Therapeutic Potentials and Mechanisms of Artemisinin and its Derivatives for Tumorigenesis and Metastasis

Author(s): Yue Li, Xiaoyan Zhou, Jiali Liu, Xiaohong Yuan, Qian He*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Tumor recurrence and metastasis are still leading causes of cancer mortality worldwide. The influence of traditional treatment strategies against metastatic tumors may still be limited. To search for novel and powerful agents against tumors has become a major research focus. In this study, Artemisinin (ARM), a natural compound isolated from herbs, Artemisia annua L., proceeding from drug repurposing methods, attracts more attention due to its good efficacy and tolerance in antimalarial practices, as well as newly confirmed anticancer activity.

Methods: We have searched and reviewed the literatures about ARM and its derivatives (ARMs) for cancer using keywords "artemisinin" until May 2019.

Results: In preclinical studies, ARMs can induce cell cycle arrest and cell death by apoptosis etc., to inhibit the progression of tumors, and suppress EMT and angiogenesis to inhibit the metastasis of tumors. Notably, the complex relationships of ARMs and autophagy are worth exploring. Inspired by the limitations of its antimalarial applications and the mechanical studies of artemisinin and cancer, people are also committed to develop safer and more potent ARM-based modified compounds (ARMs) or combination therapy, such as artemisinin dimers/ trimers, artemisinin-derived hybrids. Some clinical trials support artemisinins as promising candidates for cancer therapy.

Conclusion: ARMs show potent therapeutic potentials against carcinoma including metastatic tumors. Novel compounds derived from artemisinin and relevant combination therapies are supposed to be promising treatment strategies for tumors, as the important future research directions.

Keywords: Artemisinin, carcinoma, tumorigenesis, metastasis, mechanism of action, chemical modification.

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[2]
Klayman, D.L. Qinghaosu (artemisinin): an antimalarial drug from China. Science, 1985, 228(4703), 1049-1055.
[http://dx.doi.org/10.1126/science.3887571] [PMID: 3887571]
[3]
van Agtmael, M.A.; Eggelte, T.A.; van Boxtel, C.J. Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication. Trends Pharmacol. Sci., 1999, 20(5), 199-205.
[http://dx.doi.org/10.1016/S0165-6147(99)01302-4] [PMID: 10354615]
[4]
Loo, C.S.; Lam, N.S.; Yu, D.; Su, X.Z.; Lu, F. Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacol. Res., 2017, 117, 192-217.
[http://dx.doi.org/10.1016/j.phrs.2016.11.012] [PMID: 27867026]
[5]
Oiknine-Djian, E.; Weisblum, Y.; Panet, A.; Wong, H.N.; Haynes, R.K.; Wolf, D.G. The artemisinin derivative artemisone is a potent inhibitor of human cytomegalovirus replication. Antimicrob. Agents Chemother., 2018, 62(7), e00288-e00218.
[http://dx.doi.org/10.1128/AAC.00288-18] [PMID: 29712656]
[6]
Ho, W.E.; Peh, H.Y.; Chan, T.K.; Wong, W.S.; Eugene, H. Artemisinins: pharmacological actions beyond anti-malarial. Pharmacol. Ther., 2014, 142(1), 126-139.
[http://dx.doi.org/10.1016/j.pharmthera.2013.12.001] [PMID: 24316259]
[7]
Wang, J-X.; Tang, W.; Zhou, R.; Wan, J.; Shi, L-P.; Zhang, Y.; Yang, Y-F.; Li, Y.; Zuo, J-P. The new water-soluble artemisinin derivative SM905 ameliorates collagen-induced arthritis by suppression of inflammatory and Th17 responses. Br. J. Pharmacol., 2008, 153(6), 1303-1310.
[http://dx.doi.org/10.1038/bjp.2008.11] [PMID: 18264129]
[8]
Cheng, C.; Wang, T.; Song, Z.; Peng, L.; Gao, M.; Hermine, O.; Rousseaux, S.; Khochbin, S.; Mi, J.Q.; Wang, J. Induction of autophagy and autophagy-dependent apoptosis in diffuse large B-cell lymphoma by a new antimalarial artemisinin derivative, SM1044. Cancer Med., 2018, 7(2), 380-396.
[http://dx.doi.org/10.1002/cam4.1276] [PMID: 29277967]
[9]
Liu, X.; Wu, J.; Fan, M.; Shen, C.; Dai, W.; Bao, Y.; Liu, J-H.; Yu, B-Y. Novel dihydroartemisinin derivative DHA-37 induces autophagic cell death through upregulation of HMGB1 in A549 cells. Cell Death Dis., 2018, 9(11), 1048.
[http://dx.doi.org/10.1038/s41419-018-1006-y] [PMID: 30323180]
[10]
Fröhlich, T.; Çapcı Karagöz, A.; Reiter, C.; Tsogoeva, S.B. Artemisinin-derived dimers: Potent antimalarial and anticancer agents. J. Med. Chem., 2016, 59(16), 7360-7388.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01380] [PMID: 27010926]
[11]
Woerdenbag, H.J.; Moskal, T.A.; Pras, N.; Malingré, T.M.; el-Feraly, F.S.; Kampinga, H.H.; Konings, A.W. Cytotoxicity of artemisinin-related endoperoxides to Ehrlich ascites tumor cells. J. Nat. Prod., 1993, 56(6), 849-856.
[http://dx.doi.org/10.1021/np50096a007] [PMID: 8350087]
[12]
Wang, S-J.; Sun, B.; Cheng, Z-X.; Zhou, H-X.; Gao, Y.; Kong, R.; Chen, H.; Jiang, H-C.; Pan, S-H.; Xue, D-B.; Bai, X-W. Dihydroartemisinin inhibits angiogenesis in pancreatic cancer by targeting the NF-κB pathway. Cancer Chemother. Pharmacol., 2011, 68(6), 1421-1430.
[http://dx.doi.org/10.1007/s00280-011-1643-7] [PMID: 21479633]
[13]
Ilamathi, M.; Prabu, P.C.; Ayyappa, K.A.; Sivaramakrishnan, V. Artesunate obliterates experimental hepatocellular carcinoma in rats through suppression of IL-6-JAK-STAT signalling. Biomed. Pharmacother., 2016, 82, 72-79.
[http://dx.doi.org/10.1016/j.biopha.2016.04.061] [PMID: 27470341]
[14]
Sundar, S.N.; Marconett, C.N.; Doan, V.B.; Willoughby, J.A., Sr; Firestone, G.L. Artemisinin selectively decreases functional levels of estrogen receptor-alpha and ablates estrogen-induced proliferation in human breast cancer cells. Carcinogenesis, 2008, 29(12), 2252-2258.
[http://dx.doi.org/10.1093/carcin/bgn214] [PMID: 18784357]
[15]
Wong, Y.K.; Xu, C.; Kalesh, K.A.; He, Y.; Lin, Q.; Wong, W.S.F.; Shen, H-M.; Wang, J. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action. Med. Res. Rev., 2017, 37(6), 1492-1517.
