Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Mini-Review Article

Task-specific Ionic Liquids as a Green Catalysts and Solvents for Organic Synthesis

Author(s): Swapnil A. Padvi and Dipak S. Dalal*

Volume 7, Issue 1, 2020

Page: [105 - 119] Pages: 15

DOI: 10.2174/2213346107666200115153051

Abstract

Task-specific ionic liquids (TSILs) have received increased attention over the past few years as a Green Catalysts and Solvents for a large number of organic transformations. The present review article aims to provide an introduction, types of task-specific ionic liquids, preparation/synthesis, physical properties, characterization, use of TSILs as solvent and catalyst in organic synthesis.

Keywords: Task-specific ionic liquids, green chemistry, organic synthesis, Ionic liquids (ILs), molten salts, typical cations.

Graphical Abstract
[1]
Earle, M.J.; Seddon, K.R. Ionic liquids, green solvents for the future. Pure Appl. Chem., 2000, 72, 1391-1398.
[http://dx.doi.org/10.1351/pac200072071391]
[2]
Betzemeier, B.; Knochel, P. Perfluorinated solvents-a novel reaction medium in organic chemistry. Modern Solvents in Organic Synthesis Springer, Berlin, Heidelberg, 1999, 206, 60-78.
[http://dx.doi.org/10.1007/3-540-48664-X_3]
[3]
Mudhoo, A.; Sharma, S.K. Green Chemistry for Environmental Sustainability. 1st ed.; CRC Press, Taylor & Francis Group,. , 2011.
[4]
Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[5]
Shen, J.; Wang, H.; Liu, H.; Sun, Y.; Liu, Z. Brønsted acidic ionic liquids as dual catalyst and solvent for environmentally friendly synthesis of chalcone. J. Mol. Catal. Chem., 2008, 280, 24-28.
[http://dx.doi.org/10.1016/j.molcata.2007.10.021]
[6]
Aliabadi, R.S.; Mahmoodi, N.O. Green and efficient synthesis of pyranopyrazoles using [Bmim][OH] as an ionic liquid catalyst in water under microwave irradiation and investigation of their antioxidant activity. RSC Advances, 2016, 6, 85877-85884.
[http://dx.doi.org/10.1039/C6RA17594E]
[7]
Keskin, S.; Kayrak-Talay, D.; Akman, U.; Hortaçsu, O. A review of ionic liquids towards supercritical fluid applications. J. Supercrit. Fluids, 2007, 43, 150-180.
[http://dx.doi.org/10.1016/j.supflu.2007.05.013]
[8]
Seddon, K.R. Ionic liquids for clean technology. J. Chem. Technol. Biotechnol., 1997, 68, 351-356.
[http://dx.doi.org/10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4]
[9]
Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2008, 37(1), 123-150.
[http://dx.doi.org/10.1039/B006677J] [PMID: 18197338]
[10]
Wilkes, J.S. Molten salts and ionic liquids-are they not the same thing? ECS Trans., 2007, 3, 3-7.
[11]
Rogers, R.D. Ionic liquids--solvents of the future? Science, 2003, 302, 792-793.
[12]
Gordon, C.M.; Holbrey, J.D.; Kennedy, A.R.; Seddon, K.R. Ionic liquid crystals: Hexafluorophosphate salts. J. Mater. Chem., 1998, 8, 2627-2636.
[http://dx.doi.org/10.1039/a806169f]
[13]
Suarez, P.A.Z.; Einloft, S.; Dullius, J.E.L.; de Souza, R.F.J.D. Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation. J. Chim. Phys., 1998, 95, 1626-1639.
[http://dx.doi.org/10.1051/jcp:1998103]
[14]
Carmichael, A.J.; Hardacre, C.; Holbrey, J.D.; Nieuwenhuyzen, M.; Seddon, K.R. A method for studying the structure of low-temperature ionic liquids by XAFS. Anal. Chem., 1999, 71, 4572-4574.
[http://dx.doi.org/10.1021/ac990332q]
[15]
Holbrey, J. D.; Seddon, K. R. Tetra fluoroborates ; ionic liquids and ionic liquid crystals. J. Chem. Soc. Dalt. Trans., 1999, (2133), 2139.
[16]
Walden, P. Molecular weights and electrical conductivity of several fused salts. Bull. Acad.Imper. Sci., 1914, 8, 405-422.
[17]
Chum, H.L.; Koch, V.R.; Miller, L.L.; Osteryoung, R.A. Electrochemical scrutiny of organometallic iron complexes and hexamethyl benzene in a room temperature molten salt. J. Am. Chem. Soc., 1975, 97, 3264-3265.
[http://dx.doi.org/10.1021/ja00844a081]
[18]
Wilkes, J.S.; Levisky, J.A.; Wilson, R.A.; Hussey, C.L. Dialkylimidazolium chloroaluminate melts: A new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. Inorg. Chem., 1982, 21, 1263-1264.
