Bio-reduction of Graphene Oxide: Catalytic Applications of (Reduced) GO in Organic Synthesis

Author(s): Vijai K. Rai*, Suhasini Mahata, Hemant Kashyap, Manorama Singh, Ankita Rai

Journal Name: Current Organic Synthesis

Volume 17 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

This work is based on various bio-reduction of graphene oxide into reduced graphene oxide and their applications in organic synthesis and group transformations. Graphene oxide, with abundant oxygencontaining functional groups on its basal plane, provides potential advantages, including excellent dispersibility in solvents and the good heterogeneous catalyst. This manuscript reviews various methods of synthesis of graphene and graphene oxide and a comparative study on their advantages and disadvantages, how to overcome disadvantages and covers extensive relevant literature review. In the last few years, investigation based on replacing the chemical reduction methods by some bio-compatible, chemical/impurity-free rGO including flash photo reductions, hydrothermal dehydration, solvothermal reduction, electrochemical approach, microwave-assisted reductions, light and radiation-induced reductions has been reported. Particularly, plant extracts have been applied significantly as an efficient reducing agent due to their huge bioavailability and low cost for bio-reduction of graphene oxide. These plant extracts mainly contain polyphenolic compounds, which readily get oxidized to the corresponding unreactive quinone form, which are the driving force for choosing them as bio-compatible catalyst. Currently, efforts are being made to develop biocompatible methods for the reduction of graphene oxide. The reduction abilities of such phytochemicals have been reported in the synthesis and stabilization of various nanoparticles viz. Ag, Au, Fe and Pd. Various part of plant extract has been applied for the green reduction of graphene oxide. Furthermore, the manuscript describes the catalytic applications of graphene oxide and reduced graphene oxide nanosheets as efficient carbo-catalysts for valuable organic transformations. Herein, important works dedicated to exploring graphene-based materials as carbocatalysts, including GO and rGO for organic synthesis including various functional group transformations, oxidation, reduction, coupling reaction and a wide number of multicomponent reactions have been highlighted. Finally, the aim of this study is to provide an outlook on future trends and perspectives for graphene-based materials in metal-free carbo-catalysis in green synthesis of various pharmaceutically important moieties.

Keywords: Graphene oxide, reduced graphene oxide, properties of GO/rGO, green synthesis of rGO, catalytic applications, bio-reduction.

[1]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191. Available from.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[2]
Boehm, H.P.; Setton, R.; Stumpp, E. Nomenclature and terminology of graphite intercalation compounds. Pure Appl. Chem., 1994, 66(9), 1893-1901. Available from.
[http://dx.doi.org/10.1351/pac199466091893]
[3]
Castillo-Martinez, E.; Carretero-Gonzalez, J.; Sovich, J.; Lima, M.D. High temperature structural transformations of few layer graphene nanoribbons obtained by unzipping carbon nanotubes. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(1), 221-228. Available from.
[http://dx.doi.org/10.1039/C3TA13292G]
[4]
Cooper, D.R. D’Anjou Benjamin, Ghattamaneni, N.; Harack, B.; Hike, M.; Horth, A.; Majlis, N.; Massicotte, M.; Vandburger, L; Whiteway, E.; Yu, V. Experimental review of graphene; ISRN Condensed Matter Physics. International Scholarly Research Network, 2012, pp. 1-56.
[5]
Chen, X.M.; Wu, G.H.; Jiang, Y.Q.; Wang, Y.R.; Chen, X. Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry. Analyst (Lond.), 2011, 136(22), 4631-4640. Available from.
[http://dx.doi.org/10.1039/c1an15661f] [PMID: 21975368]
[6]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669. Available from.
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
[7]
Wallace, P.R. The band theory of graphite. Phys. Rev., 1947, 71, 622-634. Available from.
[http://dx.doi.org/10.1103/PhysRev.71.622]
[8]
Brody, H. Graphene. Nature, 2012, 483(7389), S29-S74. Available from.
[http://dx.doi.org/10.1038/483S29a] [PMID: 22419206]
[9]
Choi, W.; Lahari, I.; Seelaboyina, R.; Kang, Y.S. Synthesis of graphene and its applications: A review. Crit. Rev. Solid State Mater. Sci., 2010, 35(1), 52-71. Available from.
[http://dx.doi.org/10.1080/10408430903505036]
[10]
Zhang, T.; Xue, Q.; Zhang, S.; Dong, M. Theoretical approaches to graphene and graphene-based materials. Nano Today, 2012, 7(3), 180-200. Available from.
[http://dx.doi.org/10.1016/j.nantod.2012.04.006]
[11]
Higginbotham, A.L.; Lomeda, J.R.; Morgan, A.B.; Tour, J.M. Graphite oxide flame-retardant polymer nanocomposites. ACS Appl. Mater. Interfaces, 2009, 1(10), 2256-2261. Available from.
[http://dx.doi.org/10.1021/am900419m] [PMID: 20355860]
[12]
Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6), 1339-1339. Available from.
[http://dx.doi.org/10.1021/ja01539a017]
[13]
Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B, 1998, 102(23), 4477-4482. Available from.
[http://dx.doi.org/10.1021/jp9731821]
[14]
Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, 39(1), 228-240. Available from.
[http://dx.doi.org/10.1039/B917103G] [PMID: 20023850]
[15]
He, H.; Klinowski, J.; Forster, M. A new structural model for graphite oxide. Chem. Phys. Lett., 1998, 287(1-2), 53-56. Available from.
[http://dx.doi.org/10.1016/S0009-2614(98)00144-4]
[16]
Uhl, F.; Wilkie, C. Formation of nanocomposites of styrene and its copolymers using graphite as the nanomaterial. Polym. Degrad. Stabil., 2004, 84(7), 215-226. Available from.
[http://dx.doi.org/10.1016/j.polymdegradstab.2003.10.014]
[17]
Stankovich, S.; Piner, R.; Chen, X.; Wu, N.; Nguyen, S.; Ruoff, R. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem., 2006, 16, 155-158. Available from.
[http://dx.doi.org/10.1039/B512799H]
[18]
Hontoria-Lucas, C.; Lo’pez-Peinado, A.; Lo’pez-Gonza’lez, J.; Rojas-Cervantes, M.; Martı’n-Aranda, R. Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon, 1995, 33(11), 1585-1592. Available from.
[http://dx.doi.org/10.1016/0008-6223(95)00120-3]
[19]
Mao, S.; Pu, H.; Chen, J. Graphene oxide and its reduction: Modeling and experimental progress. RSC Advances, 2012, 2, 2643-2662. Available from.
[http://dx.doi.org/10.1039/c2ra00663d]
[20]
Scholz, W.; Boehm, H.P.; Anorg, Z. Studies on graphite VI considerations on the structure of graphite. Allg. Chem, 1969, 369, 327-340. Available from.
[http://dx.doi.org/10.1002/zaac.19693690322]
[21]
Nakajima, T.; Mabuchi, A.; Hagiwara, R. A new structure model of graphite oxide. Carbon, 1988, 26, 357-361. Available from.
[http://dx.doi.org/10.1016/0008-6223(88)90227-8]
[22]
Szabo, T.; Barresi, O.; Forgo, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dekany, I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater., 2006, 18(11), 2740-2749. Available from.
[http://dx.doi.org/10.1021/cm060258+]
[23]
Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A.C.; Ruoff, R.S.; Pellegrini, V. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015, 347(6217)1246501 Available from.
