Plant Phenolics as Pathogen-Carrier Immunogenicity Modulator Haptens

Author(s): Castillo-Maldonado Irais, Sevilla-González María-de-la-Luz, Delgadillo-Guzmán Dealmy, Ramírez-Moreno Agustina, Cabral-Hipólito Nidia, Rivera-Guillén Mario-Alberto, Serrano-Gallardo Luis-Benjamín*, Vega-Menchaca María-del-Carmen, Pedroza-Escobar David*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 10 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Pathogens use multiple mechanisms to disrupt cell functioning in their host and allow pathogenesis. These mechanisms involve communication between the pathogen and the host cell through protein-protein interactions.

Methods: Protein-protein interactions chains referred to as signal transduction pathways are the processes by which a chemical or physical signal transmits through a cell as series of molecular events so the pathogen needs to intercept these molecular pathways at few positions to induce pathogenesis such as pathogen viability, infection or hypersensitivity.

Results: The pathogen nodes of interception are not necessarily the most immunogenic; so that novel immunogenicity-improvement strategies need to be developed thought a chemical conjugation of the pathogen-carrier nodes to develop an efficient immune response in order to block pathogenesis. On the other hand, if pathogen-carriers are immunogens; toleration ought to be induced by this conjugation avoiding hypersensitivity. Thus, this paper addresses the biological plausibility of plant-phenolics as pathogen-carrier immunogenicity modulator haptens.

Conclusion: The plant-phenolic compounds have in their structure functional groups such as hydroxyl, carbonyl, carboxyl, ester, or ether, capable of reacting with the amino or carbonyl groups of the amino acids of a pathogen-carrier to form conjugates. Besides, the varied carbon structures these phenolic compounds have; it is possible to alter the pathogen-carrier related factors that determine the immunogenicity: 1) Structural complexity, 2) Molecular size, 3) Structural heterogeneity, 4) Accessibility to antigenic determinants or epitopes, 5) Optical configuration, 6) Physical state, or 7) Molecular rigidity.

Keywords: Plant phenolics, pathogen-carrier, immunogenicity, haptens, immunogen, toleragen.

[1]
Abbas, A.K.; Lichtman, A.H.; Pillai, S. Cellular and molecular immunology, 9th ed; Elsevier Science: Madrid, 2018.
[2]
Reyna-Margarita, H.R.; Irais, C.M.; Mario-Alberto, R.G.; Agustina, R.M.; Luis-Benjamín, S.G.; David, P.E. Plant Phenolics and Lectins as Vaccine Adjuvants. Curr. Pharm. Biotechnol., 2019, 20(15), 1236-1243.
[http://dx.doi.org/10.2174/1389201020666190716110705] [PMID: 31333121]
[3]
Rodwell, V.W.; Bender, D.A.; Botham, K.M.; Kennelly, P.J.; Weill, A. Harper bioquímica ilustrada, 31st ed; Mc Graw Hill: China, 2019.
[4]
Flint, S.J.; Racaniello, V.R.; Rall, G.F.; Skalka, A.M.; Enquist, L.W. Principles of Virology Molecular biology, pathogenesis and control, 4th ed; ASM PRESS: Washington, DC, 2015.
[5]
Batista-Duharte, A.; Lastre, M.; Pérez, O. Adyuvantes inmunológicos. Determinantes en el balance eficacia-toxicidad de las vacunas contemporáneas. Enferm. Infecc. Microbiol. Clin., 2014, 32(2), 106-114.
[http://dx.doi.org/10.1016/j.eimc.2012.11.012] [PMID: 23332294]
[6]
Blanco, A.; Cambronero, R. Adyuvantes vacunales.Manual de vacunas en Pediatría, 4th ed; Asociación Española de Pediatría: Madrid, 2008, pp. 65-73.
[7]
Pan, W.; Yu, H.; Huang, S.; Zhu, P. Resveratrol protects against TNF-α-induced injury in human umbilical endothelial cells through promoting sirtuin-1-induced repression of NF-KB and p38 MAPK. PLoS One, 2016, 11(1), e0147034.
[http://dx.doi.org/10.1371/journal.pone.0147034] [PMID: 26799794]
[8]
Chahal, D.S.; Sivamani, R.K.; Isseroff, R.R.; Dasu, M.R. Plant-based modulation of Toll-like receptors: An emerging therapeutic model. Phytother. Res., 2013, 27(10), 1423-1438.