[http://dx.doi.org/10.1021/ic00133a078]
[19]
Wilkes, J.S.; Zaworotko, M.J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun., 1992, 13, 965-967.
[http://dx.doi.org/10.1039/c39920000965]
[20]
Davis, H.; Jr, J. Task-specific ionic liquids. Chem. Lett., 2004, 33, 1072-1077.
[http://dx.doi.org/10.1246/cl.2004.1072]
[21]
Martins, M.A.P.P.; Frizzo, C.P.; Moreira, D.N.; Zanatta, N.; Bonacorso, H.G. Ionic liquids in heterocyclic synthesis. Chem. Rev., 2008, 108(6), 2015-2050.
[http://dx.doi.org/10.1021/cr078399y] [PMID: 18543878]
[22]
Vekariya, R.L. A Review of Ionic liquids: applications towards catalytic organic transformations. J. Mol. Liq., 2017, 227, 44-60.
[http://dx.doi.org/10.1016/j.molliq.2016.11.123]
[23]
Jessop, P.G.; Ikariya, T.; Noyori, R. Homogeneous catalysis in supercritical fluids. Chem. Rev., 1999, 99(2), 475-494.
[http://dx.doi.org/10.1021/cr970037a] [PMID: 11848990]
[24]
Hussey, C.L. Room temperature haloaluminate ionic liquids. Novel solvents for transition metal solution chemistry. Pure Appl. Chem., 1988, 60, 1763-1772.
[http://dx.doi.org/10.1351/pac198860121763]
[25]
Hurley, F.H. WIer, T. P. Electrodeposition of metals from fused quaternary ammonium salts. J. Electrochem. Soc., 1951, 98, 203.
[http://dx.doi.org/10.1149/1.2778132]
[26]
Hurley, F.H. WIer, T. P. The electrodeposition of aluminum from nonaqueous solutions at room temperature. J. Electrochem. Soc., 1951, 98, 207.
[http://dx.doi.org/10.1149/1.2778133]
[27]
Wasserscheid, P.; Keim, W. Ionic liquids–new “solutions” for transition metal catalysis. Angew. Chem. Int. Ed. Engl., 2000, 39(21), 3772-3789.
[http://dx.doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5] [PMID: 11091453]
[28]
Boon, J.A.; Levisky, J.A.; Pflug, J.L.; Wilkes, J.S. Friedel-Crafts reactions in ambient-temperature molten salts. J. Org. Chem., 1986, 51, 480-483.
[http://dx.doi.org/10.1021/jo00354a013]
[29]
Fry, S.E.; Pienta, N.J. Effects of molten salts on reactions. nucleophilic aromatic substitution by halide ions in molten dodecyltributylphosphonium salts. J. Am. Chem. Soc., 1985, 107, 6399-6400.
[http://dx.doi.org/10.1021/ja00308a045]
[30]
Chauvin, Y.; Gilbert, B.; Guibard, I. Catalytic dimerization of alkenes by nickel complexes in organochloroaluminate molten salts. J. Chem. Soc. Chem. Commun., 1990, 23, 1715.
[http://dx.doi.org/10.1039/c39900001715]
[31]
Surette, J.K.D.; Green, L.; Singer, R.D. 1-Ethyl-3-methylimidazolium halogenoaluminate melts as reaction media for the friedel-crafts acylation of ferrocene. Chem. Commun. (Camb.), 1996, 24, 2753-2754.
[http://dx.doi.org/10.1039/CC9960002753]
[32]
Chauvin, Y.; Einloft, S.; Olivier, H. Catalytic dimerization of propene by nickel-phosphine complexes in 1-butyl-3-methylimidazolium chloride/AlEtxCl3-x (x = 0, 1) ionic liquids. Ind. Eng. Chem. Res., 1995, 34, 1149-1155.
[http://dx.doi.org/10.1021/ie00043a017]
[33]
Chauvin, Y.; Olivier, H.; Wyrvalski, C.N.; Simon, L.C.; de Souza, R.F. oligomerization of n-butenes catalyzed by nickel complexes dissolved in organochloroaluminate ionic liquids. J. Catal., 1997, 165, 275-278.
[http://dx.doi.org/10.1006/jcat.1997.1488]
[34]
Einloft, S.K.; Dietrich, F.F.; De Souza, R.; Dupont, J. Selective two-phase catalytic ethylene dimerization by Ni II complexes/AlEtCl2 dissolved in organoaluminate ionic liquids. Polyhedron, 1996, 15, 3257-3259.
[http://dx.doi.org/10.1016/0277-5387(96)00048-4]
[35]
Williams, S.D.; Schoebrechts, J.P.; Selkirk, J.C.; Mamantov, G. A New room temperature molten salt solvent system: organic cation tetrachloroborates. J. Am. Chem. Soc., 1987, 109, 2218-2219.