[http://dx.doi.org/10.1126/science.1246501] [PMID: 25554791]
[24]
Avouris, P.; Dimitrakopoulos, C. Graphene: Synthesis and applications. Nanomaterial Today, 2012, 15(3), 86-97. Available from.
[http://dx.doi.org/10.1016/S1369-7021(12)70044-5]
[25]
Morozov, S.V.; Novoselov, K.S.; Katsnelson, M.I.; Schedin, F.; Elias, D.C.; Jaszczak, J.A.; Geim, A.K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett., 2008, 100(1)016602 Available from.
[http://dx.doi.org/10.1103/PhysRevLett.100.016602] [PMID: 18232798]
[26]
Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887), 385-388. Available from.
[http://dx.doi.org/10.1126/science.1157996] [PMID: 18635798]
[27]
Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881), 1308-1308. Available from.
[http://dx.doi.org/10.1126/science.1156965] [PMID: 18388259]
[28]
Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature, 2006, 442(7100), 282-286. Available from.
[http://dx.doi.org/10.1038/nature04969] [PMID: 16855586]
[29]
Denis, P.A.; Iribarne, F. Comparative study of defect reactivity in graphene. J. Phys. Chem. C, 2013, 117(37), 19048-19055. Available from.
[http://dx.doi.org/10.1021/jp4061945]
[30]
Jeong, H.; Jin, M.; So, K.; Lim, S.; Lee, Y. Tailoring the characteristics of graphite oxides by different oxidation times. J. Phys. D Appl. Phys., 2009, 42065418 Available from.
[http://dx.doi.org/10.1088/0022-3727/42/6/065418]
[31]
Giardi, R. Graphene based nano-hybrids for high performance devices; Politecnico di Torino, 2015.
[32]
Jayasena, B.; Subbiah, S. A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res. Lett., 2011, 6(1), 95-102. Available from.
[http://dx.doi.org/10.1186/1556-276X-6-95] [PMID: 21711598]
[33]
Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’Ko, Y.K.; Boland, J.J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A.C.; Coleman, J.N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 2008, 3(9), 563-568. Available from.
[http://dx.doi.org/10.1038/nnano.2008.215] [PMID: 18772919]
[34]
Dresselhaus, M.S.; Dresselhaus, G.; Dresselhaus, M.S.; Cançado, L.G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Adv. Phys., 2002, 51(11), 1-186. Available from.
[http://dx.doi.org/10.1080/00018730110113644]
[35]
Parvez, K.; Li, R.; Puniredd, S.R.; Hernandez, Y.; Hinkel, F.; Wang, S.; Feng, X.; Müllen, K. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano, 2013, 7(4), 3598-3606. Available from.
[http://dx.doi.org/10.1021/nn400576v] [PMID: 23531157]
[36]
Lu, J.; Yang, J.X.; Wang, J.; Lim, A.; Wang, S.; Loh, K.P. Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. ACS Nano, 2008, 2(3), 2367-2375.
[37]
Jiao, L.; Wang, X.; Diankov, G.; Wang, H.; Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol., 2010, 5(5), 321-325. Available from.
[http://dx.doi.org/10.1038/nnano.2010.54] [PMID: 20364133]
[38]
Hagstrom, S.; Lyon, H.B.; Somorjai, G.A. Surface structures on the clean platinum (100) surface. Phys. Rev. Lett., 1965, 15(11-13), 491-510. Available from.
[http://dx.doi.org/10.1103/PhysRevLett.15.491]
[39]
(a) Amini, S.; Garay, J.; Liu, G.; Balandin, A.A.; Abbaschian, R. Growth of large-area graphene films from metal-carbon melts. J. Appl. Phys., 2010, 108094321 Available from.
[http://dx.doi.org/10.1063/1.3498815]
(b) Weatherup, R.S.; Bayer, B.C.; Blume, R.; Ducati, C.; Baehtz, C.; Schlögl, R.; Hofmann, S. In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett., 2011, 11(10), 4154-4160. Available from.
[http://dx.doi.org/10.1021/nl202036y] [PMID: 21905732]
[40]
Somani, P.R.; Somani, S.P.; Umeno, M. Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett., 2006, 430(1-3), 56-59. Available from.
[http://dx.doi.org/10.1016/j.cplett.2006.06.081]
[41]
Zheng, H.; Smith, R.K.; Jun, Y.W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A.P.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.S.; Banerjee, K.; Colombo, L.; Ruoff, R.S. Observation of single colloidal platinum nanocrystal growth trajectories. Science, 2009, 324(5932), 1309-1312. Available from.
[http://dx.doi.org/10.1126/science.1172104] [PMID: 19498166]
[42]
Obraztsov, A.N.; Zolotukhin, A.A.; Volkov, A.O.; Svirko, Y.; Jefimovs, K. DC discharge plasma studies for nanostructured carbon CVD. Diamond Related Materials, 2003, 12(3-7), 917-920. Available from.
[http://dx.doi.org/10.1016/S0925-9635(02)00338-2]
[43]
Shang, N.G.; Papakonstantinou, P.; McMullan, M.; Chu, M.; Stamboulis, A.; Potenza, A.; Dhesi, S.S.; Marchetto, H. Catalyst‐free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater., 2008, 18(21), 3506-3515. Available from.
[http://dx.doi.org/10.1002/adfm.200800951]
[44]
Terasawa, T.O.; Saiki, K. Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon, 2012, 50(3), 869-874. Available from.
[http://dx.doi.org/10.1016/j.carbon.2011.09.047]
[45]
Badami, D.V. Graphitization of α-Silicon Carbide. Nature, 1962, 193, 569-570. Available from.
[http://dx.doi.org/10.1038/193569a0]
[46]
Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A.Y.; Feng, R.; Dai, Z.; Marchenkov, A.N.; Conrad, E.H.; First, P.N.; de Heer, W.A. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B, 2004, 108(52), 19912-19916. Available from.
[http://dx.doi.org/10.1021/jp040650f]
[47]
Cano-Márquez, A.G.; Rodríguez-Macías, F.J.; Campos-Delgado, J.; Espinosa-González, C.G.; Tristán-López, F.; Ramírez-González, D.; Cullen, D.A.; Smith, D.J.; Terrones, M.; Vega-Cantú, Y.I. Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett., 2009, 9(4), 1527-1533. Available from.
[http://dx.doi.org/10.1021/nl803585s] [PMID: 19260705]
[48]
Zhang, Y.; Small, J.P.; Pontius, W.V.; Kim, P. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett., 2005, 86(7), 073104-073107. Available from.
[http://dx.doi.org/10.1063/1.1862334]
[49]
Brodie, B.C. On the atomic weight of graphite. Philos. Trans. R. Soc, 1859, 149, 249-259. Available from.
[http://dx.doi.org/10.1098/rstl.1859.0013]
[50]
Staudenmaier, L. Process for the preparation of graphitic acid. Eur. J. Inorg. Chem., 1898, 31(2), 1481-1477.
[51]
Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8), 4806-4814. Available from.
[http://dx.doi.org/10.1021/nn1006368] [PMID: 20731455]
[52]
Cote, L.J.; Cruz-Silva, R.; Huang, J. Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc., 2009, 131(31), 11027-11032. Available from.
[http://dx.doi.org/10.1021/ja902348k] [PMID: 19601624]
[53]
Zhou, Y.; Bao, Q.; Tang, L.; Zhong, Y.; Loh, K.P. Hydrothermal dehydration for the “Green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater., 2009, 21(13), 2950-2956. Available from.