[http://dx.doi.org/10.1002/ptr.4886] [PMID: 23147906]
[9]
Zhong, Y.; Chiou, Y.S.; Pan, M.H.; Shahidi, F. Anti-inflammatory activity of lipophilic Epigallocatechin Gallate (EGCG) derivatives in LPS-stimulated murine macrophages. Food Chem., 2012, 134(2), 742-748.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.172] [PMID: 23107686]
[10]
Singh, S.; Aggarwal, B.B. Activation of transcription factor NFkappa B is suppressed by curcumin (diferuloylmethane). J. Biol. Chem., 1995, 270(42), 24995-25000.
[http://dx.doi.org/10.1074/jbc.270.42.24995] [PMID: 7559628]
[11]
Rojas-Espinosa, O. Inmunología (de memoria), 4th ed; Editorial Médica Panamericana: Mexico city, 2017.
[12]
Regueiro-González, J.R.; López-Larrea, C.; González-Rodríguez, S.; Martínez-Naves, E. Inmunología Biología y patología del sistema inmunitario, 4th; Review; Editorial Médica Panamericana: Mexico city, 2011.
[14]
Gefen, T.; Vaya, J.; Khatib, S.; Rapoport, I.; Lupo, M.; Barnea, E.; Admon, A.; Heller, E.D.; Aizenshtein, E.; Pitcovski, J. The effect of haptens on protein-carrier immunogenicity. Immunology, 2015, 144(1), 116-126.
[http://dx.doi.org/10.1111/imm.12356] [PMID: 25041614]
[15]
Hermanson, G. Vaccines and immunogen conjugates.Bioconjugate Techniques, Third; Academic Press Ed.; Elsevier Science B. V: Amsterdam, , 2013.
[http://dx.doi.org/10.1016/b978-0-12-382239-0.00019-4]
[16]
Mesquita Júnior, D.; Araújo, J.A.; Catelan, T.T.; Souza, A.W. Cruvinel, Wde.M.; Andrade, L.E.; Silva, N.P. Immune system - part II: Basis of the immunological response mediated by T and B lymphocytes. Rev. Bras. Reumatol., 2010, 50(5), 552-580.
[PMID: 21125191]
[18]
Dyer, M.D.; Murali, T.M.; Sobral, B.W. The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog., 2008, 4(2), e32.
[http://dx.doi.org/10.1371/journal.ppat.0040032] [PMID: 18282095]
[19]
Stryer, L.; Berg, J.M.; Tymoczko, J.L. Biochemistry, 7th ed; Editorial Reverté: México, 2002.
[20]
Dyer, M.D.; Neff, C.; Dufford, M.; Rivera, C.G.; Shattuck, D.; Bassaganya-Riera, J.; Murali, T.M.; Sobral, B.W. The humanbacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis. PLoS One, 2010, 5(8)e12089
[http://dx.doi.org/10.1371/journal.pone.0012089] [PMID: 20711500]
[21]
He, R.; Finan, B.; Mayer, J.P.; DiMarchi, R.D. Peptide conjugates with small molecules designed to enhance efficacy and safety. Molecules, 2019, 24(10), 1855-1860.
[http://dx.doi.org/10.3390/molecules24101855] [PMID: 31091786]
[22]
Korupalli, C.; Pan, W.Y.; Yeh, C.Y.; Chen, P.M.; Mi, F.L.; Tsai, H.W.; Chang, Y.; Wei, H.J.; Sung, H.W. Single-injecting, bioinspired nanocomposite hydrogel that can recruit host immune cells in situ to elicit potent and long-lasting humoral immune responses. Biomaterials, 2019.216119268
[http://dx.doi.org/10.1016/j.biomaterials.2019.119268] [PMID: 31226570]
[23]
Venkatalakshmi, P.; Vadivel, V.; Brindha, P. Role of phytochemicals as immunomodulatory agents: A review. Int. J. Green Pharm.,, 2016, 10(1)
[24]
Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q. Liu, Y.; Chen, H.; Qin, W.; Wu, H.; Chen, S. An Overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules, 2016, 21(10), E1314.