[http://dx.doi.org/10.1021/ja00241a069]
[36]
Monteiro, A.L.; Zinn, F.K.; de Souza, R.F.; Dupont, J. Asymmetric hydrogenation of 2-arylacrylic acids catalyzed by immobilized Ru-BINAP complex in 1-n-butyl-3-methylimidazolium tetrafluoroborate molten salt. Tetrahedron Asymmetry, 1997, 8, 177-179.
[http://dx.doi.org/10.1016/S0957-4166(96)00485-5]
[37]
Suarez, P.A.Z.; Dullius, J.E.L.; Einloft, S.; de Souza, R.F.; Dupont, J. two-phase catalytic hydrogenation of olefins by Ru(II) and Co(II) complexes dissolved in 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Inorg. Chim. Acta, 1997, 255, 207-209.
[http://dx.doi.org/10.1016/S0020-1693(96)05363-7]
[38]
Pavlinac, J.; Zupan, M.; Laali, K.K.; Stavber, S. Halogenation of organic compounds in ionic liquids. Tetrahedron, 2009, 65, 5625-5662.
[http://dx.doi.org/10.1016/j.tet.2009.04.092]
[39]
Rajagopal, R.; Jarikote, D.V.; Srinivasan, K.V. Ultrasound promoted Suzuki cross-coupling reactions in ionic liquid at ambient conditions. Chem. Commun. (Camb.), 2002, 6(6), 616-617.
[http://dx.doi.org/10.1039/b111271f] [PMID: 12120150]
[40]
Kamakshi, R.; Reddy, B.S.R. An efficient, eco-friendly, one-pot protocol for the synthesis of 2-oxazolines promoted by ionic liquid/indium chloride. Aust. J. Chem., 2006, 59, 463.
[http://dx.doi.org/10.1071/CH06061]
[41]
Hou, R.; Wanga, H.M.; Tsai, H-H.; Chen, L.C. Synthesis of 2-phenylthiazoles from α-tosyloxyketones and thiobenzamide in [Bmim][PF6] ionic liquid at ambient temperature. J. Chin. Chem. Soc. (Taipei), 2006, 53, 863-866.
[http://dx.doi.org/10.1002/jccs.200600114]
[42]
Nadaf, R.N.; Siddiqui, S.A.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Room temperature ionic liquid promoted regioselective synthesis of 2-aryl benzimidazoles, benzoxazoles and benzthiazoles under ambient conditions. J. Mol. Catal. Chem., 2004, 214, 155-160.
[http://dx.doi.org/10.1016/j.molcata.2003.10.064]
[43]
Karthikeyan, G.; Perumal, P.T. Ionic liquid promoted simple and efficient synthesis of β-enamino esters and β-enaminones from 1,3-dicarbonyl compounds–one-pot, three-component reaction for the synthesis of substituted pyridines. Can. J. Chem., 2005, 83, 1746-1751.
[http://dx.doi.org/10.1139/v05-186]
[44]
Peng, J.; Deng, Y. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New J. Chem., 2001, 25, 639-641.
[http://dx.doi.org/10.1039/b008923k]
[45]
Hou, R.; Wang, H.M.; Huang, H-Y.; Chen, L.C. Synthesis of imidazo[2,1-a]isoquinolines from α-tosyloxyketones and 1-aminoisoquinoline in ionic liquid solvent. J. Chin. Chem. Soc. (Taipei), 2004, 51, 1417-1420.
[http://dx.doi.org/10.1002/jccs.200400208]
[46]
Lee, S.G. Functionalized imidazolium salts for task-specific ionic liquids and their applications. Chem. Commun. (Camb.), 2006, 10(10), 1049-1063.
[http://dx.doi.org/10.1039/b514140k] [PMID: 16514439]
[47]
Huddleston, J.G.; Willauer, H.D.; Swatloski, R.P.; Visser, A.E.; Rogers, R.D. Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem. Commun. (Camb.), 1998, 16, 1765-1766.
[http://dx.doi.org/10.1039/A803999B]
[48]
Chiappe, C.; Pieraccini, D. Ionic liquids: solvent properties and organic reactivity. J. Phys. Org. Chem., 2005, 18, 275-297.
[http://dx.doi.org/10.1002/poc.863]
[49]
Carter, E.B.; Culver, S.L.; Fox, P.A.; Goode, R.D.; Ntai, I.; Tickell, M.D.; Traylor, R.K.; Hoffman, N.W.; Davis, Jr., J.H. Sweet success: Ionic liquids derived from non-nutritive. Chem. Commun. (Camb.), 2004, 6, 630.
[http://dx.doi.org/10.1039/b313068a] [PMID: 15010753]
[50]
Weingärtner, H. Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew. Chem. Int. Ed. Engl., 2008, 47(4), 654-670.
