MiR-143 Inhibits Osteoclastogenesis by Targeting RANK and NF-κB and MAPK Signaling Pathways

Author(s): Xianfeng He, Limei Zhu*, Lin An, Jingwei Zhang

Journal Name: Current Molecular Pharmacology

Volume 13 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objective: To explore the effect of miRNA-143 on osteoclast formation and provide new ideas for the treatment of osteoporosis.

Methods: Mice macrophage lines RAW264.7 cells after transfection were divided into four groups: control group, RANKL group, RANKL combined with miR-143 mimics group and RANKL combined with miR-NC group. TARCP staining was used to observe the effect of miR-143 on osteoclast formation. The expression of RANK, TRAF6 and NFATc-1 in the upstream of RANKL pathway was detected by real-time quantitative PCR (RT qPCR) and Western blotting (WB). The binding of miR-143 to TNFRSF11A was detected by double Luciferase Reporter Analysis. The effect of miR-143 on the expression of NF-κB (p65, I-κB-α) signal pathway in osteoclasts was detected. The effects of I-BET151 on the expression of osteoclast-specific genes TRACP, MMP 9, CtsK and c-Src were detected.

Results: The positive level of osteoclasts in RANKL group and RANKL combined with miR-NC group was significantly higher than that of RANKL combined with miR-143 mimics group and control group (P < 0.05). The expression levels of RANK, TRAF6, NFATc-1, TRACP, MMP-9, CtsK and c-Src in RANKL group and RANKL combined with miR-NC group were significantly higher than those of RANKL combined with miR-143 mimics group and control group (P < 0.05). The expression levels of I-κB-α were significantly lower than that of RANKL combined with miR-143 mimics group and control group (P<0.05).

Conclusion: MiR-143 can inhibit the expression of RANK, TRAF6 and downstream NFATc-1 in the RANKL pathway, thereby inhibiting the RANK/RANKL pathway. MiR-143 can inhibit the signal pathway of NF-κB (p65, I-κB-α). MiR-143 inhibits the expression of osteoclast-specific genes TRACP, MMP 9, CtsK and c-Src. That is to say, miR-143 inhibits osteoclast formation by targeting RANK, NF- κB and MAPK signaling pathways.

Keywords: MiR-143, osteoclastogenesis, RANK, NF-κB, MAPK, TRAF6, RANK/RANKL.