[http://dx.doi.org/10.1002/med.21446] [PMID: 28643446]
[16]
Efferth, T. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin. Cancer Biol., 2017, 46, 65-83.
[http://dx.doi.org/10.1016/j.semcancer.2017.02.009] [PMID: 28254675]
[17]
Prutki, M.; Poljak-Blazi, M.; Jakopovic, M.; Tomas, D.; Stipancic, I.; Zarkovic, N. Altered iron metabolism, transferrin receptor 1 and ferritin in patients with colon cancer. Cancer Lett., 2006, 238(2), 188-196.
[http://dx.doi.org/10.1016/j.canlet.2005.07.001] [PMID: 16111806]
[18]
Larson, S.M.; Rasey, J.S.; Allen, D.R.; Nelson, N.J.; Grunbaum, Z.; Harp, G.D.; Williams, D.L. Common pathway for tumor cell uptake of gallium-67 and iron-59 via a transferrin receptor. J. Natl. Cancer Inst., 1980, 64(1), 41-53.
[PMID: 6243376]
[19]
Yu, H.; Guo, P.; Xie, X.; Wang, Y.; Chen, G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J. Cell. Mol. Med., 2017, 21(4), 648-657.
[http://dx.doi.org/10.1111/jcmm.13008] [PMID: 27860262]
[20]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[21]
Ooko, E.; Saeed, M.E.M.; Kadioglu, O.; Sarvi, S.; Colak, M.; Elmasaoudi, K.; Janah, R.; Greten, H.J.; Efferth, T. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine, 2015, 22(11), 1045-1054.
[http://dx.doi.org/10.1016/j.phymed.2015.08.002] [PMID: 26407947]
[22]
Lin, R.; Zhang, Z.; Chen, L.; Zhou, Y.; Zou, P.; Feng, C.; Wang, L.; Liang, G. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett., 2016, 381(1), 165-175.
[http://dx.doi.org/10.1016/j.canlet.2016.07.033] [PMID: 27477901]
[23]
Roh, J-L.; Kim, E.H.; Jang, H.; Shin, D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol., 2017, 11, 254-262.
[http://dx.doi.org/10.1016/j.redox.2016.12.010] [PMID: 28012440]
[24]
Sun, X.; Ou, Z.; Chen, R.; Niu, X.; Chen, D.; Kang, R.; Tang, D. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology, 2016, 63(1), 173-184.
[http://dx.doi.org/10.1002/hep.28251] [PMID: 26403645]
[25]
Efferth, T.; Rücker, G.; Falkenberg, M.; Manns, D.; Olbrich, A.; Fabry, U.; Osieka, R. Detection of apoptosis in KG-1a leukemic cells treated with investigational drugs. Arzneimittelforschung, 1996, 46(2), 196-200.
[PMID: 8720313]
[26]
Chen, T.; Li, M.; Zhang, R.; Wang, H. Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy. J. Cell. Mol. Med., 2009, 13(7), 1358-1370.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00360.x] [PMID: 18466355]
[27]
Greenshields, A.L.; Fernando, W.; Hoskin, D.W. The anti-malarial drug artesunate causes cell cycle arrest and apoptosis of triple-negative MDA-MB-468 and HER2-enriched SK-BR-3 breast cancer cells. Exp. Mol. Pathol., 2019, 107, 10-22.
[http://dx.doi.org/10.1016/j.yexmp.2019.01.006] [PMID: 30660598]
[28]
Chen, J.; Zhang, L.; Hao, M. Effect of artemisinin on proliferation and apoptosis-related protein expression in vivo and in vitro. Saudi J. Biol. Sci., 2018, 25(7), 1488-1493.
[http://dx.doi.org/10.1016/j.sjbs.2018.04.003] [PMID: 30505200]
[29]
Qin, G.; Zhao, C.; Zhang, L.; Liu, H.; Quan, Y.; Chai, L.; Wu, S.; Wang, X.; Chen, T. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells. Apoptosis, 2015, 20(8), 1072-1086.
[http://dx.doi.org/10.1007/s10495-015-1132-2] [PMID: 25935454]
[30]
Mao, H.; Gu, H.; Qu, X.; Sun, J.; Song, B.; Gao, W.; Liu, J.; Shao, Q. Involvement of the mitochondrial pathway and Bim/Bcl-2 balance in dihydroartemisinin-induced apoptosis in human breast cancer in vitro. Int. J. Mol. Med., 2013, 31(1), 213-218.
[http://dx.doi.org/10.3892/ijmm.2012.1176] [PMID: 23138847]
[31]
Qin, G.; Wu, L.; Liu, H.; Pang, Y.; Zhao, C.; Wu, S.; Wang, X.; Chen, T. Artesunate induces apoptosis via a ROS-independent and Bax-mediated intrinsic pathway in HepG2 cells. Exp. Cell Res., 2015, 336(2), 308-317.
[http://dx.doi.org/10.1016/j.yexcr.2015.07.004] [PMID: 26163896]
[32]
Im, E.; Yeo, C.; Lee, H.J.; Lee, E.O. Dihydroartemisinin induced caspase-dependent apoptosis through inhibiting the specificity protein 1 pathway in hepatocellular carcinoma SK-Hep-1 cells. Life Sci., 2018, 192, 286-292.
[http://dx.doi.org/10.1016/j.lfs.2017.11.008] [PMID: 29128513]
[33]
Li, B.; Bu, S.; Sun, J.; Guo, Y.; Lai, D. Artemisinin derivatives inhibit epithelial ovarian cancer cells via autophagy-mediated cell cycle arrest. Acta Biochim. Biophys. Sin. (Shanghai), 2018, 50(12), 1227-1235.
[http://dx.doi.org/10.1093/abbs/gmy125] [PMID: 30395153]
[34]
Ferraresi, A.; Phadngam, S.; Morani, F.; Galetto, A.; Alabiso, O.; Chiorino, G.; Isidoro, C. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy. Mol. Carcinog., 2017, 56(3), 1164-1181.
[http://dx.doi.org/10.1002/mc.22582] [PMID: 27787915]
[35]
Wan, B.; Dai, L.; Wang, L.; Zhang, Y.; Huang, H.; Qian, G.; Yu, T. Knockdown of BRCA2 enhances cisplatin and cisplatin-induced autophagy in ovarian cancer cells. Endocr. Relat. Cancer, 2018, 25(1), 69-82.
[http://dx.doi.org/10.1530/ERC-17-0261] [PMID: 29066501]
[36]
Du, X-X.; Li, Y-J.; Wu, C-L.; Zhou, J-H.; Han, Y.; Sui, H.; Wei, X-L.; Liu, L.; Huang, P.; Yuan, H-H.; Zhang, T-T.; Zhang, W-J.; Xie, R.; Lang, X-H.; Jia, D-X.; Bai, Y-X. Initiation of apoptosis, cell cycle arrest and autophagy of esophageal cancer cells by dihydroartemisinin. Biomed. Pharmacother., 2013, 67(5), 417-424.