[http://dx.doi.org/10.1021/cm9006603]
[54]
Ai, K.; Liu, Y.; Lu, L.; Cheng, X.; Huo, L. A novel strategy for making soluble reduced graphene oxide sheets cheaply by adopting an endogenous reducing agent. J. Mater. Chem., 2011, 21(10), 3365-3370. Available from.
[http://dx.doi.org/10.1039/C0JM02865G]
[55]
(a) Ramesha, G.K.; Sampath, S. Electrochemical reduction of oriented graphene oxide films: An insitu Raman spectroelectrochemical study. J. Phys. Chem. C, 2009, 113(19), 7985-7989. Available from.
[http://dx.doi.org/10.1021/jp811377n]
(b) Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y. Facile and controllable electrochemical reduction of graphene oxide and its applications. J. Mater. Chem., 2010, 20(4), 743-748. Available from.
[http://dx.doi.org/10.1039/B917975E]
[56]
(a) Xie, X. Zhou, Y.; Huang, K. Advances in Microwave-assisted production of reduced graphene oxide. Front Chem., 2019, 7(355), 1-11.
(b) Chen, W.; Yan, L.; Bangal, P.R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon, 2010, 48(4), 1146-1152. Available from.
[http://dx.doi.org/10.1016/j.carbon.2009.11.037]
[57]
(a) Bose, S.; Drzal, L.T. Role of thickness and intercalated water in the facile reduction of graphene oxide employing camera flash. Nanotechnology, 2014, 25(7), 075702-075711. Available from.
[http://dx.doi.org/10.1088/0957-4484/25/7/075702] [PMID: 24451202]
(b) Baraket, M.; Walton, S.G.; Wei, Z.; Lock, E.H.; Robinson, J.T.; Sheehan, P. Reduction of graphene oxide by electron beam generated plasmas produced in methane/argon mixtures. Carbon, 2012, 48(12), 3382-3390. Available from.
[http://dx.doi.org/10.1016/j.carbon.2010.05.031]
(c) Chen, L.; Xu, Z.W.; Li, J.L.; Min, C.Y.; Liu, L.S.; Song, X.Y. Reduction and disorder in graphene oxide induced by electron-beam irradiation. Mater. Lett., 2011, 65(8), 1229-1230. Available from.
[http://dx.doi.org/10.1016/j.matlet.2011.01.063]
[58]
Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S.K.; Colombo, L.; Ruoff, R.S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932), 1312-1314. Available from.
[http://dx.doi.org/10.1126/science.1171245] [PMID: 19423775]
[59]
Emtsev, K.V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G.L.; Ley, L.; McChesney, J.L.; Ohta, T.; Reshanov, S.A.; Röhrl, J.; Rotenberg, E.; Schmid, A.K.; Waldmann, D.; Weber, H.B.; Seyller, T. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater., 2009, 8(3), 203-207. Available from.
[http://dx.doi.org/10.1038/nmat2382] [PMID: 19202545]
[60]
Mittal, G.; Dhand, V.; Rhee, K.Y.; Park, S.J.; Lee, W.R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem., 2015, 21, 11-25. Available from.
[http://dx.doi.org/10.1016/j.jiec.2014.03.022]
[61]
Pu, N.W.; Wang, C.A.; Sung, Y.; Liu, Y.M.; Ger, M.D. Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater. Lett., 2009, 63(23), 1987-1989. Available from.
[http://dx.doi.org/10.1016/j.matlet.2009.06.031]
[62]
Wei, Z.; Wang, D.; Kim, S.; Kim, S.Y.; Hu, Y.; Yakes, M.K.; Laracuente, A.R.; Dai, Z.; Marder, S.R.; Berger, C.; King, W.P.; de Heer, W.A.; Sheehan, P.E.; Riedo, E. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science, 2010, 328(5984), 1373-1376. Available from.
[http://dx.doi.org/10.1126/science.1188119] [PMID: 20538944]
[63]
Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation. Adv. Mater., 2008, 20, 4490-4493. Available from.
[http://dx.doi.org/10.1002/adma.200801306]
[64]
Guo, H.L.; Wang, X.F.; Qian, Q.Y.; Wang, F.B.; Xia, X.H. A green approach to the synthesis of graphene nanosheets. ACS Nano, 2009, 3(9), 2653-2659. Available from.
[http://dx.doi.org/10.1021/nn900227d] [PMID: 19691285]
[65]
Zhu, Y.; Murali, S.; Stoller, M.D.; Velamakanni, A.; Piner, R.D.; Ruoff, R.S. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon, 2010, 48(7), 2118-2122. Available from.
[http://dx.doi.org/10.1016/j.carbon.2010.02.001]
[66]
Zhang, Y.; Ma, H.L.; Zhang, Q.; Peng, J.; Li, J.; Zhai, M.; Yu, Z.Z. Facile synthesis of well-dispersed graphene by γ-ray induced reduction of graphene oxide. J. Mater. Chem., 2012, 22(26), 13064-13069. Available from.
[http://dx.doi.org/10.1039/c2jm32231e]
[67]
Ruan, G.; Sun, Z.; Peng, Z.; Tour, J.M. Growth of graphene from food, insects, and waste. ACS Nano, 2011, 5(9), 7601-7607. Available from.
[http://dx.doi.org/10.1021/nn202625c] [PMID: 21800842]
[68]
Gao, J.; Liu, F.; Liu, Y.; Ma, N.; Wang, Z.; Zhang, X. Environment-friendly method to produce graphene that employs vitamin c and amino acid. Chem. Mater., 2010, 22(7), 2213-2218. Available from.
[http://dx.doi.org/10.1021/cm902635j]
[69]
Zhang, J.; Yang, H.; Shen, G.; Cheng, P.; Zhang, J.; Guo, S. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. (Camb.), 2010, 46(7), 1112-1114. Available from.
[http://dx.doi.org/10.1039/B917705A] [PMID: 20126730]
[70]
Fernandez-Merino, M.J.; Guardia, L.; Paredes, J.I.; Villar-Rodil, S.; Solis-Fernandez, P.; Alonso, A.M.; Tascon, M.D. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C, 2010, 114(14), 6426-6432. Available from.
[http://dx.doi.org/10.1021/jp100603h]
[71]
Fernandez-Merino, M.J.; Villar-Rodil, S.; Paredes, J.I.; Solis-Fernandez, P.; Guardia, L.; Garcia, R.; Alonso, A.M.; Tascon, J.M.D. Identifying efficient natural bio-reductants for the preparation of graphene and graphene-metal nanoparticle hybrids with enhance catalytic activity from graphene oxide. Carbon, 2013, 63, 30-44. Available from.
[http://dx.doi.org/10.1016/j.carbon.2013.06.034]
[72]
Zhu, C.; Guo, S.; Fang, Y.; Dong, S. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano, 2010, 4(4), 2429-2437. Available from.
[http://dx.doi.org/10.1021/nn1002387] [PMID: 20359169]
[73]
Kim, Y.K.; Kim, M.H.; Min, D.H. Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent. Chem. Commun. (Camb.), 2011, 47(11), 3195-3197. Available from.
[http://dx.doi.org/10.1039/c0cc05005a] [PMID: 21286628]
[74]
Chen, D.; Li, L.; Guo, L. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Nanotechnology, 2011, 22(32), 325601-325608. Available from.
