Trihaloisocyanuric Acids: Useful Reagents for Conversion of Benzaldehydes into Benzylidene Dihalides under Appel Conditions

Author(s): Haryadylla da C. Sindra, Carlos Vinícius P. dos Santos, Marcio C.S. de Mattos*

Journal Name: Letters in Organic Chemistry

Volume 17 , Issue 8 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The reaction of substituted benzaldehydes with tribromoisocyanuric acid and triphenylphosphine led to the corresponding benzylidene dibromides (95-99%). Similar reaction using trichloroisocyanuric acid produced benzylidene dichlorides (38-96%).

Keywords: Carbonyl compounds, gem-dibromides, gem-dichlorides, halogenation, substituted benzaldehydes, triphenylphosphine.

[1]
a) Oudeyer, S.; Léonel, E.; Paugam, J.P.; Nédélec, J-Y. Tetrahedron, 2014, 70, 919-923.
b) Geum, S.; Lee, H-Y. Org. Lett., 2014, 16, 2466-2469.
c) Oudeyer, S.; Aaziz, A.; Leonel, E.; Paugam, J.P.; Nedelec, J-Y. Synlett, 2003, 485-488.
d) Biscoe, M.R.; Fry, A.J. Tetrahedron Lett., 2001, 42, 2759-2762. Selected examples:
[2]
a) Brzeskiewicz, J.; Loska, R.; Makosza, M. J. Org. Chem., 2018, 83, 8499-8508.
b) Cheng, J.; Cheng, Y.; Xie, J.; Zhu, C. Org. Lett., 2017, 19, 6452-6455.
c) Cao, H.; Wang, Q. Tetrahedron Lett., 2017, 58, 2703-2706.
d) Durán-Peña, M.J.; Flores-Giubi, M.E.; Botubol-Ares, J.M.; Harwood, L.M.; Collado, I.G.; Macías-Sánches, A.J.; Hernández-Galán, R. Org. Biomol. Chem., 2016, 14, 2731-2741.
e) Li, H.; Grassi, D.; Guénée, L.; Bürgi, T.; Alexakis, A. Chemistry, 2014, 20, 16694-16706.
f) Lin, Z.; Yu, D.; Zhang, Y. Tetrahedron Lett., 2011, 52, 4967-4970.
g) Condon, S.; Nédélec, J-Y. J. Organomet. Chem., 2010, 695, 32-35.
h) Concellón, J.M.; Rodríguez-Solla, H.; del Amo, V.; Díaz, P. Synthesis, 2009, 2634-2645.
i) Eisch, J.J.; Qian, Y.; Rheingold, A.L. Eur. J. Inorg. Chem., 2007, 1576-1584.
j) Joshi, A.V.; Baidossi, M.; Taha, N.; Mukhopadhyay, S.; Sasson, Y. Synth. Commun., 2005, 35, 2715-2722.
k) Sygula, A.; Karlen, S.D.; Sygula, R.; Rabideau, P.W. Org. Lett., 2002, 4, 3135-3137.
l) Li, N-S.; Yu, S.; Kabalka, G.W. J. Organomet. Chem., 1997, 531, 101-105. Selected examples:
[3]
a) Gribble, G.W. Biological Activity of Recently Discovered Halogenated Marine Natural Products. Mar. Drugs, 2015, 13(7), 4044-4136.
[http://dx.doi.org/10.3390/md13074044] [PMID: 26133553]
b) Kawada, M. Small molecules modulating tumor-stromal cell interactions: new candidates for anti-tumor drugs. J. Antibiot. (Tokyo), 2016, 69(6), 411-414.
[http://dx.doi.org/10.1038/ja.2016.37] [PMID: 27005556]
c) Jin, Y.; Liu, Y.; Wang, Z.; Kwong, S.; Xu, Z.; Ye, T. Total synthesis of sintokamide C. Org. Lett., 2010, 12(5), 1100-1103.
[http://dx.doi.org/10.1021/ol100095p] [PMID: 20148573]
d) Greff, S.; Zubia, M.; Genta-Jouve, G.; Massi, L.; Perez, T.; Thomas, O.P. Mahorones, highly brominated cyclopentenones from the red alga Asparagopsis taxiformis. J. Nat. Prod., 2014, 77(5), 1150-1155.
[http://dx.doi.org/10.1021/np401094h] [PMID: 24746270]
e) Gao, S.; Wang, Q.; Huang, L.J-S.; Lum, L.; Chen, C. Chemical and biological studies of nakiterpiosin and nakiterpiosinone. J. Am. Chem. Soc., 2010, 132(1), 371-383.
[http://dx.doi.org/10.1021/ja908626k] [PMID: 20000429]
