chen, J.; Yang, Q.; Yu, X. Deep eutectic solvent promoted hydrothiocyanation of alkynoates leading to Z-3-thiocyanatoacrylates. Tetrahedron, 2019. 75130456
[http://dx.doi.org/10.1016/j.tet.2019.07.014]
(b)Reddy, M.V.; Byeon, K.R.; Park, S.H.; Kim, D.W. Polyethylene glycol methacrylate-grafted dicationic imidazolium-based ionic liquid: Heterogeneous catalyst for the synthesis of aryl-benzo[4,5]imidazo[1,2-a]pyrimidine amines under solvent-free conditions. Tetrahedron, 2017, 73, 5289-5296.
[http://dx.doi.org/10.1016/j.tet.2017.07.025]
(c)Anastas, P.T.; Kirchhoff, M.M.; Williamson, T.C. Catalysis as a foundational pillar of green chemistry. Appl. Catal. Gen, 2001, 221, 3-13.
[http://dx.doi.org/10.1016/S0926-860X(01)00793-1]
(d)Mohire, P.P.; Chandam, D.R.; Patil, R.B.; Patravale, A.A.; Ghosh, J.S.; Deshmukh, M.B. Low melting mixture glycerol:proline as an innovative designer solvent for the synthesis of novel chromeno fused thiazolopyrimidinone derivatives: An excellent correlation with green chemistry metrics. J. Mol. Liq., 2019, 283, 69-80.
[http://dx.doi.org/10.1016/j.molliq.2019.03.058]
(e)de Marco, B.A.; Rechelo, B.S.; Tótoli, E.G.; Kogawa, A.C.; Salgado, H.R.N. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm. J., 2019, 27(1), 1-8.
[http://dx.doi.org/10.1016/j.jsps.2018.07.011] [PMID: 30627046]
(f)Yia, Z.; Xua, H.; Hua, D.; Yan, K. Facile synthesis of supported Pd catalysts by chemical fluid deposition method for selective hydrogenation of biomass-derived furfural. J. Alloys Compd., 2019, 799, 59-65.
[http://dx.doi.org/10.1016/j.jallcom.2019.05.350]
(g)Hu, D.; Xu, H.; Yi, Z.; Chen, Z.; Ye, C.; Wu, Z.; Garces, H.F. Yan, K. Green CO2-assisted synthesis of mono- and bimetallic Pd/Pt nanoparticles on porous carbon fabricated from sorghum for highly selective hydrogenation of furfural. ACS Sustain. Chem.& Eng., 2019, 7, 15339-15345.
[http://dx.doi.org/10.1021/acssuschemeng.9b02665]
[81]
Boodhoo, K. Harvey. A. Process Intensification for Green Chemistry: Engineering Solutions for Sustainable Chemical Processing, 1st ed; John Wiley amp Sons: United Kingdom; , 2013. p. 36..
[http://dx.doi.org/10.1002/9781118498521]
[82]
Zou, Y.; Xu, H.; Wu, G.; Jiang, Z.; Chen, S.; Huang, Y.; Huang, W.; Wei, X. Structural analysis of [ChCl](m)[ZnCl(2)](n) ionic liquid by X-ray absorption fine structure spectroscopy. J. Phys. Chem. B, 2009, 113(7), 2066-2070.
[http://dx.doi.org/10.1021/jp809788u] [PMID: 19173638]
[83]
Hekmatshoar, R.; Mousavizadeh, F.; Rahnamafar, R. Lewis acidic (choline chloride.3ZnCl2) ionic liquid: A green and recyclable catalyst for the one-pot synthesis of 4-((3-indolyl)(aryl)methyl)-N,N-dimethylanilines under solvent-free conditions. J. Chem. Sci., 2013, 125, 1009-1013.
[http://dx.doi.org/10.1007/s12039-013-0474-y]
[84]
Keshavarzipour, F.; Tavakol, H. The synthesis of coumarin derivatives using choline chloride/zinc chloride as a deep eutectic solvent. J. Iran. Chem. Soc, 2016, 13, 149-153.
[http://dx.doi.org/10.1007/s13738-015-0722-9]
[85]
Longo, L.S., Jr; Craveiro, M.V. Deep eutectic solvents as unconventional media for multicomponent reactions. J. Braz. Chem. Soc., 2018, 29, 1999-2025.
[http://dx.doi.org/10.21577/0103-5053.20180147]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 7
ISSUE: 2
Year: 2020
Published on: 21 January, 2020
Page: [217 - 225]
Pages: 9
DOI: 10.2174/2213346107666200122093906

Article Metrics

PDF: 25
HTML: 1