[http://dx.doi.org/10.1016/j.biopha.2013.01.013] [PMID: 23582790]
[37]
Hu, W.; Chen, S-S.; Zhang, J-L.; Lou, X-E.; Zhou, H-J. Dihydroartemisinin induces autophagy by suppressing NF-κB activation. Cancer Lett., 2014, 343(2), 239-248.
[http://dx.doi.org/10.1016/j.canlet.2013.09.035] [PMID: 24099910]
[38]
Chen, K.; Shou, L-M.; Lin, F.; Duan, W-M.; Wu, M-Y.; Xie, X.; Xie, Y-F.; Li, W.; Tao, M. Artesunate induces G2/M cell cycle arrest through autophagy induction in breast cancer cells. Anticancer Drugs, 2014, 25(6), 652-662.
[PMID: 24518199]
[39]
Wang, L.; Li, J.; Shi, X.; Li, S.; Tang, P.M.; Li, Z.; Li, H.; Wei, C. Antimalarial Dihydroartemisinin triggers autophagy within HeLa cells of human cervical cancer through Bcl-2 phosphorylation at Ser70. Phytomedicine, 2019, 52, 147-156.
[http://dx.doi.org/10.1016/j.phymed.2018.09.221] [PMID: 30599894]
[40]
Hamacher-Brady, A.; Stein, H.A.; Turschner, S.; Toegel, I.; Mora, R.; Jennewein, N.; Efferth, T.; Eils, R.; Brady, N.R. Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production. J. Biol. Chem., 2011, 286(8), 6587-6601.
[http://dx.doi.org/10.1074/jbc.M110.210047] [PMID: 21149439]
[41]
Zhang, J.; Sun, X.; Wang, L.; Wong, Y.K.; Lee, Y.M.; Zhou, C.; Wu, G.; Zhao, T.; Yang, L.; Lu, L.; Zhong, J.; Huang, D.; Wang, J. Artesunate-induced mitophagy alters cellular redox status. Redox Biol., 2018, 19, 263-273.
[http://dx.doi.org/10.1016/j.redox.2018.07.025] [PMID: 30196190]
[42]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[43]
Steinbrück, L.; Pereira, G.; Efferth, T. Effects of artesunate on cytokinesis and G2/M cell cycle progression of tumour cells and budding yeast. Cancer Genomics Proteomics, 2010, 7(6), 337-346.
[PMID: 21156967]
[44]
Greenshields, A.L.; Shepherd, T.G.; Hoskin, D.W. Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate. Mol. Carcinog., 2017, 56(1), 75-93.
[http://dx.doi.org/10.1002/mc.22474] [PMID: 26878598]
[45]
Wen, L.; Liu, L.; Wen, L.; Yu, T.; Wei, F. Artesunate promotes G2/M cell cycle arrest in MCF7 breast cancer cells through ATM activation. Breast Cancer, 2018, 25(6), 681-686.
[http://dx.doi.org/10.1007/s12282-018-0873-5] [PMID: 29797234]
[46]
Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 178-196.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[47]
Tong, Y.; Liu, Y.; Zheng, H.; Zheng, L.; Liu, W.; Wu, J.; Ou, R.; Zhang, G.; Li, F.; Hu, M.; Liu, Z.; Lu, L. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling. Oncotarget, 2016, 7(21), 31413-31428.
[http://dx.doi.org/10.18632/oncotarget.8920] [PMID: 27119499]
[48]
Li, X.; Zhou, Y.; Liu, Y.; Zhang, X.; Chen, T.; Chen, K.; Ba, Q.; Li, J.; Liu, H.; Wang, H. Preclinical efficacy and safety assessment of artemisinin-chemotherapeutic agent conjugates for ovarian cancer. EBioMedicine, 2016, 14, 44-54.
[http://dx.doi.org/10.1016/j.ebiom.2016.11.026] [PMID: 27939426]
[49]
Liu, Y.; Wang, W.; Xu, J.; Li, L.; Dong, Q.; Shi, Q.; Zuo, G.; Zhou, L.; Weng, Y.; Tang, M.; He, T.; Luo, J. Dihydroartemisinin inhibits tumor growth of human osteosarcoma cells by suppressing Wnt/β-catenin signaling. Oncol. Rep., 2013, 30(4), 1723-1730.
[http://dx.doi.org/10.3892/or.2013.2658] [PMID: 23917613]
[50]
Li, X.; Ba, Q.; Liu, Y.; Yue, Q.; Chen, P.; Li, J.; Zhang, H.; Ying, H.; Ding, Q.; Song, H.; Liu, H.; Zhang, R.; Wang, H. Dihydroartemisinin selectively inhibits PDGFRα-positive ovarian cancer growth and metastasis through inducing degradation of PDGFRα protein. Cell Discov., 2017, 3, 17042.
[http://dx.doi.org/10.1038/celldisc.2017.42] [PMID: 29387451]
[51]
Ju, R-J.; Cheng, L.; Peng, X-M.; Wang, T.; Li, C-Q.; Song, X-L.; Liu, S.; Chao, J-P.; Li, X-T. Octreotide-modified liposomes containing daunorubicin and dihydroartemisinin for treatment of invasive breast cancer. J. Cell. Biochem., 2018, 120(4), 6026-6034.
[http://dx.doi.org/10.1080/21691401.2018.1433187]
[52]
Li, L-N.; Zhang, H-D.; Yuan, S-J.; Yang, D-X.; Wang, L.; Sun, Z-X. Differential sensitivity of colorectal cancer cell lines to artesunate is associated with expression of beta-catenin and E-cadherin. Eur. J. Pharmacol., 2008, 588(1), 1-8.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.041] [PMID: 18448095]
[53]
Jing, W.; Dong, H.; Min, M.; Runpeng, Z.; Xuewei, X.; Ru, C.; Yingru, X.; Shengfa, N.; Baoxian, T.; Jinbo, Y.; Weidong, H.; Rongbo, Z. Dependence of artesunate on long noncoding RNA-RP11 to inhibit epithelial-mesenchymal transition of hepatocellular carcinoma. J. Cell. Biochem., 2019, 120(4), 6026-6034.
[http://dx.doi.org/10.1002/jcb.27889] [PMID: 30335897]
[54]
Albadari, N.; Deng, S.; Li, W. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin. Drug Discov., 2019, 14(7), 667-682.
[http://dx.doi.org/10.1080/17460441.2019.1613370] [PMID: 31070059]
[55]
Shen, R.; Li, J.; Ye, D.; Wang, Q.; Fei, J. Combination of onconase and dihydroartemisinin synergistically suppresses growth and angiogenesis of non-small-cell lung carcinoma and malignant mesothelioma. Acta Biochim. Biophys. Sin. (Shanghai), 2016, 48(10), 894-901.
[http://dx.doi.org/10.1093/abbs/gmw082] [PMID: 27590062]
[56]
Verma, S.; Das, P.; Kumar, V.L. Chemoprevention by artesunate in a preclinical model of colorectal cancer involves down regulation of β-catenin, suppression of angiogenesis, cellular proliferation and induction of apoptosis. Chem. Biol. Interact., 2017, 278, 84-91.