[http://dx.doi.org/10.1088/0957-4484/22/32/325601] [PMID: 21757797]
[75]
Bose, S.; Kuila, T.; Mishra, A.K.; Kim, N.H.; Lee, J.H. Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: An environmentally friendly method. J. Mater. Chem., 2012, 22(19), 9696-9703. Available from.
[http://dx.doi.org/10.1039/c2jm00011c]
[76]
Ma, J.; Wang, X.; Liu, Y.; Wu, T.; Liu, Y.; Guo, Y.; Li, R.; Sun, X.; Wu, F.; Li, C.; Gao, J. Reduction of graphene oxide with L-lysine to prepared reduced graphene oxide stabilized with polysaccharide polyelectrolyte. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(6), 2192-2201. Available from.
[http://dx.doi.org/10.1039/C2TA00340F]
[77]
Tran, D.N.H.; Kabiri, S.; Losic, D. A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids. Carbon, 2014, 76, 193-202. Available from.
[http://dx.doi.org/10.1016/j.carbon.2014.04.067]
[78]
Liu, J.; Fu, S.; Yuan, B.; Li, Y.; Deng, Z. Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc., 2010, 132(21), 7279-7281. Available from.
[http://dx.doi.org/10.1021/ja100938r] [PMID: 20462190]
[79]
An, J.; Gou, Y.; Yang, C.; Hu, F.; Wang, C. Synthesis of a biocompatible gelatin functionalized graphene nanosheets and its application for drug delivery. Mater. Sci. Eng. C, 2013, 33(5), 2827-2837. Available from.
[http://dx.doi.org/10.1016/j.msec.2013.03.008] [PMID: 23623103]
[80]
Gurunathan, S.; Han, J.; Kim, J.H. Humanin: a novel functional molecule for the green synthesis of graphene. Colloids Surf. B Biointerfaces, 2013, 111, 376-383. Available from.
[http://dx.doi.org/10.1016/j.colsurfb.2013.06.018] [PMID: 23850746]
[81]
Guo, C.; Book-Newell, B.; Irudayaraj, J. Protein-directed reduction of graphene oxide and intracellular imaging. Chem. Commun. (Camb.), 2011, 47(47), 12658-12660. Available from.
[http://dx.doi.org/10.1039/c1cc15052a] [PMID: 22041815]
[82]
Esfandiar, A.; Akhavan, O.; Irajizad, A. Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J. Mater. Chem., 2011, 21(29), 10907-10914. Available from.
[http://dx.doi.org/10.1039/c1jm10151j]
[83]
Wang, Y.; Zhang, P.; Liu, C.F.; Zhan, L.; Li, Y.F.; Huang, C.Z. Green and easy synthesis of biocompatible graphene for use as an anticoagulant. RSC Advances, 2012, 2, 2322-2328. Available from.
[http://dx.doi.org/10.1039/c2ra00841f]
[84]
Salas, E.C.; Sun, Z.; Lüttge, A.; Tour, J.M. Reduction of graphene oxide via bacterial respiration. ACS Nano, 2010, 4(8), 4852-4856. Available from.
[http://dx.doi.org/10.1021/nn101081t] [PMID: 20731460]
[85]
Gurunathan, S.; Han, J.W.; Eppakayala, V.; Kim, J.H. Microbial reduction of graphene oxide by Escherichia coli: a green chemistry approach. Colloids Surf. B Biointerfaces, 2013, 102, 772-777. Available from.
[http://dx.doi.org/10.1016/j.colsurfb.2012.09.011] [PMID: 23107955]
[86]
Zhang, H.; Yu, X.; Guo, D.; Qu, B.; Zhang, M.; Li, Q.; Wang, T. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors. ACS Appl. Mater. Interfaces, 2013, 5(15), 7335-7340. Available from.
[http://dx.doi.org/10.1021/am401680m] [PMID: 23751359]
[87]
Khanra, P.; Kuila, T.; Kim, N.H.; Kim, S.H.; Bae, S.H.; Yu, D.S.; Lee, J.H. Simultaneous bio-functionalization and reduction of graphene oxide by baker’s yeast. Chem. Eng. J., 2012, 183, 526-533. Available from.
[http://dx.doi.org/10.1016/j.cej.2011.12.075]
[88]
Li, J.; Xiao, G.; Chen, C.; Li, R.; Yan, D. Superior dispersions of reduced graphene oxide synthesized by using gallic acid as a reductant and stabilizer. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(4), 1481-1487. Available from.
[http://dx.doi.org/10.1039/C2TA00638C]
[89]
Bo, Z.; Shuai, X.; Mao, S.; Yang, H.; Qian, J.; Chen, J.; Yan, J.; Cen, K. Green preparation of reduced graphene oxide for sensing and energy storage applications. Sci. Rep., 2014, 4, 4684-4692. Available from.
[http://dx.doi.org/10.1038/srep04684] [PMID: 24732631]
[90]
Wang, Y.; Shi, Z.; Yin, J. Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl. Mater. Interfaces, 2011, 3(4), 1127-1133. Available from.
[http://dx.doi.org/10.1021/am1012613] [PMID: 21438576]
[91]
Akhavan, O.; Kalaee, M.; Alavi, Z.S.; Ghiasi, S.M.A.; Esfandiar, A. Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon, 2012, 50(8), 3015-3025. Available from.
[http://dx.doi.org/10.1016/j.carbon.2012.02.087]
[92]
Gurunathan, S.; Han, J.W.; Park, J.H.; Eppakayala, V.; Kim, J.H. Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene. Int. J. Nanomedicine, 2014, 9, 363-377. Available from.
[http://dx.doi.org/10.2147/IJN.S53538] [PMID: 24453487]
[93]
Lee, G.; Kim, B.S. Biological reduction of graphene oxide using plant leaf extracts. Biotechnol. Prog., 2014, 30(2), 463-469. Available from.
[http://dx.doi.org/10.1002/btpr.1862] [PMID: 24375994]
[94]
Khan, M.; Abdulhadi, H. Al-Marri, Khan, M.; Mohri, N.; Adil, S.F.; Al-Warthan, A.; Siddiqui, M.R.H.; Tahir, M.N. Pulicaria glutinosa plant extract: A green and eco-friendly reducing agent for the preparation of highly reduced graphene oxide. RSC Advances, 2014, 4, 24119-24125. Available from.
[http://dx.doi.org/10.1039/C4RA01296H]
[95]
Agharkar, M.; Kochrekar, S.; Hidouri, S.; Azeez, M.A. Mater. Res. Bull., 2014, 59, 323-328. Available from.
[http://dx.doi.org/10.1016/j.materresbull.2014.07.051]
[96]
Suresh, D.; Nethravathi, P.C.; Udayabhanu, A.; Nagabhushana, H.; Sharma, S.C. Spinach assisted green reduction of graphene oxide and its antioxidant and dye absorption properties. Ceram. Int., 2015, 41(3), 4810-4813. Available from.
[http://dx.doi.org/10.1016/j.ceramint.2014.12.036]
[97]
Bhattacharya, G.; Sas, S.; Wadhwa, S.; Mathur, A.; McLaughlin, J.; Sinha Roy, S. Aloe vera assisted facile green synthesis of reuced graphene oxide for electrochemical and dye removal applications. RSC Advances, 2017, 7, 26680-26688. Available from.
[http://dx.doi.org/10.1039/C7RA02828H]
[98]
Chegyang, L.; Zhuana, Z.; Jin, X.; Chen, Z. A facile and green preparation of reduced graphene oxide using Eucalyptus leaf extract. Appl. Surf. Sci., 2017, 422, 469-474. Available from.