[http://dx.doi.org/10.1002/anie.200604951] [PMID: 17994652]
[51]
Wilkes, J. Properties of ionic liquid solvents for catalysis. J. Mol. Catal. Chem., 2004, 214, 11-17.
[http://dx.doi.org/10.1016/j.molcata.2003.11.029]
[52]
Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry., 2011.
[53]
Pollet, P.; Davey, E.A.; Eckert, C.A.; Liotta, C.L. Solvents for sustainable chemical processes. Green Chem., 16, 2014, , 1034-1055.
[54]
Pena-Pereira, F.; Kloskowski, A.; Namiesnik, J. Perspectives on the replacement of harmful organic solvents in analytical methodologies: A framework toward the implementation of a generation of eco-friendly alternatives. Green Chem., 2015, 17, 3687-3705.
[http://dx.doi.org/10.1039/C5GC00611B]
[55]
Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Mcelroy, C.R.; Sherwood, J. Tools and techniques for solvent selection : green solvent selection guides. Sustain Chem. Process., 2016, 1-24.
[56]
Trohalaki, S.; Pachter, R. Prediction of melting points for ionic liquids. QSAR Comb. Sci., 2005, 485-490.
[http://dx.doi.org/10.1002/qsar.200430927]
[57]
Chiappe, C.; Malvaldi, M.; Pomelli, C.S. Ionic liquids: Solvation ability and polarity. Pure Appl. Chem., 2009, 81, 767-776.
[http://dx.doi.org/10.1351/PAC-CON-08-09-08]
[58]
Reichardt, C. Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem., 2005, 7, 339.
[http://dx.doi.org/10.1039/b500106b]
[59]
Wakai, C.; Oleinikova, A.; Ott, M.; Weinga, H. How polar are ionic liquids ? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy. 2005, 9-11.
[60]
Anderson, J.L.; Ding, J.; Welton, T.; Armstrong, D.W. Characterizing ionic liquids on the basis of multiple solvation interactions. J. Am. Chem. Soc., 2002, 124(47), 14247-14254.
[http://dx.doi.org/10.1021/ja028156h] [PMID: 12440924]
[61]
Ngo, H.L.; LeCompte, K.; Hargens, L.; McEwen, A.B. Thermal properties of imidazolium ionic liquids. thermochim. Acta, 2000, 357-358, 97-102.
[62]
Kosmulski, M.; Gustafsson, J.; Rosenholm, J.B. Thermal stability of low temperature ionic liquids revisited. Thermochimica. Acta, 2004, 412, 47-53.
[http://dx.doi.org/10.1016/j.tca.2003.08.022]
[63]
Voroshylova, I.V.; Smaga, S.R.; Lukinova, E.V.; Chaban, V.V.; Kalugin, O.N. Conductivity and association of imidazolium and pyridinium based ionic liquids in methanol. J. Mol. Liq., 2015, 203, 7-15.
[http://dx.doi.org/10.1016/j.molliq.2014.12.028]
[64]
Noda, A.; Hayamizu, K.; Watanabe, M. Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J. Phys. Chem. B, 2001, 105, 4603-4610.
[http://dx.doi.org/10.1021/jp004132q]
[65]
Marsh, K.N.; Boxall, J.A.; Lichtenthaler, R. Room temperature ionic liquids and their mixtures - a review. Fluid Phase Equilib., 2004, 219, 93-98.
[http://dx.doi.org/10.1016/j.fluid.2004.02.003]
[66]
Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem., 2001, 3, 156-164.
[http://dx.doi.org/10.1039/b103275p]
[67]
Dzyuba, S.V. Synthesis. properties, and applications of ionic liquids.. Thesis , 2002.
[68]
Seddon, K. R.; Stark, A.; Torres, M. J. Viscosity and density of 1- alkyl-3-methylimidazolium ionic liquids. 2002, 34-49.
[69]
Fröba, A.P.; Kremer, H.; Leipertz, A. Density, refractive index, interfacial tension, and viscosity of ionic liquids [EMIM][EtSO4], [EMIM][NTf2], [EMIM][N(CN)2], and [OMA][NTf2] in dependence on temperature at atmospheric pressure. J. Phys. Chem. B, 2008, 112(39), 12420-12430.
[http://dx.doi.org/10.1021/jp804319a] [PMID: 18767789]
[70]
MacFarlane, D.R.; Golding, J.; Forsyth, S.; Forsyth, M.; Deacon, G.B. Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chem. Commun. (Camb.), 2001, 16, 1430-1431.
[http://dx.doi.org/10.1039/b103064g]
[71]
Ue, M.; Takeda, M.; Toriumi, A.; Kominato, A.; Hagiwara, R.; Ito, Y. Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors. J. Electrochem. Soc., 2003, 150, A499-A502.
[http://dx.doi.org/10.1149/1.1559069]
[72]
Okoturo, O.O.; Vander Noot, T.J. Temperature dependence of viscosity for room temperature ionic liquids. J. Electroanal. Chem. (Lausanne Switz.), 2004, 568, 167-181.