[http://dx.doi.org/10.1016/j.cbi.2017.10.011] [PMID: 29031619]
[57]
Niu, N.; Yu, C.; Li, L.; Liu, Q.; Zhang, W.; Liang, K.; Zhu, Y.; Li, J.; Zhou, X.; Tang, J.; Liu, J. Dihydroartemisinin enhances VEGFR1 expression through up-regulation of ETS-1 transcription factor. J. Cancer, 2018, 9(18), 3366-3372.
[http://dx.doi.org/10.7150/jca.25082] [PMID: 30271498]
[58]
Dong, F.; Zhou, X.; Li, C.; Yan, S.; Deng, X.; Cao, Z.; Li, L.; Tang, B.; Allen, T.D.; Liu, J. Dihydroartemisinin targets VEGFR2 via the NF-κB pathway in endothelial cells to inhibit angiogenesis. Cancer Biol. Ther., 2014, 15(11), 1479-1488.
[http://dx.doi.org/10.4161/15384047.2014.955728] [PMID: 25482945]
[59]
Krusche, B.; Arend, J.; Efferth, T. Synergistic inhibition of angiogenesis by artesunate and captopril in vitro and in vivo. Evid. Based Complement. Alternat. Med., 2013, 2013 454783
[http://dx.doi.org/10.1155/2013/454783] [PMID: 24223058]
[60]
Wu, G.D.; Zhou, H.J.; Wu, X.H. Apoptosis of human umbilical vein endothelial cells induced by artesunate. Vascul. Pharmacol., 2004, 41(6), 205-212.
[http://dx.doi.org/10.1016/j.vph.2004.11.001] [PMID: 15653096]
[61]
Dong, F.; Tian, H.; Yan, S.; Li, L.; Dong, X.; Wang, F.; Li, J.; Li, C.; Cao, Z.; Liu, X.; Liu, J. Dihydroartemisinin inhibits endothelial cell proliferation through the suppression of the ERK signaling pathway. Int. J. Mol. Med., 2015, 35(5), 1381-1387.
[http://dx.doi.org/10.3892/ijmm.2015] [PMID: 25778668]
[62]
Dong, F.; Han, J.; Jing, G.; Chen, X.; Yan, S.; Yue, L.; Cao, Z.; Liu, X.; Ma, G.; Liu, J. Dihydroartemisinin transiently activates the JNK/SAPK signaling pathway in endothelial cells. Oncol. Lett., 2016, 12(6), 4699-4704.
[http://dx.doi.org/10.3892/ol.2016.5223] [PMID: 28105176]
[63]
Li, Z.; Ding, X.; Wu, H.; Liu, C. Artemisinin inhibits angiogenesis by regulating p38 MAPK/CREB/TSP-1 signaling pathway in osteosarcoma. J. Cell. Biochem., 2019, 120(7), 11462-11470.
[http://dx.doi.org/10.1002/jcb.28424] [PMID: 30746754]
[64]
Buragohain, P.; Saikia, B.; Surineni, N.; Barua, N.C.; Saxena, A.K.; Suri, N. Synthesis of a novel series of artemisinin dimers with potent anticancer activity involving Sonogashira cross-coupling reaction. Bioorg. Med. Chem. Lett., 2014, 24(1), 237-239.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.032] [PMID: 24332623]
[65]
Gaur, R.; Pathania, A.S.; Malik, F.A.; Bhakuni, R.S.; Verma, R.K. Synthesis of a series of novel dihydroartemisinin monomers and dimers containing chalcone as a linker and their anticancer activity. Eur. J. Med. Chem., 2016, 122, 232-246.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.035] [PMID: 27371926]
[66]
Kumar, B.; Kalvala, A.; Chu, S.; Rosen, S.; Forman, S.J.; Marcucci, G.; Chen, C.C.; Pullarkat, V. Antileukemic activity and cellular effects of the antimalarial agent artesunate in acute myeloid leukemia. Leuk. Res., 2017, 59, 124-135.
[http://dx.doi.org/10.1016/j.leukres.2017.05.007] [PMID: 28646646]
[67]
Xu, C.C.; Wu, J.J.; Xu, T.; Yao, C.H.; Yu, B.Y.; Liu, J.H. Synthesis and cytotoxicity of novel artemisinin derivatives containing sulfur atoms. Eur. J. Med. Chem., 2016, 123, 763-768.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.015] [PMID: 27537924]
[68]
Zhang, L.; Chen, F.; Zhang, Z.; Chen, Y.; Wang, J. Synthesis and biological evaluation of a novel artesunate-podophyllotoxin conjugate as anticancer agent. Bioorg. Med. Chem. Lett., 2016, 26(1), 38-42.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.042] [PMID: 26615886]
[69]
Fröhlich, T.; Kiss, A.; Wölfling, J.; Mernyák, E.; Kulmány, Á.E.; Minorics, R.; Zupkó, I.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Hahn, F.; Marschall, M.; Schneider, G.; Tsogoeva, S.B. Synthesis of artemisinin-estrogen hybrids highly active against HCMV, P. falciparum, and cervical and breast cancer. ACS Med. Chem. Lett., 2018, 9(11), 1128-1133.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00381] [PMID: 30429957]
[70]
Fröhlich, T.; Ndreshkjana, B.; Muenzner, J.K.; Reiter, C.; Hofmeister, E.; Mederer, S.; Fatfat, M.; El-Baba, C.; Gali-Muhtasib, H.; Schneider-Stock, R.; Tsogoeva, S.B. Synthesis of novel hybrids of thymoquinone and artemisinin with high activity and selectivity against colon cancer. ChemMedChem, 2017, 12(3), 226-234.
[http://dx.doi.org/10.1002/cmdc.201600594] [PMID: 27973725]
[71]
Paccez, J.D.; Duncan, K.; Sekar, D.; Correa, R.G.; Wang, Y.; Gu, X.; Bashin, M.; Chibale, K.; Libermann, T.A.; Zerbini, L.F. Dihydroartemisinin inhibits prostate cancer via JARID2/miR-7/miR-34a-dependent downregulation of Axl. Oncogenesis, 2019, 8(3), 14.
[http://dx.doi.org/10.1038/s41389-019-0122-6] [PMID: 30783079]
[72]
Zhou, X.; Sun, W.J.; Wang, W.M.; Chen, K.; Zheng, J.H.; Lu, M.D.; Li, P.H.; Zheng, Z.Q. Artesunate inhibits the growth of gastric cancer cells through the mechanism of promoting oncosis both in vitro and in vivo. Anticancer Drugs, 2013, 24(9), 920-927.
[http://dx.doi.org/10.1097/CAD.0b013e328364a109] [PMID: 23958790]
[73]
Noori, S.; Hassan, Z.M.; Farsam, V. Artemisinin as a Chinese medicine, selectively induces apoptosis in pancreatic tumor cell line. Chin. J. Integr. Med., 2014, 20(8), 618-623.