[http://dx.doi.org/10.1016/j.apsusc.2017.06.032]
[99]
Mhamane, D.; Ramadan, W.; Fawzy, M.; Rana, A.; Dubey, M.; Rode, C.S.; Lefez, B.; Hannoyer, B.; Ogale, S. From graphite oxide to highly water dispersible functionalized graphene by single step plant extract-induced deoxygenation. Green Chem., 2011, 13, 1990-1996. Available from.
[http://dx.doi.org/10.1039/c1gc15393e]
[100]
Firdhouse, M.J.; Lalitha, P. Eco-fiendly synthesis of graphene using the aqueous extract of Amaranthus dubius. Carbon -. Sci. Tech. (Paris), 2013, 5, 253-259.
[101]
Suresh, D.; Udayabhanu, A.; Nagabhushana, H.; Sharma, S.C. Clove extract mediated facile green reduction of graphene oxide, its dye elimination and antioxidant properties. Mater. Lett., 2015, 142, 4-6. Available from.
[http://dx.doi.org/10.1016/j.matlet.2014.11.073]
[102]
Chu, H.J.; Lee, C.Y.; Tai, N.H. Green reduction of graphene oxide by Hibiscus sabdariffa L. to fabricate flexible graphene electrode. Carbon, 2014, 80, 725-733. Available from.
[http://dx.doi.org/10.1016/j.carbon.2014.09.019]
[103]
Haghighi, B.; Tabrizi, M.A. Green-synthesis of reduced graphene oxide nanosheets using rose water and a survey on their characteristics and applications. RSC Advances, 2013, 3, 13365-13371. Available from.
[http://dx.doi.org/10.1039/c3ra40856f]
[104]
Hou, D.; Liu, O.; Cheng, H.; Li, K.; Wang, D.; Zhang, H. Chrysanthemum extracted green reduction of graphene oxide. Mater. Chem. Phys., 2016, 183, 76-82. Available from.
[http://dx.doi.org/10.1016/j.matchemphys.2016.08.004]
[105]
Kuila, T.; Bose, S.; Khanra, P.; Mishra, A.K.; Kim, N.H.; Lee, J.H. A green approach for the reduction of graphene oxide by wild carrot. Carbon, 2012, 50, 914-921. Available from.
[http://dx.doi.org/10.1016/j.carbon.2011.09.053]
[106]
Rao Vusa, C.S.; Berchmans, S.; Alwarappan, S. Facile and green synthesis of graphene. RSC Advances, 2014, 4, 22470-22475. Available from.
[http://dx.doi.org/10.1039/C4RA01718H]
[107]
Khan, M.; Abdulhadi, H.; Al-Marri, Khan, M.; Shaik, M.R.; Mohri, N.; Adil, S.F.; Kuniyil, M.; Alkhathlan, H.Z.; Al-Warthan, A.; Tremel, W.; Tahir, M.N.; Siddiqui, M.R.H. Green approach for the effective reduction of graphene oxide using Salvadora persica L. root (Miswak) extract. Nanoscale Res. Lett., 2015, 10, 281-289. Available from.
[http://dx.doi.org/10.1186/s11671-015-0987-z]
[108]
Jana, M.; Saha, S.; Khanra, P.; Murmu, N.C.; Srivastava, S.K.; Kuila, T.; Lee, J.H. Bio-reduction of graphene oxide using drained water from soaked mung beans (Phaseolus aureus L.) and its application as energy storage electrode material. Mater. Sci. Eng. B, 2014, 186, 33-40. Available from.
[http://dx.doi.org/10.1016/j.mseb.2014.03.004]
[109]
Thakur, S.; Karak, N. Green reduction of graphene oxide by aqueous phytoextracts. Carbon, 2012, 50, 5331-5339. Available from.
[http://dx.doi.org/10.1016/j.carbon.2012.07.023]
[110]
Kartick, B.; Srivastava, S.K.; Srivastava, I. Green synthesis of graphene. J. Nanosci. Nanotechnol., 2013, 13(6), 4320-4324. Available from.
[http://dx.doi.org/10.1166/jnn.2013.7461] [PMID: 23862494]
[111]
Li, B.; Jin, X.; Lin, J.; Chen, Z. Green reduction of graphene oxide using sugarcane bagasse extract and its application for the removal of cadmium in aqueous solution. J. Clean. Prod., 2018, 189, 128-134. Available from.
[http://dx.doi.org/10.1016/j.jclepro.2018.04.018]
[112]
Upadhay, R.K.; Soin, N.; Bhattacharya, G.; Saha, S.; Barman, A.; Sinha Roy, S. Grape extract assisted green synthesis of reduced graphene oxide for water treatment application. Mater. Lett., 2015, 160, 355-358. Available from.
[http://dx.doi.org/10.1016/j.matlet.2015.07.144]
[113]
Maddineni, S.B.; Mandal, B.K. Biofebrication of reduced graphene oxide nanosheets using Terminalia bellirica fruit extract. Curr. Nanosci., 2016, 12, 94-102. Available from.
[http://dx.doi.org/10.2174/1573413711666150520224358]
[114]
Lei, Y.; Tang, Z.; Liao, R.; Guo, B. Hydrolysable tannin as environmentally reducer and stabilizer for graphene oxide. Green Chem., 2011, 13, 1655-1658. Available from.
[http://dx.doi.org/10.1039/c1gc15081b]
[115]
Maddinedi, S.B.; Mandal, B.K.; Vankayala, R.; Kalluru, P.; Pamanji, S.R. Bioinspired reduced graphene oxide nanosheets using Terminalia chebula seeds extract. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 145, 117-124. Available from.
[http://dx.doi.org/10.1016/j.saa.2015.02.037] [PMID: 25770934]
[116]
Chen, D.; Feng, H.; Li, J. Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev., 2012, 112(11), 6027-6053. Available from.
[http://dx.doi.org/10.1021/cr300115g] [PMID: 22889102]
[117]
Kundu, P.; Netheravathi, C.; Deshpande, P.A.; Rajamathi, M.; Madras, G.; Ravishankar, N. Ultrafast microwave-assisted route to surfactant-free ultrafine Pt nanoparticles on graphene: Synergic co-reduction mechanism and high catalytic activity. Chem. Mater., 2011, 23(11), 2772-2780. Available from.
[http://dx.doi.org/10.1021/cm200329a]
[118]
Paredes, J.I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J.M.D. Graphene oxide dispersions in organic solvents. Langmuir, 2008, 24(19), 10560-10564. Available from.
[http://dx.doi.org/10.1021/la801744a] [PMID: 18759411]
[119]
Dreyer, D.R.; Jia, H.P.; Bielawski, C.W. Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed. Engl., 2010, 49(38), 6813-6816. Available from.
[http://dx.doi.org/10.1002/anie.201003238] [PMID: 20602388]
[120]
Wu, S.; Wen, G.; Liu, X.; Zhong, B.; Su, D.S. Model molecules with oxygenated groups catalyze the reduction of nitrobenzene: Insight into carbocatalysis. ChemCatChem, 2014, 6(6), 1558-1561. Available from.
[http://dx.doi.org/10.1002/cctc.201402070]
[121]
Gao, Y.; Tang, P.; Zhou, H.; Zhang, W.; Yang, H.; Yan, N.; Hu, G.; Mei, D.; Wang, J.; Ma, D. Graphene oxide catalyzed C-H bond activation: The importance of oxygen functional groups for binary construction. Angew. Chem. Int. Ed. Engl., 2016, 55(9), 3124-3128. Available from.