[http://dx.doi.org/10.1016/j.jelechem.2003.12.050]
[73]
Olivier-Bourbigou, H.; Magna, L. Ionic liquids: Perspectives for organic and catalytic reactions. J. Mol. Catal. Chem., 2002, 182–183, 419-437.
[http://dx.doi.org/10.1016/S1381-1169(01)00465-4]
[74]
Docherty, K.M.; Kulpa, C.F., Jr. Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem., 2005, 7, 185.
[http://dx.doi.org/10.1039/b419172b]
[75]
Ranke, J.; Mölter, K.; Stock, F.; Bottin-Weber, U.; Poczobutt, J.; Hoffmann, J.; Ondruschka, B.; Filser, J.; Jastorff, B. Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol. Environ. Saf., 2004, 58(3), 396-404.
[http://dx.doi.org/10.1016/S0147-6513(03)00105-2] [PMID: 15223265]
[76]
Stock, F.; Hoffmann, J.; Ranke, J.; Störmann, R.; Ondruschka, B.; Jastorff, B. Effects of ionic liquids on the acetylcholinesterase-a structure-activity relationship consideration. Green Chem., 2004, 6, 286-290.
[http://dx.doi.org/10.1039/B402348J]
[77]
Swatloski, R.P.; Holbrey, J.D.; Memon, S.B.; Caldwell, G.A.; Caldwell, K.A.; Rogers, R.D. Using Caenorhabditis elegans to probe toxicity of 1-alkyl-3-methylimidazolium chloride based ionic liquids. Chem. Commun. (Camb.), 2004, 58(6), 668-669.
[http://dx.doi.org/10.1039/b316491h] [PMID: 15010772]
[78]
Fuller, J. The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: Electrochemical couples and physical properties. J. Electrochem. Soc., 1997, 144, 3881-3886.
[http://dx.doi.org/10.1149/1.1838106]
[79]
Bandini, M.; Eichholzer, A. Catalytic Functionalization of Indoles in a New Dimension, 2009, 48, 9608-9644.
[80]
Dupont, J.; Consorti, C.S.; Suarez, P.A.Z.; de Souza, R.F. Preparation of 1-Butyl-3-Methylimidazolium-Based Room Temperature Ionic Liquids. Org. Synth., 2002, 79, 236-240.
[http://dx.doi.org/10.15227/orgsyn.079.0236]
[81]
Keim, W.; Korth, W.; Wasserscheid, P. WO 016,902 Al, March 30, . 2000.
[82]
Kim, Y.J.; Varma, R.S. Microwave-assisted preparation of imidazolium-based tetrachloroindate (III) and their application in the tetrahydropyranylation of alcohols. Tetrahedron Lett., 2005, 46, 1467-1469.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.025]
[83]
Joseph, T.; Sahoo, S.; Halligudi, S.B. Brönsted acidic ionic liquids: A green, efficient and reusable catalyst system and reaction medium for Fischer esterification. J. Mol. Catal. Chem., 2005, 234, 107-110.
[http://dx.doi.org/10.1016/j.molcata.2005.03.005]
[84]
Seddon, K.R.; Stark, A.; Torres, M.J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem., 2000, 72, 2275-2287.
[http://dx.doi.org/10.1351/pac200072122275]
[85]
Ranu, B.C.; Banerjee, S. Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid, [bmIm]OH, in Michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles. Org. Lett., 2005, 7(14), 3049-3052.
[http://dx.doi.org/10.1021/ol051004h] [PMID: 15987202]
[86]
Ranu, B.C.; Jana, R. Ionic liquid as catalyst and reaction medium – a simple, efficient and green procedure for knoevenagel condensation of aliphatic and aromatic carbonyl compounds using a task-specific basic ionic liquid. Eur. J. Org. Chem., 2006, 2006, 3767-3770.
[http://dx.doi.org/10.1002/ejoc.200600335]
[87]
Siddiqui, I.R. Rahila; Shamim, S.; Rai, P.; Shireen; Waseem, M. A.; Srivastava, A.; Srivastava, A. Basic ionic liquid promoted domino knoevenagel-thia-michael reaction: an efficient and multicomponent strategy for synthesis of 1,3-thiazines. J. Heterocycl. Chem., 2016, 53, 1284-1291.
[http://dx.doi.org/10.1002/jhet.2379]
[88]
Yang, L.; Xu, L.W.; Zhou, W.; Li, L.; Xia, C.G. Highly efficient aza-michael reactions of aromatic amines and n-heterocycles catalyzed by a basic ionic liquid under solvent-free conditions. Tetrahedron Lett., 2006, 47, 7723-7726.