[http://dx.doi.org/10.1007/s11655-013-1454-2] [PMID: 23771805]
[74]
Gravett, A.M.; Liu, W.M.; Krishna, S.; Chan, W.C.; Haynes, R.K.; Wilson, N.L.; Dalgleish, A.G. In vitro study of the anti-cancer effects of artemisone alone or in combination with other chemotherapeutic agents. Cancer Chemother. Pharmacol., 2011, 67(3), 569-577.
[http://dx.doi.org/10.1007/s00280-010-1355-4] [PMID: 20490800]
[75]
Chen, P.; Gu, W.L.; Gong, M.Z.; Wang, J.; Li, D.Q. Artesunate decreases β-catenin expression, cell proliferation and apoptosis resistance in the MG-63 human osteosarcoma cell line. Cell. Physiol. Biochem., 2017, 43(5), 1939-1949.
[http://dx.doi.org/10.1159/000484118] [PMID: 29055954]
[76]
Ji, Y.; Zhang, Y.C.; Pei, L.B.; Shi, L.L.; Yan, J.L.; Ma, X.H. Anti-tumor effects of dihydroartemisinin on human osteosarcoma. Mol. Cell. Biochem., 2011, 351(1-2), 99-108.
[http://dx.doi.org/10.1007/s11010-011-0716-6] [PMID: 21234653]
[77]
Yao, G-D.; Ge, M-Y.; Li, D-Q.; Chen, L.; Hayashi, T.; Tashiro, S.I.; Onodera, S.; Guo, C.; Song, S-J.; Ikejima, T. L-A03, a dihydroartemisinin derivative, promotes apoptotic cell death of human breast cancer MCF-7 cells by targeting c-Jun N-terminal kinase. Biomed. Pharmacother., 2018, 105, 320-325.
[http://dx.doi.org/10.1016/j.biopha.2018.05.093] [PMID: 29864620]
[78]
Oh, S.; Jeong, I.H.; Ahn, C.M.; Shin, W-S.; Lee, S. Synthesis and antiangiogenic activity of thioacetal artemisinin derivatives. Bioorg. Med. Chem., 2004, 12(14), 3783-3790.
[http://dx.doi.org/10.1016/j.bmc.2004.05.013] [PMID: 15210144]
[79]
Stockwin, L.H.; Han, B.; Yu, S.X.; Hollingshead, M.G.; ElSohly, M.A.; Gul, W.; Slade, D.; Galal, A.M.; Newton, D.L.; Bumke, M.A. Artemisinin dimer anticancer activity correlates with heme-catalyzed reactive oxygen species generation and endoplasmic reticulum stress induction. Int. J. Cancer, 2009, 125(6), 1266-1275.
[http://dx.doi.org/10.1002/ijc.24496] [PMID: 19533749]
[80]
Slade, D.; Galal, A.M.; Gul, W.; Radwan, M.M.; Ahmed, S.A.; Khan, S.I.; Tekwani, B.L.; Jacob, M.R.; Ross, S.A.; Elsohly, M.A. Antiprotozoal, anticancer and antimicrobial activities of dihydroartemisinin acetal dimers and monomers. Bioorg. Med. Chem., 2009, 17(23), 7949-7957.
[http://dx.doi.org/10.1016/j.bmc.2009.10.019] [PMID: 19879765]
[81]
Fox, J.M.; Moynihan, J.R.; Mott, B.T.; Mazzone, J.R.; Anders, N.M.; Brown, P.A.; Rudek, M.A.; Liu, J.O.; Arav-Boger, R.; Posner, G.H.; Civin, C.I.; Chen, X. Artemisinin-derived dimer ART-838 potently inhibited human acute leukemias, persisted in vivo, and synergized with antileukemic drugs. Oncotarget, 2016, 7(6), 7268-7279.
[http://dx.doi.org/10.18632/oncotarget.6896] [PMID: 26771236]
[82]
Beekman, A.C.; Barentsen, A.R.W.; Woerdenbag, H.J.; Van Uden, W.; Pras, N.; Konings, A.W.T.; el-Feraly, F.S.; Galal, A.M.; Wikström, H.V. Stereochemistry-dependent cytotoxicity of some artemisinin derivatives. J. Nat. Prod., 1997, 60(4), 325-330.
[http://dx.doi.org/10.1021/np9605495] [PMID: 9134741]
[83]
Ricci, J.; Park, J.; Chung, W-Y.; Park, K-K.; Jung, M. Concise synthesis and antiangiogenic activity of artemisinin-glycolipid hybrids on chorioallantoic membranes. Bioorg. Med. Chem. Lett., 2010, 20(22), 6858-6860.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.013] [PMID: 20855209]
[84]
Ricci, J.; Kim, M.; Chung, W-Y.; Park, K-K.; Jung, M. Discovery of artemisinin-glycolipid hybrids as anti-oral cancer agents. Chem. Pharm. Bull. (Tokyo), 2011, 59(12), 1471-1475.
[http://dx.doi.org/10.1248/cpb.59.1471] [PMID: 22130368]
[85]
Mnif, I.; Ghribi, D. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. J. Sci. Food Agric., 2016, 96(13), 4310-4320.
[http://dx.doi.org/10.1002/jsfa.7759] [PMID: 27098847]
[86]
Jeong, P-Y.; Jung, M.; Yim, Y-H.; Kim, H.; Park, M.; Hong, E.; Lee, W.; Kim, Y.H.; Kim, K.; Paik, Y-K. Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature, 2005, 433(7025), 541-545.
[http://dx.doi.org/10.1038/nature03201] [PMID: 15690045]
[87]
Ma, G.T.; Lee, S.K.; Park, K-K.; Park, J.; Son, S.H.; Jung, M.; Chung, W-Y. Artemisinin-daumone hybrid inhibits cancer cell-mediated osteolysis by targeting cancer cells and osteoclasts. Cell. Physiol. Biochem., 2018, 49(4), 1460-1475.
[88]
Mukherjee, A.; Paul, M.; Mukherjee, S. Recent progress in the theranostics application of nanomedicine in lung cancer. Cancers (Basel), 2019, 11(5) E597
[http://dx.doi.org/10.3390/cancers11050597] [PMID: 31035440]
[89]
Gharib, A.; Faezizadeh, Z.; Mesbah-Namin, S.A.; Saravani, R. Experimental treatment of breast cancer-bearing BALB/c mice by artemisinin and transferrin-loaded magnetic nanoliposomes. Pharmacogn. Mag., 2015, 11(Suppl. 1), S117-S122.
[http://dx.doi.org/10.4103/0973-1296.157710] [PMID: 26109756]
[90]
Liu, L.; Wei, Y.; Zhai, S.; Chen, Q.; Xing, D. Dihydroartemisinin and transferrin dual-dressed nano-graphene oxide for a pH-triggered chemotherapy. Biomaterials, 2015, 62, 35-46.