[http://dx.doi.org/10.3390/molecules21101374] [PMID: 27763492]
[25]
Lattanzio, V. Phenolic compounds: Introduction. Natural Products; Springer: Berlin, 2016, pp. 1543-1580.
[26]
Geetha, V.; Chakravarthula, S.N. Chemical composition and antiinflammatory activity of Boswellia ovalifoliolata essential oils from leaf and bark. J. For. Res., 2018, 29(2), 373-381.
[http://dx.doi.org/10.1007/s11676-017-0457-9]
[27]
Zhang, N.; Lan, W.; Wang, Q.; Sun, X.; Xie, J. Antibacterial mechanism of Ginkgo biloba leaf extract when applied to Shewanella putrefaciens and Saprophytic staphylococcus. Aquacult. Fisheries, 2018, 3, 163-169.
[http://dx.doi.org/10.1016/j.aaf.2018.05.005]
[28]
Dahanukar, S.A.; Kulkarni, R.A.; Rege, N.N. Pharmacology of medicinal plants and natural products. Indian J. Pharmacol., 2000, 32(4), S81-S118.
[29]
Gertsch, J.; Viveros-Paredes, J.M.; Taylor, P. Plant immunostimulants--scientific paradigm or myth? J. Ethnopharmacol., 2011, 136(3), 385-391.
[http://dx.doi.org/10.1016/j.jep.2010.06.044] [PMID: 20620205]
[30]
Zacchino, S.A.; Butassi, E.; Liberto, M.D.; Raimondi, M.; Postigo, A.; Sortino, M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine, 2017, 37, 27-48.
[http://dx.doi.org/10.1016/j.phymed.2017.10.018] [PMID: 29174958]
[31]
Griroge, A. Plant phenolic compounds as immunomodulatory agents. Phenolic Compounds - Biological Activity; Marcos Soto-Hernandez, IntechOpen, 2017.
[32]
Fraser, C.M.; Chapple, C. The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book, 2011, 9, e0152.
[http://dx.doi.org/10.1199/tab.0152] [PMID: 22303276]
[33]
Lee, J.Y.; Kim, G.J.; Choi, J.K.; Choi, Y.A.; Jeong, N.H.; Park, P.H.; Choi, H.; Kim, S.H. 4-(hydroxymethyl)catechol extracted from fungi in marine sponges attenuates rheumatoid arthritis by inhibiting PI3K/Akt/NF-κB signaling. Front. Pharmacol., 2018, 9, 726.
[http://dx.doi.org/10.3389/fphar.2018.00726.]
[34]
Duval, R.; Bui, L.C.; Mathieu, C.; Nian, Q.; Berthelet, J.; Xu, X.; Haddad, I.; Vinh, J.; Dupret, J.M.; Busi, F.; Guidez, F.; Chomienne, C.; Rodrigues-Lima, F. Benzoquinone, a leukemogenic metabolite of benzene, catalytically inhibits the protein tyrosine phosphatase PTPN2 and alters STAT1 signaling. J. Biol. Chem., 2019, 294(33), 12483-12494.
[http://dx.doi.org/10.1074/jbc.RA119.008666] [PMID: 31248982]
[35]
Hyun, K.H.; Gil, K.C.; Kim, S.G.; Park, S.Y.; Hwang, K.W. Delphinidin chloride and its hydrolytic metabolite gallic acid promote differentiation of regulatory T cells and have an anti-inflammatory effect on the allograft model. J. Food Sci., 2019, 84(4), 920-930.
[http://dx.doi.org/10.1111/1750-3841.14490] [PMID: 30977922]
[36]
Tejpal, C.S.; Chatterjee, N.S.; Elavarasan, K.; Lekshmi, R.G.K.; Anandan, R.; Asha, K.K.; Ganesan, B.; Mathew, S.; Ravishankar, C.N. Dietary supplementation of thiamine and pyridoxine-loaded vanillic acid-grafted chitosan microspheres enhances growth performance, metabolic and immune responses in experimental rats. Int. J. Biol. Macromol, 2017, 104((pt b)), 1874-1881.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.120]
[37]
Tan, J.W.; Israf, D.A.; Harith, H.H.; Md Hashim, N.F.; Ng, C.H.; Shaari, K.; Tham, C.L. Anti-allergic activity of 2,4,6-trihydroxy-3-geranylacetophenone (tHGA) via attenuation of IgE-mediated mast cell activation and inhibition of passive systemic anaphylaxis. Toxicol. Appl. Pharmacol., 2017, 319, 47-58.