f) Antunes, E.M.; Afolayan, A.F.; Chiwakata, M.T.; Fakee, J.; Knott, M.G.; Whibley, C.E.; Hendricks, D.T.; Bolton, J.J.; Beukes, D.R. Phytochemistry,, 2011, 72(8), 769-772.
[http://dx.doi.org/10.1016/j.phytochem.2011.02.003] [PMID: 21392811]
[4]
Sivey, J.D.; Lehmler, H-J.; Salice, C.J.; Ricko, A.N.; Cwiertny, D.M. Environ. Sci. Technol. Lett., 2015, 2, 260-269.
[http://dx.doi.org/10.1021/acs.estlett.5b00220]
[5]
Aitken, R.A.; Hodgson, P.K.G.; Oyewale, A.O. J. Anal. Appl. Pyrolysis, 2017, 124, 618-630.
[http://dx.doi.org/10.1016/j.jaap.2016.12.028]
[6]
Podgoršek, A.; Stavber, S.; Zupan, M.; Iskra, J. Tetrahedron, 2009, 65, 4429-4439; Pingali, S.R.K.; Upadhyay, S.K.; Jursic, B.S. Green Chem., 2011, 13, 928-933.
[7]
a) Newman, M.S.; Sujeeth, P.K. J. Org. Chem., 1978, 43, 4367-4369.
[http://dx.doi.org/10.1021/jo00416a026]
b) Saraf, S.D. Synth. Commun., 1983, 13, 7-14.
[http://dx.doi.org/10.1080/00397918308061952]
[8]
a) Kabalka, G.W.; Wu, Z. Tetrahedron Lett., 2000, 41, 579-581.
[http://dx.doi.org/10.1016/S0040-4039(99)02065-1]
b) Lansinger, J.M.; Ronald, R.C. Synth. Commun., 1979, 9, 341-349.
[http://dx.doi.org/10.1080/00397917908064161]
[9]
von Kleist, L.; Michaelis, S.; Bartho, K.; Graebner, O.; Schlief, M.; Dreger, M.; Schrey, A.K.; Sefkow, M.; Kroll, F.; Koester, H.; Luo, Y. J. Med. Chem., 2016, 59, 4664-4675; Michie, J.K.; Miller, J.A.; Nunn, M.J.; Stewart, D. J. Chem. Soc., Perkin Trans. 1, 1981, 1744-1749; (c) Armstrong, D.E.; Richardson, D.H. J. Chem. Soc., 1933, 496-500.
[10]
Firouzabadi, H.; Shiriny, F. Tetrahedron, 1996, 52, 14929-14936.
[http://dx.doi.org/10.1016/0040-4020(96)00905-2]
[11]
de Andrade, V.S.C.; de Mattos, M.C.S. Curr. Org. Synth., 2015, 12, 309-327.
[http://dx.doi.org/10.2174/1570179412666150305231358]
[12]
Aghapour, G.; Afzali, A. Synth. Commun., 2008, 38, 4023-4035.
[http://dx.doi.org/10.1080/00397910802271271]
[13]
Spaggiari, A.; Vaccari, D.; Davoli, P.; Torre, G.; Prati, F. A mild synthesis of vinyl halides and gem-dihalides using triphenyl phosphite-halogen-based reagents. J. Org. Chem., 2007, 72(6), 2216-2219.
[http://dx.doi.org/10.1021/jo061346g] [PMID: 17295542]
[14]
Vinczer, P.; Struhar, S.; Novak, L.; Szantay, C. Tetrahedron Lett., 1992, 33, 683-686.
[http://dx.doi.org/10.1016/S0040-4039(00)92342-6]
[15]
Matveeva, E.D.; Feshin, D.B.; Zefirov, N.S. Russ. J. Org. Chem., 2001, 37, 52-55.
[http://dx.doi.org/10.1023/A:1012369232421]
[16]
Chen, J.; Lin, J-H. Xiao. J.-C. Org. Lett., 2018, 20, 3061-3064.
[http://dx.doi.org/10.1021/acs.orglett.8b01058] [PMID: 29741387]
[17]
An, J.; Tang, X.; Moore, J.; Lewis, W.; Denton, R.M. Tetrahedron, 2013, 69, 8769-8776.
[http://dx.doi.org/10.1016/j.tet.2013.07.100]
[18]
Huy, P.H. Synthesis, 2019, 51, 2474-2483.
[http://dx.doi.org/10.1055/s-0037-1611798]
[19]
Tilstam, U.; Weinmann, H. Org. Process Res. Dev., 2002, 6, 384-393; Mendonça, G.F.; de Mattos, M.C.S. Curr. Org. Synth., 2013, 10, 820-836; de Almeida, L.S.; Esteves, P.M.; de Mattos, M.C.S. Curr. Green Chem., 2014, 1, 94-107; Gaspa, S.; Carraro, M.; Pisano, L.; Porcheddu, A.; De Luca, L. Eur. J. Org. Chem., 2019, 3544-3552. For reviews on the chemistry of trihaloisocyanuric acids, see:
[20]
de Almeida, L.S.; Esteves, P.M.; de Mattos, M.C.S. Synlett, 2006, 1515-1518.