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.036] [PMID: 26022978]
[91]
Wang, D.; Zhou, J.; Chen, R.; Shi, R.; Xia, G.; Zhou, S.; Liu, Z.; Zhang, N.; Wang, H.; Guo, Z.; Chen, Q. Magnetically guided delivery of DHA and Fe ions for enhanced cancer therapy based on pH-responsive degradation of DHA-loaded Fe3O4@C@MIL-100(Fe) nanoparticles. Biomaterials, 2016, 107, 88-101.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.039] [PMID: 27614161]
[92]
Liu, L.; Liu, Y.; Ma, L.; Mao, F.; Jiang, A.; Liu, D.; Wang, L.; Jia, Q.; Zhou, J. Artemisinin-loaded mesoporous nanoplatform for pH-responsive radical generation synergistic tumor theranostics. ACS Appl. Mater. Interfaces, 2018, 10(7), 6155-6167.
[http://dx.doi.org/10.1021/acsami.7b18320] [PMID: 29378409]
[93]
Hou, L.; Shan, X.; Hao, L.; Feng, Q.; Zhang, Z. Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform. Acta Biomater., 2017, 54, 307-320.
[http://dx.doi.org/10.1016/j.actbio.2017.03.005] [PMID: 28274767]
[94]
Jeong, D.E.; Song, H.J.; Lim, S.; Lee, S.J.; Lim, J.E.; Nam, D-H.; Joo, K.M.; Jeong, B.C.; Jeon, S.S.; Choi, H.Y.; Lee, H.W. Repurposing the anti-malarial drug artesunate as a novel therapeutic agent for metastatic renal cell carcinoma due to its attenuation of tumor growth, metastasis, and angiogenesis. Oncotarget, 2015, 6(32), 33046-33064.
[http://dx.doi.org/10.18632/oncotarget.5422] [PMID: 26426994]
[95]
Efferth, T.; Ramirez, T.; Gebhart, E.; Halatsch, M-E. Combination treatment of glioblastoma multiforme cell lines with the anti-malarial artesunate and the epidermal growth factor receptor tyrosine kinase inhibitor OSI-774. Biochem. Pharmacol., 2004, 67(9), 1689-1700.
[http://dx.doi.org/10.1016/j.bcp.2003.12.035] [PMID: 15081868]
[96]
Efferth, T. Cancer combination therapy of the sesquiterpenoid artesunate and the selective EGFR-tyrosine kinase inhibitor erlotinib. Phytomedicine, 2017, 37, 58-61.
[http://dx.doi.org/10.1016/j.phymed.2017.11.003] [PMID: 29174651]
[97]
Sieber, S.; Gdynia, G.; Roth, W.; Bonavida, B.; Efferth, T. Combination treatment of malignant B cells using the anti-CD20 antibody rituximab and the anti-malarial artesunate. Int. J. Oncol., 2009, 35(1), 149-158.
[PMID: 19513562]
[98]
Feng, X.; Li, L.; Jiang, H.; Jiang, K.; Jin, Y.; Zheng, J. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy. Biochem. Biophys. Res. Commun., 2014, 444(3), 376-381.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.053] [PMID: 24462866]
[99]
Qin, Y.; Yang, G.; Li, M.; Liu, H-J.; Zhong, W-L.; Yan, X-Q.; Qiao, K-L.; Yang, J-H.; Zhai, D-H.; Yang, W.; Chen, S.; Zhou, H-G.; Sun, T.; Yang, C. Dihydroartemisinin inhibits EMT induced by platinum-based drugs via Akt-Snail pathway. Oncotarget, 2017, 8(61), 103815-103827.
[http://dx.doi.org/10.18632/oncotarget.21793] [PMID: 29262602]
[100]
Wang, B.; Hou, D.; Liu, Q.; Wu, T.; Guo, H.; Zhang, X.; Zou, Y.; Liu, Z.; Liu, J.; Wei, J.; Gong, Y.; Shao, C. Artesunate sensitizes ovarian cancer cells to cisplatin by downregulating RAD51. Cancer Biol. Ther., 2015, 16(10), 1548-1556.
[http://dx.doi.org/10.1080/15384047.2015.1071738] [PMID: 26176175]
[101]
Berger, T.G.; Dieckmann, D.; Efferth, T.; Schultz, E.S.; Funk, J-O.; Baur, A.; Schuler, G. Artesunate in the treatment of metastatic uveal melanoma--first experiences. Oncol. Rep., 2005, 14(6), 1599-1603.
[http://dx.doi.org/10.3892/or.14.6.1599] [PMID: 16273263]
[102]
Vandewynckel, Y-P.; Laukens, D.; Geerts, A.; Vanhove, C.; Descamps, B.; Colle, I.; Devisscher, L.; Bogaerts, E.; Paridaens, A.; Verhelst, X.; Van Steenkiste, C.; Libbrecht, L.; Lambrecht, B.N.; Janssens, S.; Van Vlierberghe, H. Therapeutic effects of artesunate in hepatocellular carcinoma: repurposing an ancient antimalarial agent. Eur. J. Gastroenterol. Hepatol., 2014, 26(8), 861-870.
[http://dx.doi.org/10.1097/MEG.0000000000000066] [PMID: 24987823]
[103]
Karpel-Massler, G.; Westhoff, M-A.; Kast, R.E.; Dwucet, A.; Nonnenmacher, L.; Wirtz, C.R.; Debatin, K-M.; Halatsch, M-E. Artesunate enhances the antiproliferative effect of temozolomide on U87MG and A172 glioblastoma cell lines. Anticancer. Agents Med. Chem., 2014, 14(2), 313-318.
[http://dx.doi.org/10.2174/18715206113136660340] [PMID: 24506460]
[104]
Li, X.Y.; Zhao, Y.; Sun, M.G.; Shi, J.F.; Ju, R.J.; Zhang, C.X.; Li, X.T.; Zhao, W.Y.; Mu, L.M.; Zeng, F.; Lou, J.N.; Lu, W.L. Multifunctional liposomes loaded with paclitaxel and artemether for treatment of invasive brain glioma. Biomaterials, 2014, 35(21), 5591-5604.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.049] [PMID: 24726749]
[105]
Zhang, F.; Ma, Q.; Xu, Z.; Liang, H.; Li, H.; Ye, Y.; Xiang, S.; Zhang, Y.; Jiang, L.; Hu, Y.; Wang, Z.; Wang, X.; Zhang, Y.; Gong, W.; Liu, Y. Dihydroartemisinin inhibits TCTP-dependent metastasis in gallbladder cancer. J. Exp. Clin. Cancer Res., 2017, 36(1), 68.
[http://dx.doi.org/10.1186/s13046-017-0531-3] [PMID: 28506239]
[106]
Tang, C.; Zhao, Y.; Huang, S.; Jin, Y.; Liu, J.; Luo, J.; Zheng, J.; Shi, D. Influence of Artemisia annua extract derivatives on proliferation, apoptosis and metastasis of osteosarcoma cells. Pak. J. Pharm. Sci., 2015, 28(2)(Suppl.), 773-779.
[PMID: 25796153]
[107]
Ericsson, T.; Blank, A.; von Hagens, C.; Ashton, M.; Äbelö, A. Population pharmacokinetics of artesunate and dihydroartemisinin during long-term oral administration of artesunate to patients with metastatic breast cancer. Eur. J. Clin. Pharmacol., 2014, 70(12), 1453-1463.