[http://dx.doi.org/10.1016/j.taap.2017.02.002] [PMID: 28167223]
[38]
Tada, R.; Yamanaka, D.; Ogasawara, M.; Saito, M.; Ohno, N.; Kiyono, H.; Kunisawa, J.; Aramaki, Y. Polymeric caffeic acid is a safer mucosal adjuvant that augments antigen-specific mucosal and systemic immune responses in mice. Mol. Pharm., 2018, 15(9), 4226-4234.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00648] [PMID: 30107747]
[39]
Conti, B.J.; Búfalo, M.C.; Golim, M.A.; Bankova, V.; Sforcin, J.M. Cinnamic acid is partially involved in propolis immunomodulatory action on human monocytes. Evid. Based Complement. Alternat. Med., 2013.2013109864
[http://dx.doi.org/10.1155/2013/109864] [PMID: 23762102]
[40]
Yılmaz, S.; Ergün, S. Trans-cinnamic acid application for rainbow trout (Oncorhynchus mykiss): Effects on haematological, serum biochemical, non-specific immune and head, kidney gene expression responses. Fish Shellfish Immunol., 2018, 78, 140-157.
[http://dx.doi.org/10.1016/j.fsi.2018.04.034] [PMID: 29684602]
[41]
Lee, C.C.; Wang, C.C.; Huang, H.M.; Lin, C.L.; Leu, S.J.; Lee, Y.L. Ferulic acid induces Th1 responses by modulating the function of dendritic cells and ameliorates Th2-mediated allergic airway inflammation in mice. Evid. Based Complement. Alternat. Med., 2015, 2015, 678487.
[http://dx.doi.org/10.1155/2015/678487] [PMID: 26495021]
[42]
Sin Singer Brugiolo, A.; Carvalho Gouveia, A.C.; de Souza Alves, C.C.; de Castro, E. Silva, F.M.; Esteves de Oliveira, É.; Ferreira, A.P.; Ferreira, A.P. Ferulic acid supresses Th2 immune response and prevents remodeling in ovalbumin-induced pulmonary allergy associated with inhibition of epithelial-derived cytokines. Pulm. Pharmacol. Ther., 2017, 45, 202-209.
[http://dx.doi.org/10.1016/j.pupt.2017.07.001] [PMID: 28689020]
[43]
Wang, Y.; Zhao, J.; Zhang, L.; Di, T.; Liu, X.; Lin, Y.; Zeng, Z.; Li, P. Suppressive effect of β, β-dimethylacryloyl alkannin on activated dendritic cells in an imiquimod-induced psoriasis mouse model. Int. J. Clin. Exp. Pathol., 2015, 8(6), 6665-6673.
[PMID: 26261548]
[44]
Wang, H.; Zou, C.; Zhao, W.; Yu, Y.; Cui, Y.; Zhang, H.; Qiu, Z.; Zou, C.; Gao, X. Juglone eliminates MDSCs accumulation and enhances antitumor immunity. Int. Immunopharmacol., 2019, 73, 118-127.
[http://dx.doi.org/10.1016/j.intimp.2019.04.058] [PMID: 31085459]
[45]
Gaikwad, S.; Pawar, Y.; Banerjee, S.; Kulkarni, S. Potential immunomodulatory effect of allelochemical juglone in mice vaccinated with BCG. Toxicon, 2019, 157, 43-52.
[http://dx.doi.org/10.1016/j.toxicon.2018.11.003] [PMID: 30419248]
[46]
Septama, A.W.; Panichayupakaranant, P.; Jantan, I. In vitro Immunomodulatory effect of lawsone methyl ether on innate immune response of human phagocytes. J. Young Pharm., 2019, 11(1), 62-66.
[http://dx.doi.org/10.5530/jyp.2019.11.13]
[47]
Ge, Y.; Xu, X.; Liang, Q.; Xu, Y.; Huang, M. α-Mangostin suppresses NLRP3 inflammasome activation via promoting autophagy in LPS-stimulated murine macrophages and protects against CLPinduced sepsis in mice. Inflamm. Res., 2019, 68(6), 471-479.