[22]
Hiegel, G.A.; Nguyen, J.; Zhou, Y. Synth. Commun., 2004, 34, 2507-2511.
[http://dx.doi.org/10.1081/SCC-200025580]
[23]
de Andrade, V.S.C.; de Mattos, M.C.S. Synthesis, 2016, 48, 1381-1388.
[http://dx.doi.org/10.1055/s-0035-1560408]
[24]
Rodrigues, R. da C.; Barros, I.M.A.; Lima, E.L.S. Tetrahedron Lett., 2005, 46, 5945-5947; da Cunha Sindra, H.; de Mattos, M.C.S. J. Braz. Chem. Soc., 2016, 27, 1129-1136.
[25]
Akhlaghinia, B.; Rouhi-Saadabad, H. Can. J. Chem., 2013, 91, 181-185.
[http://dx.doi.org/10.1139/cjc-2011-0493]
[26]
Entezari, N.; Akhlaghinia, B.; Rouhi-Saadabad, H. Croat. Chem. Acta, 2014, 87, 201-206.
[http://dx.doi.org/10.5562/cca2381]
[27]
a) Tanji, K-i.; Koshio, J.; Sugimoto, O. Synth. Commun., 2005, 35, 1983-1987.
[http://dx.doi.org/10.1081/SCC-200066639]
b) Sugimoto, O.; Tanji, K-i. Heterocycles, 2005, 65, 181-185.
[http://dx.doi.org/10.3987/COM-04-10245]
[28]
Crespo, L.T.C.; Senra, M.R.; Esteves, P.M.; de Mattos, M.C.S. Lett. Org. Chem., 2019, 16, 627-632; de Andrade, V.S.C.; de Mattos, M.C.S. Synthesis, 2018, 50, 4867-4874; Sanabria, C.M.; Costa, B.B.S.; Viana, G.M.; de Aguiar, L.C.S.; de Mattos, M.C.S. Synthesis, 2018, 50, 1359-1367; Crespo, L.T.C.; Nogueira, G.P.; de Mattos, M.C.S.; Esteves, P.M. Arkivoc, 2018, ii, 205-214; Sanabria, C.M.; do Casal, M.T.; de Souza, R.B.A.; de Aguiar, L.C.S.; de Mattos, M.C.S. Synthesis, 2017, 49, 1648-1654; de Almeida, L.S.; Esteves, P.M.; de Mattos, M.C.S. Tetrahedron Lett., 2015, 56, 6843-6845. For our recent works on the chemistry of trihaloisocyanuric acids, see:
[29]
Mendonça, G.F.; de Mattos, M.C.S. Quim. Nova, 2008, 31, 798-801; de Almeida, L.S.; Esteves, P.M.; de Mattos, M.C.S. Synthesis, 2006, 221-223.
[30]
Gaspa, S.; Porcheddu, A.; De Luca, L. Tetrahedron Lett., 2017, 58, 2533-2536.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.030]
[31]
Colina, B.; Rotaeche, M.G.; Guerrero, E.; Malpica, A.; Calzadilla, M.; Baumrucker, J. J. Org. Chem., 1974, 39, 3818-3820.
[http://dx.doi.org/10.1021/jo00940a026]
[32]
Appel, R. Angew. Chem., Int. Ed. Engl., 1975, 14, 801-811; Hiegel, G.A.; Ramírez, J.; Barr, R.K. Synth. Commun., 1999, 29, 1415-1419.
[33]
Kirklin, D.R.; Domalski, E.S. J. Chem. Thermodyn., 1988, 20, 743-754.
[http://dx.doi.org/10.1016/0021-9614(88)90027-4]
[34]
van Kalkeren, H.A.; van Delft, F.L.; Rutjes, F.P.J.T. ChemSusChem, 2013, 6(9), 1615-1624.
[http://dx.doi.org/10.1002/cssc.201300368] [PMID: 24039197]
[35]
Zhao, Y.; Kang, J.; Park, C-M.; Bagdon, P.E.; Peng, B.; Xian, M. Org. Lett., 2014, 16(17), 4536-4539.
[http://dx.doi.org/10.1021/ol502088m] [PMID: 25141097]
[36]
Hazrati, H.; Oestreich, M. Org. Lett., 2018, 20(17), 5367-5369.
[http://dx.doi.org/10.1021/acs.orglett.8b02281] [PMID: 30095263]
[37]
Zhao, M.; Li, M.; Lu, W. Synthesis, 2018, 50, 4933-4939.
[http://dx.doi.org/10.1055/s-0037-1610651]
[38]
Xia, X.; Toy, P.H. Beilstein J. Org. Chem., 2014, 10, 1397-1405.
[http://dx.doi.org/10.3762/bjoc.10.143] [PMID: 24991294]
[39]
Eliel, L.; Nelson, K.W. J. Chem. Soc., 1955, 1628-1629.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 8
Year: 2020
Page: [590 - 595]
Pages: 6
DOI: 10.2174/1570178617666200121110618
Price: $65

Article Metrics

PDF: 20
HTML: 1