[http://dx.doi.org/10.1007/s00228-014-1754-2] [PMID: 25248945]
[108]
Zhang, L.; Qian, H.; Sha, M.; Luan, Z.; Lin, M.; Yuan, D.; Li, X.; Huang, J.; Ye, L. Downregulation of HOTAIR expression mediated anti-metastatic effect of artesunate on cervical cancer by inhibiting COX-2 expression. PLoS One, 2016, 11(10) e0164838
[http://dx.doi.org/10.1371/journal.pone.0164838] [PMID: 27736969]
[109]
Weifeng, T.; Feng, S.; Xiangji, L.; Changqing, S.; Zhiquan, Q.; Huazhong, Z.; Peining, Y.; Yong, Y.; Mengchao, W.; Xiaoqing, J.; Wan-Yee, L. Artemisinin inhibits in vitro and in vivo invasion and metastasis of human hepatocellular carcinoma cells. Phytomedicine, 2011, 18(2-3), 158-162.
[http://dx.doi.org/10.1016/j.phymed.2010.07.003] [PMID: 20739158]
[110]
Daenen, L.G.M.; Roodhart, J.M.L.; van Amersfoort, M.; Dehnad, M.; Roessingh, W.; Ulfman, L.H.; Derksen, P.W.B.; Voest, E.E. Chemotherapy enhances metastasis formation via VEGFR-1-expressing endothelial cells. Cancer Res., 2011, 71(22), 6976-6985.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0627] [PMID: 21975929]
[111]
Gingis-Velitski, S.; Loven, D.; Benayoun, L.; Munster, M.; Bril, R.; Voloshin, T.; Alishekevitz, D.; Bertolini, F.; Shaked, Y. Host response to short-term, single-agent chemotherapy induces matrix metalloproteinase-9 expression and accelerates metastasis in mice. Cancer Res., 2011, 71(22), 6986-6996.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0629] [PMID: 21978934]
[112]
Li, Y.; Sui, H.; Jiang, C.; Li, S.; Han, Y.; Huang, P.; Du, X.; Du, J.; Bai, Y. Dihydroartemisinin increases the sensitivity of photodynamic therapy via NF-κB/HIF-1α/VEGF pathway in esophageal cancer cell in vitro and in vivo. Cell. Physiol. Biochem., 2018, 48(5), 2035-2045.
[http://dx.doi.org/10.1159/000492541] [PMID: 30099443]
[113]
Coleman, R.E. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat. Rev., 2001, 27(3), 165-176.
[http://dx.doi.org/10.1053/ctrv.2000.0210] [PMID: 11417967]
[114]
Coleman, R.E. Impact of bone-targeted treatments on skeletal morbidity and survival in breast cancer. Oncology (Williston Park), 2016, 30(8), 695-702.
[PMID: 27528238]
[115]
Li, J.; Feng, W.; Lu, H.; Wei, Y.; Ma, S.; Wei, L.; Liu, Q.; Zhao, J.; Wei, Q.; Yao, J. Artemisinin inhibits breast cancer-induced osteolysis by inhibiting osteoclast formation and breast cancer cell proliferation. J. Cell. Physiol., 2019, 234(8), 12663-12675.
[http://dx.doi.org/10.1002/jcp.27875] [PMID: 30536376]
[116]
Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer, 2018, 18(7), 452-464.
[http://dx.doi.org/10.1038/s41568-018-0005-8] [PMID: 29643473]
[117]
Binkhathlan, Z.; Lavasanifar, A. P-glycoprotein inhibition as a therapeutic approach for overcoming multidrug resistance in cancer: current status and future perspectives. Curr. Cancer Drug Targets, 2013, 13(3), 326-346.
[http://dx.doi.org/10.2174/15680096113139990076] [PMID: 23369096]
[118]
Norouzi, S.; Gorgi Valokala, M.; Mosaffa, F.; Zirak, M.R.; Zamani, P.; Behravan, J. Crosstalk in cancer resistance and metastasis. Crit. Rev. Oncol. Hematol., 2018, 132, 145-153.
[http://dx.doi.org/10.1016/j.critrevonc.2018.09.017] [PMID: 30447920]
[119]
Kang, X.J.; Wang, H.Y.; Peng, H.G.; Chen, B.F.; Zhang, W.Y.; Wu, A.H.; Xu, Q.; Huang, Y.Z. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol. Sin., 2017, 38(6), 885-896.
[http://dx.doi.org/10.1038/aps.2017.10] [PMID: 28479604]
[120]
Reungpatthanaphong, P.; Mankhetkorn, S. Modulation of multidrug resistance by artemisinin, artesunate and dihydroartemisinin in K562/adr and GLC4/adr resistant cell lines. Biol. Pharm. Bull., 2002, 25(12), 1555-1561.
[http://dx.doi.org/10.1248/bpb.25.1555] [PMID: 12499639]
[121]
Michaelis, M.; Kleinschmidt, M.C.; Barth, S.; Rothweiler, F.; Geiler, J.; Breitling, R.; Mayer, B.; Deubzer, H.; Witt, O.; Kreuter, J.; Doerr, H.W.; Cinatl, J.; Cinatl, J., Jr Anti-cancer effects of artesunate in a panel of chemoresistant neuroblastoma cell lines. Biochem. Pharmacol., 2010, 79(2), 130-136.
[http://dx.doi.org/10.1016/j.bcp.2009.08.013] [PMID: 19698702]
[122]
Lee, D-H.; Hasanuzzaman, M.; Kwon, D.; Choi, H-Y.; Kim, S.M.; Kim, D.J.; Kang, D.J.; Hwang, T-H.; Kim, H-H.; Shin, H.J.; Shin, J-G.; Oh, S.; Lee, S.; Kim, S.W. 10-phenyltriazoyl artemisinin is a novel P-glycoprotein inhibitor that suppresses the overexpression and function of P-glycoprotein. Curr. Pharm. Des., 2018, 24(46), 5590-5597.
[http://dx.doi.org/10.2174/1381612825666190222155700] [PMID: 30799787]
[123]
Riganti, C.; Doublier, S.; Viarisio, D.; Miraglia, E.; Pescarmona, G.; Ghigo, D.; Bosia, A. Artemisinin induces doxorubicin resistance in human colon cancer cells via calcium-dependent activation of HIF-1α and P-glycoprotein overexpression. Br. J. Pharmacol., 2009, 156(7), 1054-1066.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00117.x] [PMID: 19298255]
[124]
Zhong, H.; Zhao, X.; Zuo, Z.; Sun, J.; Yao, Y.; Wang, T.; Liu, D.; Zhao, L. Combating P-glycoprotein-mediated multidrug resistance with 10-O-phenyl dihydroartemisinin ethers in MCF-7 cells. Eur. J. Med. Chem., 2016, 108, 720-729.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.040] [PMID: 26741854]
[125]
Michaelsen, F-W.; Saeed, M.E.M.; Schwarzkopf, J.; Efferth, T. Activity of Artemisia annua and artemisinin derivatives, in prostate carcinoma. Phytomedicine, 2015, 22(14), 1223-1231.