[http://dx.doi.org/10.1002/anie.201510081] [PMID: 26809892]
[122]
Qian, Z.; Hudson, M.S.L.; Raghubanshi, H.; Scheicher, R.H.; Pathak, B.C.; Araujo, M.; Blomqvist, A.; Johansson, B.; Srivastava, O.N.; Ahuja, R. Excellent catalytic effects of graphene nanofibers on hydrogen release of sodium alanate. J. Phys. Chem. C, 2012, 116(20), 10861-10866. Available from.
[http://dx.doi.org/10.1021/jp300934h]
[123]
Su, C.; Acik, M.; Takai, K.; Lu, J.; Hao, S.J.; Zheng, Y.; Wu, P.; Bao, Q.; Enoki, T.; Chabal, Y.J.; Loh, K.P. Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat. Commun., 2012, 3, 1298-1306. Available from.
[http://dx.doi.org/10.1038/ncomms2315] [PMID: 23250428]
[124]
Mungse, H.P.; Bhakuni, N.; Tripathi, D.; Sharma, O.P.; Sain, B.; Khatri, O.P. Fractional distribution of graphene oxide and its potential as an efficient and reusable solid catalyst for esterification reactions. J. Phys. Org. Chem., 2014, 27, 944-951. Available from.
[http://dx.doi.org/10.1002/poc.3375]
[125]
Dhakshinamoorthy, A.; Alvaro, M.; Puche, M.; Fornes, V.; Garcia, H. Graphene oxide as catalyst for the acetalization of aldehydes at room temperature. ChemCatChem, 2012, 4, 2026-2030. Available from.
[http://dx.doi.org/10.1002/cctc.201200461]
[126]
Roy, B.; Sengupta, D.; Basu, B. Graphene oxide (GO) catalyzed chemoselective thioacetalization of aldehydes under solvent-free conditions. Tet. Lett, 2014, 55(48), 6596-6600.
[127]
Yu, H.; Wang, X.; Zhu, Y.; Zhuang, G.; Zhong, X.; Wang, J.G. Solvent-free catalytic dehydrative esterification of benzaldehyde over graphene oxide. Chem. Phys. Lett., 2013, 583, 146-150. Available from.
[http://dx.doi.org/10.1016/j.cplett.2013.08.011]
[128]
Nongbe, M.C.; Oger, N.; Ekou, T.; Ekou, L.B.; Yao, K.; Grognec, E.L.; Felpin, F.X. Graphene-catalyzed transacetalization under acid-free conditions. Tet. Lett, 2016, 57(41), 4637-4639.
[129]
Khalili, D. Graphene oxide: A promising carbocatalyst for the regioselective thiocynation of aromatic amines, phenols anisols, and enolizable ketones by hydrogen peroxide/KSCN in water. New J. Chem., 2016, 40, 2549-2553. Available from.
[http://dx.doi.org/10.1039/C5NJ02314A]
[130]
Zhu, S.; Chem, C.; Xue, Y.; Wu, J.; Wang, J. Graphene oxide: An efficient acid catalyst for alcoholysis and esterification reactions. ChemCatChem, 2014, 6, 3080-3083. Available from.
[http://dx.doi.org/10.1002/cctc.201402574]
[131]
Bhattacharya, S.; Ghosh, P.; Basu, B. Graphene oxide (GO) catalyzed transamidation of aliphatic amides: An efficient metal-free procedure. Tet. Lett, 2018, 59(10), 899-903. Available from.
[http://dx.doi.org/10.1016/j.tetlet.2018.01.060]
[132]
Basu, B.; Kundu, S.; Sengupta, D. Graphene oxide as a carbocatalyst: The first example of a one-pot sequential dehydration-hydrothiolation of secondary aryl alcohols. RSC Advances, 2013, 3, 22130-22134. Available from.
[http://dx.doi.org/10.1039/c3ra44712j]
[133]
Acocella, M.R.; D’urso, L.; Maggio, M.; Guerra, G. Green regio- and enantioselective aminolysis catalyzed by graphite and graphene oxide under solvent-free conditions. ChemCatChem, 2016, 8, 1915-1920. Available from.
[http://dx.doi.org/10.1002/cctc.201600241]
[134]
Dhakshinamoorthy, A.; Alvaro, M.; Concepción, P.; Fornés, V.; Garcia, H. Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides. Chem. Commun. (Camb.), 2012, 48(44), 5443-5445. Available from.
[http://dx.doi.org/10.1039/c2cc31385e] [PMID: 22534622]
[135]
Zhang, X.; Li, X.; Su, R.; Weeks, B.L.; Zhang, Z.; Deng, S. Aerobic oxidation of 9- fluorenones using mono-/multilayered graphene-supported alkaline catalyst. ChemPlusChem, 2013, 78, 703-711. Available from.
[http://dx.doi.org/10.1002/cplu.201300123]
[136]
Lv, G.; Wang, H.; Yang, Y.; Deng, T.; Chen, C.; Zhu, Y.; Hou, X. Graphene oxide: A convenient metal-free carbocatalyst for facilitating aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran. ACS Catal., 2015, 5, 5636-5646. Available from.
[http://dx.doi.org/10.1021/acscatal.5b01446]
[137]
Cao, Y.; Luo, X.; Yu, H.; Peng, F.; Wang, H.; Ning, G. sp2- and sp3-hybridized carbon materials as catalysts for aerobic oxidation of cyclohexane. Catal. Sci. Technol., 2013, 3(10), 2654-2660. Available from.
[http://dx.doi.org/10.1039/c3cy00256j]
[138]
Jia, H.P.; Dreyer, D.R.; Bielawski, C.W. C-H oxidation using graphite oxide. Tetrahedron, 2011, 67(24), 4431-4434. Available from.
[http://dx.doi.org/10.1016/j.tet.2011.02.065]
[139]
Dreyer, D.R.; Jia, H.P.; Todd, A.D.; Geng, J.; Bielawski, C.W. Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Org. Biomol. Chem., 2011, 9(21), 7292-7295. Available from.
[http://dx.doi.org/10.1039/c1ob06102j] [PMID: 21909587]
[140]
Aghayan, M.M.; Boukherroub, R.; Nemati, M.; Rahimifard, M. Graphite oxide mediated oxidative aromatization of 1,4-dihydropyridines into pyridine derivatives. Tet. Lett, 2012, 53(19), 2473-2475.
[141]
Aghayan, M.M.; Azar, E.K.; Boukherroub, R. Graphite oxide: An efficient reagent for oxidation of alcohols under sonication. Tet. Lett., 2012, 53(37), 4962-4965. Available from.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.016]
[142]
Yang, J.H.; Sun, G.; Gao, Y.; Zhao, H.; Tang, P.; Tan, J.; Lu, A.H.; Ma, D. Direct catalytic oxidation of benzene to phenol over metal-free graphene-based catalyst. Energy Environ. Sci., 2013, 6(3), 793-798. Available from.
[http://dx.doi.org/10.1039/c3ee23623d]
[143]
Li, C.; Li, L.; Sun, L.; Pei, Z.; Xie, J.; Zhang, S. Transformation of hydroquinone to benzoquinone mediated by reduced graphene oxide in aqueous solution. Carbon, 2015, 89, 74-81. Available from.