[http://dx.doi.org/10.1007/s00011-019-01232-0] [PMID: 30927050]
[48]
Devi, G.; Harikrishnan, R.; Paray, B.A.; Al-Sadoon, M.K.; Hoseinifar, S.H.; Balasundaram, C. Effects of aloe-emodin on innate immunity, antioxidant and immune cytokines mechanisms in the head kidney leucocytes of Labeo rohita against Aphanomyces invadans. Fish Shellfish Immunol., 2019, 87, 669-678.
[http://dx.doi.org/10.1016/j.fsi.2019.02.006] [PMID: 30753918]
[49]
Malaguarnera, L. Influence of resveratrol on the immune response. Nutrients, 2019, 11(5), E946.
[http://dx.doi.org/10.3390/nu11050946] [PMID: 31035454]
[50]
Fu, Q.; Cui, Q.; Yang, Y.; Zhao, X.; Song, X.; Wang, G.; Bai, L.; Chen, S.; Tian, Y.; Zou, Y.; Li, L.; Yue, G.; Jia, R.; Yin, Z. Effect of resveratrol dry suspension on immune function of piglets. Evid. Based Complement. Alternat. Med., 2018, 2018, 5952707.
[http://dx.doi.org/10.1155/2018/5952707]
[51]
Cui, Q.; Fu, Q.; Zhao, X.; Song, X.; Yu, J.; Yang, Y.; Sun, K.; Bai, L.; Tian, Y.; Chen, S.; Jia, R.; Zou, Y.; Li, L.; Liang, X.; He, C.; Yin, L.; Ye, G.; Lv, C.; Yue, G.; Yin, Z. Protective effects and immunomodulation on piglets infected with rotavirus following resveratrol supplementation. PLoS One, 2018, 13(2), e0192692.
[http://dx.doi.org/10.1371/journal.pone.0192692]
[52]
Singh, D.; Tanwar, H.; Jayashankar, B.; Sharma, J.; Murthy, S.; Chanda, S.; Singh, S.B.; Ganju, L. Quercetin exhibits adjuvant activity by enhancing Th2 immune response in ovalbumin immunized mice. Biomed. Pharmacother., 2017, 90, 354-360.
[http://dx.doi.org/10.1016/j.biopha.2017.03.067] [PMID: 28380410]
[53]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8, 167-175.
[54]
Corsini, E.; Dell’Agli, M.; Facchi, A.; De Fabiani, E.; Lucchi, L.; Boraso, M.S.; Marinovich, M.; Galli, C.L. Enterodiol and enterolactone modulate the immune response by acting on nuclear factor-kappaB (NF-kappaB) signaling. J. Agric. Food Chem., 2010, 58(11), 6678-6684.
[http://dx.doi.org/10.1021/jf100471n] [PMID: 20446732]
[55]
Chowdhury, S.; Mukherjee, T.; Mukhopadhyay, R.; Mukherjee, B.; Sengupta, S.; Chattopadhyay, S.; Jaisankar, P.; Roy, S.; Majumder, H.K. The lignan niranthin poisons Leishmania donovani topoisomerase IB and favours a Th1 immune response in mice. EMBO Mol. Med., 2012, 4(10), 1126-1143.
[http://dx.doi.org/10.1002/emmm.201201316] [PMID: 23027614]
[56]
Cho, J.Y.; Kim, A.R.; Yoo, E.S.; Baik, K.U.; Park, M.H. Immunomodulatory effect of arctigenin, a lignan compound, on tumour necrosis factor-alpha and nitric oxide production, and lymphocyte proliferation. J. Pharm. Pharmacol., 1999, 51(11), 1267-1273.
[http://dx.doi.org/10.1211/0022357991777001] [PMID: 10632084]
[57]
Reyes, A.W.B.; Hop, H.T.; Arayan, L.T.; Huy, T.X.N.; Min, W.; Lee, H.J.; Chang, H.H.; Kim, S. Tannic acid-mediated immune activation attenuates Brucella abortus infection in mice. J. Vet. Sci., 2018, 19(1), 51-57.
[http://dx.doi.org/10.4142/jvs.2018.19.1.51] [PMID: 28693306]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 10
Year: 2020
Published on: 21 January, 2020
Page: [897 - 905]
Pages: 9
DOI: 10.2174/1389201021666200121130313

Article Metrics

PDF: 35
HTML: 4
PRC: 1