[http://dx.doi.org/10.1016/j.phymed.2015.11.001] [PMID: 26655404]
[126]
Jansen, F.H.; Adoubi, I.; J C, K.C.; DE Cnodder, T.; Jansen, N.; Tschulakow, A.; Efferth, T. First study of oral Artenimol-R in advanced cervical cancer: clinical benefit, tolerability and tumor markers. Anticancer Res., 2011, 31(12), 4417-4422.
[PMID: 22199309]
[127]
Sordi, R.; Nandra, K.K.; Chiazza, F.; Johnson, F.L.; Cabrera, C.P.; Torrance, H.D.; Yamada, N.; Patel, N.S.A.; Barnes, M.R.; Brohi, K.; Collino, M.; Thiemermann, C. Artesunate protects against the organ injury and dysfunction induced by severe hemorrhage and resuscitation. Ann. Surg., 2017, 265(2), 408-417.
[http://dx.doi.org/10.1097/SLA.0000000000001664] [PMID: 28059970]
[128]
Krishna, S.; Ganapathi, S.; Ster, I.C.; Saeed, M.E.M.; Cowan, M.; Finlayson, C.; Kovacsevics, H.; Jansen, H.; Kremsner, P.G.; Efferth, T.; Kumar, D. A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer. EBioMedicine, 2014, 2(1), 82-90.
[http://dx.doi.org/10.1016/j.ebiom.2014.11.010] [PMID: 26137537]
[129]
Zhang, Z-Y.; Yu, S-Q.; Miao, L-Y.; Huang, X-Y.; Zhang, X-P.; Zhu, Y-P.; Xia, X-H.; Li, D-Q. [Artesunate combined with vinorelbine plus cisplatin in treatment of advanced non-small cell lung cancer: a randomized controlled trial]. J. Chin. Integr. Med., 2008, 6(2), 134-138.
[http://dx.doi.org/10.3736/jcim20080206]
[130]
Hu, C.J.; Zhou, L.; Cai, Y. Dihydroartemisinin induces apoptosis of cervical cancer cells via upregulation of RKIP and downregulation of bcl-2. Cancer Biol. Ther., 2014, 15(3), 279-288.
[http://dx.doi.org/10.4161/cbt.27223] [PMID: 24335512]
[131]
Genovese, R.F.; Newman, D.B.; Brewer, T.G. Behavioral and neural toxicity of the artemisinin antimalarial, arteether, but not artesunate and artelinate, in rats. Pharmacol. Biochem. Behav., 2000, 67(1), 37-44.
[http://dx.doi.org/10.1016/S0091-3057(00)00309-9] [PMID: 11113482]
[132]
Genovese, R.F.; Newman, D.B.; Li, Q.; Peggins, J.O.; Brewer, T.G. Dose-dependent brainstem neuropathology following repeated arteether administration in rats. Brain Res. Bull., 1998, 45(2), 199-202.
[http://dx.doi.org/10.1016/S0361-9230(97)00339-0] [PMID: 9443840]
[133]
Panossian, L.A.; Garga, N.I.; Pelletier, D. Toxic brainstem encephalopathy after artemisinin treatment for breast cancer. Ann. Neurol., 2005, 58(5), 812-813.
[http://dx.doi.org/10.1002/ana.20620] [PMID: 16240360]
[134]
König, M.; von Hagens, C.; Hoth, S.; Baumann, I.; Walter-Sack, I.; Edler, L.; Sertel, S. Investigation of ototoxicity of artesunate as add-on therapy in patients with metastatic or locally advanced breast cancer: new audiological results from a prospective, open, uncontrolled, monocentric phase I study. Cancer Chemother. Pharmacol., 2016, 77(2), 413-427.
[http://dx.doi.org/10.1007/s00280-016-2960-7] [PMID: 26793976]
[135]
von Hagens, C.; Walter-Sack, I.; Goeckenjan, M.; Osburg, J.; Storch-Hagenlocher, B.; Sertel, S.; Elsässer, M.; Remppis, B.A.; Edler, L.; Munzinger, J.; Efferth, T.; Schneeweiss, A.; Strowitzki, T. Prospective open uncontrolled phase I study to define a well-tolerated dose of oral artesunate as add-on therapy in patients with metastatic breast cancer (ARTIC M33/2). Breast Cancer Res. Treat., 2017, 164(2), 359-369.
[http://dx.doi.org/10.1007/s10549-017-4261-1] [PMID: 28439738]
[136]
Deeken, J.F.; Wang, H.; Hartley, M.; Cheema, A.K.; Smaglo, B.; Hwang, J.J.; He, A.R.; Weiner, L.M.; Marshall, J.L.; Giaccone, G.; Liu, S.; Luecht, J.; Spiegel, J.Y.; Pishvaian, M.J. A phase I study of intravenous artesunate in patients with advanced solid tumor malignancies. Cancer Chemother. Pharmacol., 2018, 81(3), 587-596.
[http://dx.doi.org/10.1007/s00280-018-3533-8] [PMID: 29392450]
[140]
Yao, Y.; Guo, Q.; Cao, Y.; Qiu, Y.; Tan, R.; Yu, Z.; Zhou, Y.; Lu, N. Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer. J. Exp. Clin. Cancer Res., 2018, 37(1), 282.
[http://dx.doi.org/10.1186/s13046-018-0960-7] [PMID: 30477536]
[141]
Heylen, N.; Baurain, R.; Remacle, C.; Trouet, A. Effect of MRC-5 fibroblast conditioned medium on breast cancer cell motility and invasion in vitro. Clin. Exp. Metastasis, 1998, 16(2), 193-203.
[http://dx.doi.org/10.1023/A:1006532523152] [PMID: 9514101]
[142]
Orimo, A.; Gupta, P.B.; Sgroi, D.C.; Arenzana-Seisdedos, F.; Delaunay, T.; Naeem, R.; Carey, V.J.; Richardson, A.L.; Weinberg, R.A. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005, 121(3), 335-348.
[http://dx.doi.org/10.1016/j.cell.2005.02.034] [PMID: 15882617]
[143]
Kuang, M.; Cen, Y.; Qin, R.; Shang, S.; Zhai, Z.; Liu, C.; Pan, X.; Zhou, H. Artesunate attenuates pro-inflammatory cytokine release from macrophages by inhibiting TLR4-mediated autophagic activation via the TRAF6-Beclin1-PI3KC3 pathway. Cell. Physiol. Biochem., 2018, 47(2), 475-488.
[http://dx.doi.org/10.1159/000489982] [PMID: 29794440]
[144]
Jiao, Y.; Ge, C.M.; Meng, Q.H.; Cao, J.P.; Tong, J.; Fan, S.J. Dihydroartemisinin is an inhibitor of ovarian cancer cell growth. Acta Pharmacol. Sin., 2007, 28(7), 1045-1056.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00612.x] [PMID: 17588342]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 5
Year: 2020
Published on: 28 May, 2020
Page: [520 - 535]
Pages: 16
DOI: 10.2174/1871520620666200120100252
Price: $65

Article Metrics

PDF: 33
HTML: 4
EPUB: 1
PRC: 1