[http://dx.doi.org/10.1016/j.tetlet.2006.08.103]
[89]
Zang, H.; Wang, M.; Cheng, B.W.; Song, J. Ultrasound-promoted synthesis of oximes catalyzed by a basic ionic liquid [bmIm]OH. Ultrason. Sonochem., 2009, 16(3), 301-303.
[http://dx.doi.org/10.1016/j.ultsonch.2008.09.003] [PMID: 18977162]
[90]
Ranu, B.C.; Jana, R.; Sowmiah, S. An improved procedure for the three-component synthesis of highly substituted pyridines using ionic liquid. J. Org. Chem., 2007, 72(8), 3152-3154.
[http://dx.doi.org/10.1021/jo070015g] [PMID: 17367198]
[91]
Movassagh, B. [bmim]OH-Promoted one-pot, three-component synthesis of β-nitro sulfides in water. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191, 1114-1117.
[http://dx.doi.org/10.1080/10426507.2016.1146272]
[92]
Patil, Y.P.; Tambade, P.J.; Deshmukh, K.M.; Bhanage, B.M. Synthesis of quinazoline-2,4(1H,3H)-diones from carbon dioxide and 2-aminobenzonitriles using [bmim]OH as a homogeneous recyclable catalyst. Catal. Today, 2009, 148, 355-360.
[http://dx.doi.org/10.1016/j.cattod.2009.06.010]
[93]
Tangeti, V.S. Facile ionic liquid-mediated, multi component synthesis of dihydro-1H-furo [2, 3-c] pyrazoles. Asian J. Green Chem., 2019, 3, 306-321.
[94]
Singh, V.; Kaur, S.; Sapehiyia, V.; Singh, J.; Kad, G. Microwave accelerated preparation of [bmim][HSO4] ionic liquid: An acid catalyst for improved synthesis of coumarins. Catal. Commun., 2005, 6, 57-60.
[http://dx.doi.org/10.1016/j.catcom.2004.10.011]
[95]
Tajik, H.; Niknam, K.; Parsa, F. Using acidic ionic liquid 1-butyl-3-methylimidazolium hydrogen sulfate in selective nitration of phenols under mild conditions. J. Iran. Chem. Soc., 2009, 6, 159-164.
[http://dx.doi.org/10.1007/BF03246515]
[96]
Fraga-Dubreuil, J.; Bourahla, K.; Rahmouni, M.; Bazureau, J.P.; Hamelin, J. Catalysed esterifications in room temperature ionic liquids with acidic counteranion as recyclable reaction media. Catal. Commun., 2002, 3, 185-190.
[http://dx.doi.org/10.1016/S1566-7367(02)00087-0]
[97]
Zeng, Q.; Song, Z.; Qin, H.; Cheng, H.; Chen, L.; Pan, M.; Qi, Z. Ionic liquid [BMIm][HSO4] as dual catalyst-solvent for the esterification of hexanoic acid with n-butanol. Catal. Today, 2020, 339, 113-119.
[http://dx.doi.org/10.1016/j.cattod.2019.03.052]
[98]
Niknam, K.; Damya, M. 1-Butyl-3-Methylimidazolium hydrogen sulfate [bmim]HSO4 : An efficient reusable acidic ionic liquid for the synthesis of 1,8-dioxo-octahydroxanthenes. J. Chin. Chem. Soc. (Taipei), 2009, 56, 659-665.
[http://dx.doi.org/10.1002/jccs.200900098]
[99]
Wasserscheid, P.; Sesing, M.; Korth, W. Hydrogensulfate and tetrakis(hydrogensulfato)borate ionic liquids: synthesis and catalytic application in highly brønsted-acidic systems for Friedel-Crafts alkylation. Green Chem., 2002, 4, 134-138.
[http://dx.doi.org/10.1039/b109845b]
[100]
Gupta, N.; Kad, G.L.; Singh, J. Acidic ionic liquid [bmim] HSO4: An efficient catalyst for acetalization and thioacetalization of carbonyl compounds and their subsequent deprotection. Catal. Commun., 2007, 8, 1323-1328.
[http://dx.doi.org/10.1016/j.catcom.2006.11.030]
[101]
Cai, Y.; Peng, Y.; Song, G. Amino-functionalized ionic liquid as an efficient and recyclable catalyst for knoevenagel reactions in water. Catal. Lett., 2006, 109, 61-64.
[http://dx.doi.org/10.1007/s10562-006-0057-3]
[102]
Peng, Y.; Song, G. Amino-functionalized ionic liquid as catalytically active solvent for microwave-assisted synthesis of 4H-pyrans. Catal. Commun., 2007, 8, 111-114.
[http://dx.doi.org/10.1016/j.catcom.2006.05.031]
[103]
Xing, H.; Wang, T.; Zhou, Z.; Dai, Y. Novel Brønsted-acidic ionic liquids for esterifications. Ind. Eng. Chem. Res., 2005, 44, 4147-4150.