[1]
An, J.; Yang, H.; Zhang, Q.; Liu, C.; Zhao, J.; Zhang, L.; Chen, B. Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci., 2016, 147, 46-58.
[http://dx.doi.org/10.1016/j.lfs.2016.01.024] [PMID: 26796578]
[2]
Teitelbaum, S.L. Bone resorption by osteoclasts. Science, 2000, 289(5484), 1504-1508.
[http://dx.doi.org/10.1126/science.289.5484.1504] [PMID: 10968780]
[3]
Boyle, W.J.; Simonet, W.S.; Lacey, D.L. Osteoclast differentiation and activation. Nature, 2003, 423(6937), 337-342.
[http://dx.doi.org/10.1038/nature01658] [PMID: 12748652]
[4]
Knopp-Sihota, J.A.; Cummings, G.G.; Homik, J.; Voaklander, D. The association between serious upper gastrointestinal bleeding and incident bisphosphonate use: a population-based nested cohort study. BMC Geriatr., 2013, 13, 36.
[http://dx.doi.org/10.1186/1471-2318-13-36] [PMID: 23602075]
[5]
Xu, X.H.; Dong, S.S.; Guo, Y.; Yang, T.L.; Lei, S.F.; Papasian, C.J.; Zhao, M.; Deng, H.W. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr. Rev., 2010, 31(4), 447-505.
[http://dx.doi.org/10.1210/er.2009-0032] [PMID: 20357209]
[6]
Wang, C.; Zhang, Z.; Zhang, H.; He, J.W.; Gu, J.M.; Hu, W.W.; Hu, Y.Q.; Li, M.; Liu, Y.J.; Fu, W.Z.; Yue, H.; Ke, Y.H.; Zhang, Z.L. Susceptibility genes for osteoporotic fracture in postmenopausal Chinese women. J. Bone Miner. Res., 2012, 27(12), 2582-2591.
[http://dx.doi.org/10.1002/jbmr.1711] [PMID: 22807154]
[7]
Xia, W.B.; He, S.L.; Xu, L.; Liu, A.M.; Jiang, Y.; Li, M.; Wang, O.; Xing, X.P.; Sun, Y.; Cummings, S.R. Rapidly increasing rates of hip fracture in Beijing, China. J. Bone Miner. Res., 2012, 27(1), 125-129.
[http://dx.doi.org/10.1002/jbmr.519] [PMID: 21956596]
[8]
Liu, J.M.; Zhang, M.J.; Zhao, L.; Cui, B.; Li, Z.B.; Zhao, H.Y.; Sun, L.H.; Tao, B.; Li, M.; Ning, G. Analysis of recently identified osteoporosis susceptibility genes in Han Chinese women. J. Clin. Endocrinol. Metab., 2010, 95(9), E112-E120.
[http://dx.doi.org/10.1210/jc.2009-2768] [PMID: 20554715]
[9]
Shoji, S.; Tabuchi, M.; Miyazawa, K.; Yabumoto, T.; Tanaka, M.; Kadota, M.; Maeda, H.; Goto, S. Bisphosphonate inhibits bone turnover in OPG(-/-) mice via a depressive effect on both osteoclasts and osteoblasts. Calcif. Tissue Int., 2010, 87(2), 181-192.
[http://dx.doi.org/10.1007/s00223-010-9384-x] [PMID: 20549197]
[10]
Boyce, B.F.; Xing, L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res. Ther., 2007, 9(Suppl. 1), S1.
[http://dx.doi.org/10.1186/ar2165] [PMID: 17634140]
[11]
Zhao, H.; Gu, J.; Dai, N.; Gao, Q.; Wang, D.; Song, R.; Liu, W.; Yuan, Y.; Bian, J.; Liu, X.; Liu, Z. Osteoprotegerin exposure at different stages of osteoclastogenesis differentially affects osteoclast formation and function. Cytotechnology, 2016, 68(4), 1325-1335.
[http://dx.doi.org/10.1007/s10616-015-9892-7] [PMID: 26044733]
[12]
Wittrant, Y.; Lamoureux, F.; Mori, K.; Riet, A.; Kamijo, A.; Heymann, D.; Redini, F. RANKL directly induces bone morphogenetic protein-2 expression in RANK-expressing POS-1 osteosarcoma cells. Int. J. Oncol., 2006, 28(1), 261-269.
[http://dx.doi.org/10.3892/ijo.28.1.261] [PMID: 16328004]
[13]
Mori, K.; Berreur, M.; Blanchard, F.; Chevalier, C.; Guisle-Marsollier, I.; Masson, M.; Rédini, F.; Heymann, D. Receptor activator of nuclear factor-kappaB ligand (RANKL) directly modulates the gene expression profile of RANK-positive Saos-2 human osteosarcoma cells. Oncol. Rep., 2007, 18(6), 1365-1371.
[PMID: 17982618]
[14]
Hsu, C.J.; Lin, T.Y.; Kuo, C.C.; Tsai, C.H.; Lin, M.Z.; Hsu, H.C.; Fong, Y.C.; Tang, C.H. Involvement of integrin up-regulation in RANKL/RANK pathway of chondrosarcomas migration. J. Cell. Biochem., 2010, 111(1), 138-147.
[http://dx.doi.org/10.1002/jcb.22677] [PMID: 20506523]
[15]
Jones, D.H.; Nakashima, T.; Sanchez, O.H.; Kozieradzki, I.; Komarova, S.V.; Sarosi, I.; Morony, S.; Rubin, E.; Sarao, R.; Hojilla, C.V.; Komnenovic, V.; Kong, Y.Y.; Schreiber, M.; Dixon, S.J.; Sims, S.M.; Khokha, R.; Wada, T.; Penninger, J.M. Regulation of cancer cell migration and bone metastasis by RANKL. Nature, 2006, 440(7084), 692-696.
[http://dx.doi.org/10.1038/nature04524] [PMID: 16572175]
[16]