[http://dx.doi.org/10.1016/j.carbon.2015.03.027]
[144]
Bai, L.S.; Gao, X.M.; Zhang, X.; Sun, F.F.; Ma, W. Reduced graphene oxide as a recyclable catalyst for dehydrogenation of hydrazo compounds. Tet. Lett, 2014, 55(33), 4545-4558.
[145]
Wang, Z.; Lv, X.; Weng, J. High peroxidase catalytic activity of exfoliated few-layered graphene. Carbon, 2013, 62, 51-60. Available from.
[http://dx.doi.org/10.1016/j.carbon.2013.05.051]
[146]
Gao, Y.; Ma, D.; Wang, C.; Guan, J.; Bao, X. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chem. Commun. (Camb.), 2011, 47(8), 2432-2434. Available from.
[http://dx.doi.org/10.1039/C0CC04420B] [PMID: 21170437]
[147]
Pehrun, T.I.; Bychko, I.B.; Trypolsky, A.I.; Strizhak, P.E. Catalytic properties of graphene material in the hydrogenation of ethylene. Theor. Exp. Chem., 2013, 48(6), 367-370. Available from.
[http://dx.doi.org/10.1007/s11237-013-9282-1]
[148]
Zhang, J.; Chl̥en, S.; Chen, F.; Xu, W.; Deng, G.J.; Gong, H. Dehydroge-nation of nitrogen heterocycles using graphene oxide as versatile metal-free catalyst under air. Adv. Synth. Catal., 2017, 359, 2358-2363. Available from.
[http://dx.doi.org/10.1002/adsc.201700178]
[149]
Mahata, S.; Sahu, A.; Shukla, P.; Rai, A.; Singh, M.; Rai, V.K. Bio-inspired unprecedented synthesis of reduced graphene oxide: A catalytic probe for electro-/chemicalbreduction of nitro groups in an aqueous medium. New J. Chem., 2018, 42(3), 2068-2073. Available from.
[http://dx.doi.org/10.1039/C7NJ04732K]
[150]
Mahata, S.; Sahu, A.; Shukla, P.; Rai, A.; Singh, M.; Rai, V.K. The novel and efficient reduction of graphene oxide using Ocimum sanctum L. leaf extract as an alternative renewable bio-resource. New J. Chem., 2018, 42(24), 19945-19952. Available from.
[http://dx.doi.org/10.1039/C8NJ04086A]
[151]
Verma, S.; Mungse, H.P.; Kumar, N.; Choudhary, S.; Jain, S.L.; Sain, B.; Khatri, O.P. Graphene oxide: an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chem. Commun. (Camb.), 2011, 47(47), 12673-12675. Available from.
[http://dx.doi.org/10.1039/c1cc15230k] [PMID: 22039588]
[152]
Majumder, B.; Sarma, D.; Bhattacharya, T.; Sarma, T.K. Graphene oxide as metal-free catalyst in oxidative dehydrogenative C-N coupling leading to a α-ketoamides: Importance of dual catalytic activity. ACS Sustain. Chem.& Eng., 2017, 5, 9286-9294. Available from.
[http://dx.doi.org/10.1021/acssuschemeng.7b02267]
[153]
Gao, Y.; Tang, P.; Zhou, H.; Zhang, W.; Yang, H.; Yan, N.; Hu, G.; Mei, D.; Wang, J.; Ma, D. Graphene oxide catalysed C-H bond activation: The importance of oxygen functional groups for biaryl construction. Angew. Chem. Int. Ed. Engl., 2016, 55(9), 3124-3128. Available from.
[http://dx.doi.org/10.1002/anie.201510081] [PMID: 26809892]
[154]
Wu, H.; Su, C.; Tandiana, R.; Liu, C.; Qiu, C.; Bao, Y.; Wu, J.; Xu, Y.; Lu, J.; Fan, D.; Loh, K.P. Graphene-oxide catalyzed direct CH-CH type cross-coupling: The intrinsic catalytic activities of zigzag edges. Angew. Chem. Int. Ed. Engl., 2018, 57(34), 10848-10853. Available from.
[http://dx.doi.org/10.1002/anie.201802548] [PMID: 29749675]
[155]
Kumar, V.A.; Rama Rao, K. Recyclable graphite oxide catalyzed Friedel-Crafts addition of indoles to α,β-unsaturated ketones. Tet. Lett, 2011, 52(40), 5188-5191.
[156]
Singh Chauhan, S.M.; Mishra, S. Use of graphite oxide and graphene oxide as catalysts in the synthesis of dipyrromethane and calix[4]pyrrole. Molecules, 2011, 16(9), 7256-7266. Available from.
[http://dx.doi.org/10.3390/molecules16097256] [PMID: 21869753]
[157]
Hu, F.; Patel, M.; Luo, F.; Flach, C.; Mendelsohn, R.; Garfunkel, E.; He, H.; Szostak, M. Graphene-catalyzed direct Friedel-Crafts alkylation reactions: Mechanism, selectivity and synthetic utility. J. Am. Chem. Soc., 2015, 137(45), 14473-14480. Available from.
[http://dx.doi.org/10.1021/jacs.5b09636] [PMID: 26496423]
[158]
Acocella, M.R.; Mauro, M.; Guerra, G. Regio- and enantioselective friedel-crafts reactions of indoles to epoxides catalyzed by graphene oxide: a green approach. ChemSusChem, 2014, 7(12), 3279-3283. Available from.
[http://dx.doi.org/10.1002/cssc.201402770] [PMID: 25328083]
[159]
Wu, T.; Wang, X.; Qui, H.; Gao, J.; Wang, W.; Liu, Y. Graphene oxide reduced and modified by soft nanoparticles and its catalysis of the Knoevenagel condensation. J. Mater. Chem., 2012, 22(11), 4772-4779. Available from.
[http://dx.doi.org/10.1039/c2jm15311d]
[160]
Kim, Y.; Some, S.; Lee, H. Graphene oxide as a recyclable phase transfer catalyst. Chem. Commun. (Camb.), 2013, 49(50), 5702-5704. Available from.
[http://dx.doi.org/10.1039/c3cc42787k] [PMID: 23689290]
[161]
Qi, G.; Zhang, W.; Dai, Y. An efficient synthesis of 5-substituted 1H -tetrazoles catalyzed by graphene. Res. Chem. Intermed., 2015, 41(2), 1149-1155. Available from.
[http://dx.doi.org/10.1007/s11164-013-1260-7]
[162]
Acocella, M.R.; Mauro, M.; Falivene, L.; Cavallo, L.; Guerra, G. Inverting the diastereoselectivity of Mukaiyama-Michael addition with graphite-based catalysts. ACS Catal., 2014, 4(2), 492-496. Available from.
[http://dx.doi.org/10.1021/cs401053t]
[163]
Kumari, S.; Shekhar, A.; Mungse, H.P.; Khatri, O.P.; Pathak, D.D. Metal-free one-pot synthesis of amides using graphene oxide an efficient catalyst. RSC Advances, 2014, 4(78), 41690-41695. Available from.
[http://dx.doi.org/10.1039/C4RA07589G]
[164]
Shaabani, A.; Mahyari, M.; Hajishaabanha, F. The synthesis of xanthanes and benzoxanthanes on graphene oxide and sufated graphene nanosheets in water. Res. Chem. Intermed., 2013, 40(8), 2799-2810. Available from.