[http://dx.doi.org/10.1021/ie0488703]
[104]
Bicak, N. A new ionic liquid: 2-hydroxy ethylammonium formate. J. Mol. Liq., 2005, 116, 15-18.
[http://dx.doi.org/10.1016/j.molliq.2004.03.006]
[105]
Yue, C.; Mao, A.; Wei, Y.; Lü, M. Knoevenagel condensation reaction catalyzed by task-specific ionic liquid under solvent-free conditions. Catal. Commun., 2008, 9, 1571-1574.
[http://dx.doi.org/10.1016/j.catcom.2008.01.002]
[106]
Shaterian, H.R.; Arman, M.; Rigi, F. Domino Knoevenagel condensation, Michael addition, and cyclization using ionic liquid, 2-hydroxyethylammonium formate, as a recoverable catalyst. J. Mol. Liq., 2011, 158, 145-150.
[http://dx.doi.org/10.1016/j.molliq.2010.11.010]
[107]
Alizadeh, A.; Khodaei, M.M.; Eshghi, A. Ambiphilic dual activation role of a task-specific ionic liquid: 2-hydroxyethylammonium formate as a recyclable promoter and medium for the green synthesis of β-nitrostyrenes. J. Org. Chem., 2010, 75(23), 8295-8298.
[http://dx.doi.org/10.1021/jo101696z] [PMID: 21047089]
[108]
Rajabzadeh, M.; Eshghi, H.; Khalifeh, R.; Bakavoli, M. 2‐ hydroxyethylammonium formate ionic liquid grafted magnetic nanoparticle as a novel heterogeneous catalyst for the synthesis of substituted imidazoles. Appl. Organomet. Chem., , 2018, 32, e4052
[http://dx.doi.org/10.1002/aoc.4052]
[109]
Tzani, A.; Douka, A.; Papadopoulos, A.; Pavlatou, E.A.; Voutsas, E.; Detsi, A. Synthesis of biscoumarins using recyclable and biodegradable task-specific ionic liquids. ACS Sustain. Chem.& Eng., 2013, 1, 1180-1185.
[http://dx.doi.org/10.1021/sc4001093]
[110]
Dong, F.; Jian, C.; Zhenghao, F.; Kai, G.; Zuliang, L. Synthesis of chalcones via Claisen–Schmidt condensation reaction catalyzed by acyclic acidic ionic liquids. Catal. Commun., 2008, 9, 1924-1927.
[http://dx.doi.org/10.1016/j.catcom.2008.03.023]
[111]
Liu, X.; Lu, M.; Gu, G.; Lu, T. Aza-Michael reactions in water using functionalized ionic liquids as the recyclable catalysts. J. Indian Chem. Soc., 2011, 8, 775-781.
[http://dx.doi.org/10.1007/BF03245908]
[112]
Dong, F.; Jun, L.; Xin-Li, Z.; Zu-Liang, L. Mannich reaction in water using acidic ionic liquid as recoverable and reusable catalyst. Catal. Lett., 2007, 116, 76-80.
[http://dx.doi.org/10.1007/s10562-007-9095-8]
[113]
Fang, D.; Zhang, H.B.; Liu, Z.L. Synthesis of 4H‐benzopyrans catalyzed by acyclic acidic ionic liquids in aqueous media. J. Heterocycl. Chem., 2010, 47, 63-67.
[114]
Ying, A.G. Preparation of DBU derived task-specific ionic liquids and the study of their application in the Michael additions and Knoevenagel condensations. . Thesis, 2010.
[115]
Ying, A.G.; Liu, L.; Wu, G.F.; Chen, G.; Chen, X.Z.; Ye, W.D. Aza-Michael addition of aliphatic or aromatic amines to α, β-unsaturated compounds catalyzed by a DBU-derived ionic liquid under solvent-free conditions. Tetrahedron Lett., 2009, 50, 1653-1657.
[http://dx.doi.org/10.1016/j.tetlet.2009.01.123]
[116]
Chen, X.; Zhou, S.; Qian, C. Hydrogen transfer reduction of nitriles in DBU based ionic liquids. ARKIVOC, 2012, 8, 128-136.
[117]
Liu, F.; Guo, J.; Zhao, P.; Gu, Y.; Gao, J.; Liu, M. Facile synthesis of DBU-based protic ionic liquid for efficient alcoholysis of waste poly (lactic acid) to lactate esters. Polym. Degrad. Stabil., 2019, 167, 124-129.
[http://dx.doi.org/10.1016/j.polymdegradstab.2019.06.028]
[118]
Ying, A.G.; Liu, L.; Wu, G.F.; Chen, X.Z.; Ye, W.D.; Chen, J.H.; Zhang, K.Y. Knoevenagel condensation catalyzed by DBU brønsted ionic liquid without solvent. Chem. Res. Chin. Univ., 2009, 25, 876-881.