Henriksen, K.; Karsdal, M.; Delaisse, J.M.; Engsig, M.T. RANKL and vascular endothelial growth factor (VEGF) induce osteoclast chemotaxis through an ERK1/2-dependent mechanism. J. Biol. Chem., 2003, 278(49), 48745-48753.
[http://dx.doi.org/10.1074/jbc.M309193200] [PMID: 14506249]
[17]
Mosheimer, B.A.; Kaneider, N.C.; Feistritzer, C.; Sturn, D.H.; Wiedermann, C.J. Expression and function of RANK in human monocyte chemotaxis. Arthritis Rheum., 2004, 50(7), 2309-2316.
[http://dx.doi.org/10.1002/art.20352] [PMID: 15248232]
[18]
Cadosch, D.; Gautschi, O.P.; Chan, E.; Simmen, H.P.; Filgueira, L. Titanium induced production of chemokines CCL17/TARC and CCL22/MDC in human osteoclasts and osteoblasts. J. Biomed. Mater. Res. A, 2010, 92(2), 475-483.
[PMID: 19205012]
[19]
Asagiri, M.; Takayanagi, H. The molecular understanding of osteoclast differentiation. Bone, 2007, 40(2), 251-264.
[http://dx.doi.org/10.1016/j.bone.2006.09.023] [PMID: 17098490]
[20]
Fu, Y.; Gu, J.; Wang, Y.; Yuan, Y.; Liu, X.; Bian, J.; Liu, Z. Involvement of the mitogen‑activated protein kinase signaling pathway in osteoprotegerin‑induced inhibition of osteoclast differentiation and maturation. Mol. Med. Rep., 2015, 12(5), 6939-6945.
[http://dx.doi.org/10.3892/mmr.2015.4284] [PMID: 26329402]
[21]
Lee, K.; Chung, Y.H.; Ahn, H.; Kim, H.; Rho, J.; Jeong, D. Selective Regulation of MAPK Signaling Mediates RANKL-dependent Osteoclast Differentiation. Int. J. Biol. Sci., 2016, 12(2), 235-245.
[http://dx.doi.org/10.7150/ijbs.13814] [PMID: 26884720]
[22]
Nakamura, H; Hirata, A; Tsuji, T; Yamamoto, T Role of osteoclastextracellular signal-regulated kinase (ERK) in cell survival and maintenance of cell polarity. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,, 2003, 18, 1198-205.
[23]
Vaira, S.; Alhawagri, M.; Anwisye, I.; Kitaura, H.; Faccio, R.; Novack, D.V. RelA/p65 promotes osteoclast differentiation by blocking a RANKL-induced apoptotic JNK pathway in mice. J. Clin. Invest., 2008, 118(6), 2088-2097.
[http://dx.doi.org/10.1172/JCI33392] [PMID: 18464930]
[24]
Carthew, R.W.; Sontheimer, E.J. Origins and Mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4), 642-655.
[http://dx.doi.org/10.1016/j.cell.2009.01.035] [PMID: 19239886]
[25]
Schramke, V.; Allshire, R. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science, 2003, 301(5636), 1069-1074.
[http://dx.doi.org/10.1126/science.1086870] [PMID: 12869699]
[26]
Noma, K.; Sugiyama, T.; Cam, H.; Verdel, A.; Zofall, M.; Jia, S.; Moazed, D.; Grewal, S.I. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat. Genet., 2004, 36(11), 1174-1180.
[http://dx.doi.org/10.1038/ng1452] [PMID: 15475954]
[27]
Sugatani, T.; Vacher, J.; Hruska, K.A. A microRNA expression signature of osteoclastogenesis. Blood, 2011, 117(13), 3648-3657.
[http://dx.doi.org/10.1182/blood-2010-10-311415] [PMID: 21273303]
[28]
Sugatani, T.; Hruska, K.A. MicroRNA-223 is a key factor in osteoclast differentiation. J. Cell. Biochem., 2007, 101(4), 996-999.
[http://dx.doi.org/10.1002/jcb.21335] [PMID: 17471500]
[29]
Mann, M.; Barad, O.; Agami, R.; Geiger, B.; Hornstein, E. miRNA-based mechanism for the commitment of multipotent progenitors to a single cellular fate. Proc. Natl. Acad. Sci. USA, 2010, 107(36), 15804-15809.
[http://dx.doi.org/10.1073/pnas.0915022107] [PMID: 20720163]
[30]
Sugatani, T.; Hruska, K.A. Impaired micro-RNA pathways diminish osteoclast differentiation and function. J. Biol. Chem., 2009, 284(7), 4667-4678.
[http://dx.doi.org/10.1074/jbc.M805777200] [PMID: 19059913]
[31]
Kobayashi, E.; Satow, R.; Ono, M.; Masuda, M.; Honda, K.; Sakuma, T.; Kawai, A.; Morioka, H.; Toyama, Y.; Yamada, T. MicroRNA expression and functional profiles of osteosarcoma. Oncology, 2014, 86(2), 94-103.
[http://dx.doi.org/10.1159/000357408] [PMID: 24457375]
[32]
Hadjidakis, D.J.; Androulakis, I.I. Bone remodeling. Ann. N. Y. Acad. Sci., 2006, 1092, 385-396.
[http://dx.doi.org/10.1196/annals.1365.035] [PMID: 17308163]
[33]
Boyce, B.F.; Xing, L. Osteoclasts, no longer osteoblast slaves. Nat. Med., 2006, 12(12), 1356-1358.
[http://dx.doi.org/10.1038/nm1206-1356] [PMID: 17151690]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 3
Year: 2020
Page: [224 - 232]
Pages: 9
DOI: 10.2174/1874467213666200116113945
Price: $65

Article Metrics

PDF: 24
HTML: 2