[http://dx.doi.org/10.1007/s11164-013-1129-9]
[165]
Aghayan, M.M.; Tavana, M.M.; Boukherroub, R. Direct oxidative synthesis of nitrones from aldehydes and primary anilines using graphite oxide and oxazone. Tet. Lett, 2014, 55(40), 5471-5474.
[166]
Khodabakhshi, S.; Marahel, F.; Rashidi, A.; Abbasabadi, M.K. A green synthesis of substituted coumarins using nanographene oxide as reusable catalyst. J. Chin. Chem. Soc. (Taipei), 2015, 62(5), 389-392. Available from.
[http://dx.doi.org/10.1002/jccs.201400349]
[167]
Dhopte, K.B.; Raut, D.S.; Patwardhan, A.V.; Nemade, P.R. Graphene oxide as recyclable catalyst for one-pot synthesis of α-aminophosphonates. Synth. Commun., 2015, 45(6), 778-788. Available from.
[http://dx.doi.org/10.1080/00397911.2014.989447]
[168]
Roy, B.; Ghosh, S.; Ghosh, P.; Basu, B. Graphene oxide (GO) or reduced graphene oxide (rGO): efficient catalyst for one-pot metal-free synthesis of quinoxalines from 2-nitroaniline. Tet. Lett, 2015, 56(48), 6762-6767. Available from.
[http://dx.doi.org/10.1016/j.tetlet.2015.10.065]
[169]
Khalili, D. Graphene oxide: a reusable and metal-free carbocatalyst for the one-pot synthesis of 2-amino-3-cyanopyridines. Tet. Lett, 2016, 57(15), 1721-1723. Available from.
[http://dx.doi.org/10.1016/j.tetlet.2016.03.020]
[170]
Li, J.; Wang, M.; Zhang, Y.; Fan, Z.; Zhang, W.; Sun, F.; Ma, N. Deaomatizing naphthol Mannich bases towards spiro thiazolidinethiones catalyzed by recycled reduced graphene oxide with air as oxidant. ACS Sustain. Chem.& Eng., 2016, 4, 3489-3495.
[171]
Girish, Y.R.; Pandit, S.; Pandit, S.; De, M. Graphene oxide as a carbocatalyst for a Diels-Alder reaction in an aqueous medium. Chem. Asian J., 2017, 12(18), 2393-2398. Available from.
[http://dx.doi.org/10.1002/asia.201701072] [PMID: 28815919]
[172]
Gupta, A.; Kaur, R.; Singh, D.; Kapoor, K.K. Graphene oxide: A carbocatalyst for the one-pot multicomponent synthesis of highly functionalized tetrahydropyridines. Tet. Lett, 2017, 58(26), 2583-2587. Available from.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.067]
[173]
Saha, M.; Das, A.R. Access of diverse 2-pyrrolidine, 3,4,5-substituted furanone and 2-oxodihydropyrrolea applying graphene oxide nanosheets: unravelling of solvent selectivity. Chem. Select, 2017, 2(31), 10249-10260.
[174]
Bhattacharya, S.; Ghosh, P.; Basu, B. Graphene oxide: An efficient carbocatalyst for the benign synthesis of Functionalized 1,4-benzothiazines. Tet. Lett, 2017, 58(10), 926-931. Available from.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.068]
[175]
Reddy, S.S.; Reddy, B.N.; Reddy, P.V.G.; Reddy, G.V.; Sarma, L.S. Mild and efficient synthesis of 5-(2,2-difluoro-1-phenyl cyclopropyl)-N-substituted oxadiazol-2-amines via graphene oxide as catalyst under ultrasound irradiation conditions. Chem. Select, 2017, 2(1), 356-363.
[176]
Kausar, N.; Roy, I.; Chattopadhyay, D.; Das, A.R. Synthesis of 2,3-dihydroquinolinones and quinazolin-4(3H)-ones catalyzed by graphene oxide nanosheets in an aqueous medium. “On water” synthesis accompanied by carbocatalysis and selective C-C bond cleavage. RSC Advances, 2016, 6(27), 22320-22330. Available from.
[http://dx.doi.org/10.1039/C6RA00388E]
[177]
Wan, Y.; Sang, R.; Zheng, Y.; Guo, L.; Guan, M.; Wu, Y. Graphene oxide: An efficient recyclable solid acid for the synthesis of bis(indolyl)methanes from aldehydes and indoles in water. Catal. Commun., 2017, 89, 138-142. Available from.
[http://dx.doi.org/10.1016/j.catcom.2016.09.027]
[178]
Bodhak, C.; Hazra, S.; Pramanik, A. Graphene oxide: An efficient carbocatalyst for the facile synthesis of Isoindolo [2,1-a]quinazoline-5-11-diones via Domino condensation under solvent-free conditions. Chem. Select, 2018, 3, 7707-7712. Available from.
[http://dx.doi.org/10.1002/slct.201801322]
[179]
Dehghanpour, H.R.; Mosslemin, M.H.; Mohebat, R. Graphene oxide: A carbocatalyst for the one-pot multicomponent synthesis of 5-aryl-1H-indeno[2‘1’:5,6]pyrido[2,3-d]pyrimidine-2,4,6- (3H)-trione. J. Chem. Res., 2018, 42, 35-39. Available from.
[http://dx.doi.org/10.3184/174751918X15161933697835]
[180]
Siddiqui, T.A.J.; Ghule, B.G.; Shaikh, S.; Sinde, P.V.; Gunturu, K.C.; Zubaidha, P.K.; Yun, J.M.; O’Dwyer, C.; Mane, R.S.; Kim, K.H. Metal-free heterogeneous and mesoporous biogenic graphene-oxide nanoparticle-catalyzed synthesis of bioactive benzylpyrazolyl coumarin derivatives. RSC Advances, 2018, 8, 17373-17379. Available from.
[http://dx.doi.org/10.1039/C7RA12550J]
[181]
Kundu, S.; Basu, B. Graphene oxide (GO)-catalyzed multi-component reactions: Green synthesis of library of pharmacophore 3-sulfenylimidazo[1,2-a]pyridines. RSC Advances, 2015, 5(62), 50178-50185. Available from.
[http://dx.doi.org/10.1039/C5RA04983K]
[182]
Kausar, N.; Mukherjee, P.; Das, A.R. Practical carbocatalysis by graphene oxide nanosheets in aqueous medium towards the synthesis of diversified dibenzo[1,4]diazepine scaffolds. RSC Advances, 2016, 6(91), 88904-18890. Available from.
[http://dx.doi.org/10.1039/C6RA17520A]
[183]
Mahata, S.; Sahu, A.; Shukla, P.; Rai, A.; Singh, M.; Rai, V.K. Graphene oxide catalyzed C-N/C-S/[3+2] cyclization cascade for green synthesis of Thiazolidinone in water. Lett. Org. Chem., 2018, 15, 665-672. Available from.
[http://dx.doi.org/10.2174/1570178614666171002145250]
[184]
Shukla, P.; Mahata, S.; Sahu, A.; Singh, M.; Rai, V.K.; Rai, A. First graphene oxide promoted metal-free nitrene insertion into olifines in water: Towards facile synthesis of activated aziridines. RSC Advances, 2017, 7, 48723-48729. Available from.
[http://dx.doi.org/10.1039/C7RA09351A]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 3
Year: 2020
Published on: 09 June, 2020
Page: [164 - 191]
Pages: 28
DOI: 10.2174/1570179417666200115110403
Price: $65

Article Metrics

PDF: 21
HTML: 3