[119]
Maleki, B.; Akbarzadeh, E.; Babaee, S. New basic ionic liquid from ethan-1, 2-diyl bis (hydrogen sulfate) and DBU (1, 8-diazobicyclo [5.4. 0] undec-7-ene) as an efficient catalyst for one-pot synthesis of xanthene derivatives. Dyes and Pigm., 2015, 123, 222-234.
[http://dx.doi.org/10.1016/j.dyepig.2015.08.009]
[120]
Yu, B.; Zhang, H.; Zhao, Y.; Chen, S.; Xu, J.; Hao, L.; Liu, Z. DBU-based ionic-liquid-catalyzed carbonylation of o-phenylenediamines with CO2 to 2-benzimidazolones under solvent-free conditions. ACS Catal., 2013, 3, 2076-2082.
[http://dx.doi.org/10.1021/cs400256j]
[121]
Xu, D.Z.; Shi, S.; Wang, Y. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for the Knoevenagel condensation reaction. RSC Advances, 2013, 3, 23075-23079.
[http://dx.doi.org/10.1039/c3ra43921f]
[122]
Yu, Y.Q.; Xu, D.Z. A quaternary ammonium salt [H-dabco][AcO]: as a recyclable and highly efficient catalyst for the one-pot synthesis of β-phosphonomalonates. RSC Advances, 2015, 5, 28857-28863.
[http://dx.doi.org/10.1039/C5RA02743H]
[123]
Jamasbi, N.; Irankhah-Khanghah, M.; Shirini, F.; Tajik, H.; Langarudi, M.S.N. DABCO-based ionic liquids: Introduction of two metal-free catalysts for one-pot synthesis of 1, 2, 4-triazolo [4, 3-a] pyrimidines and pyrido [2,3-d] pyrimidines. New J. Chem., 2018, 42, 9016-9027.
[http://dx.doi.org/10.1039/C8NJ01455H]
[124]
Yang, C.; Liu, P.Z.; Xu, D.Z. A green and efficient one‐pot pseudo‐five‐component reaction for synthesis of bis (pyrazol‐5‐ol) derivatives via tandem cyclocondensation‐Knoevenagel-Michael reaction. ChemistrySelect, 2017, 2, 1232-1236.
[http://dx.doi.org/10.1002/slct.201601801]
[125]
Shirini, F.; Langarudi, M.S.N.; Daneshvar, N.; Mashhadinezhad, M.; Nabinia, N. Preparation of a new DABCO-based ionic liquid and investigation on its application in the synthesis of benzimidazoquinazolinone and pyrimido [4,5-b]-quinoline derivatives. J. Mol. Liq., 2017, 243, 302-312.
[http://dx.doi.org/10.1016/j.molliq.2017.07.080]
[126]
Liu, P.; Hao, J.W.; Mo, L.P.; Zhang, Z.H. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Advances, 2015, 5, 48675-48704.
[http://dx.doi.org/10.1039/C5RA05746A]
[127]
Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev., 2012, 41(21), 7108-7146.
[http://dx.doi.org/10.1039/c2cs35178a] [PMID: 22806597]
[128]
Pätzold, M.; Siebenhaller, S.; Kara, S.; Liese, A.; Syldatk, C.; Holtmann, D. Deep eutectic solvents as efficient solvents in biocatalysis. Trends Biotechnol., 2019, 37(9), 943-959.
[http://dx.doi.org/10.1016/j.tibtech.2019.03.007] [PMID: 31000203]
[129]
Vanda, H.; Dai, Y.; Wilson, E.G.; Verpoorte, R.; Choi, Y.H. Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. C. R. Chim., 2018, 21, 628-638.
[http://dx.doi.org/10.1016/j.crci.2018.04.002]
[130]
Hu, H.; Qiu, F.; Ying, A.; Yang, J.; Meng, H. An environmentally benign protocol for aqueous synthesis of tetrahydrobenzo[b]pyrans catalyzed by cost-effective ionic liquid. Int. J. Mol. Sci., 2014, 15(4), 6897-6909.
[http://dx.doi.org/10.3390/ijms15046897] [PMID: 24758931]
[131]
Disale, S.T.; Kale, S.R.; Kahandal, S.S.; Srinivasan, T.G.; Jayaram, R.V. Choline chloride· 2ZnCl2 ionic liquid: An efficient and reusable catalyst for the solvent free Kabachnik–Fields reaction. Tet. Lett, 2012, 53, 2277-2279.
[http://dx.doi.org/10.1016/j.tetlet.2012.02.054]
[132]
Wang, P.; Ma, F.P.; Zhang, Z.H. L-(+)-Tartaric acid and choline chloride based deep eutectic solvent: An efficient and reusable medium for synthesis of N-substituted pyrroles via Clauson-Kaas reaction. J. Mol. Liq., 2014, 198, 259-262.
[http://dx.doi.org/10.1016/j.molliq.2014.07.015]

© 2024 Bentham Science Publishers | Privacy Policy