Realgar Nanoparticles Inhibit Migration, Invasion and Metastasis in a Mouse Model of Breast Cancer by Suppressing Matrix Metalloproteinases and Angiogenesis

Author(s): Xi Xiaoxia, Sun Jing, Xi Dongbin, Tian Yonggang, Zhang Jingke, Zhang yanying*, Wei Hulai*

Journal Name: Current Drug Delivery

Volume 17 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Realgar, a traditional Chinese medicine, has shown antitumor efficacy in several tumor types. We previously showed that realgar nanoparticles (nano-realgar) had significant antileukemia, anti-lung cancer and anti-liver cancer effects. In addition, the anti-tumor effects of nanorealgar were significantly better than those of ordinary realgar.

Objective: To explore the inhibitory effects and molecular mechanisms of nano-realgar on the migration, invasion and metastasis of mouse breast cancer cells.

Methods: Wound-healing migration assays and Transwell invasion assays were carried out to determine the effects of nano-realgar on breast cancer cell (4T1) migration and invasion. The expression levels of matrix metalloproteinase (MMP)-2 and -9 were measured by Western blot. A murine breast cancer metastasis model was established, administered nano-realgar for 32 days and monitored for tumor growth and metastasis by an in vivo optical imaging system. Finally, living imaging and hematoxylin and eosin (HE) staining were used to measure the morphology and pathology of lung and liver cancer cell metastases, respectively. Angiogenesis was assessed by CD34 immunohistochemistry.

Results: Nano-realgar significantly inhibited the migration and invasion of breast cancer 4T1 cells and the expression of MMP-2 and -9. Meanwhile, nano-realgar effectively suppressed the abilities of tumor growth, metastasis and angiogenesis in the murine breast cancer metastasis model in a time- and dosedependent manner.

Conclusion: Nano-realgar significantly inhibited migration and invasion of mouse breast cancer cells in vitro as well as pulmonary and hepatic metastasis in vivo, which may be closely correlated with the downexpression of MMP-2 and -9 and suppression of tumor neovascularization.

Keywords: Nano-realgar, breast cancer, xenograft, metastasis, MMPs, angiogenesis.

[1]
Globocan 2018 Latest global cancer data: WHO, 2018.https://www.iarc.fr/infographics/globocan-2018-latest-global-cancer-data/ [accessed June 21, 2019];
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Christofori, G. New signals from the invasive front. Nature, 2006, 441(7092), 444-450.
[http://dx.doi.org/10.1038/nature04872] [PMID: 16724056]
[4]
Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell metastasis. Science, 2011, 331(6024), 1559-1564.
[http://dx.doi.org/10.1126/science.1203543] [PMID: 21436443]
[5]
Pharmacopoeia of the People’s Republic of China. 2010, 316.
[6]
Vuky, J.; Yu, R.; Schwartz, L.; Motzer, R.J. Phase II trial of arsenic trioxide in patients with metastatic renal cell carcinoma. Invest. New Drugs, 2002, 20(3), 327-330.
[http://dx.doi.org/10.1023/A:1016270206374] [PMID: 12201495]
[7]
Kim, K.B.; Bedikian, A.Y.; Camacho, L.H.; Papadopoulos, N.E.; McCullough, C. A phase II trial of arsenic trioxide in patients with metastatic melanoma. Cancer, 2005, 104(8), 1687-1692.
[http://dx.doi.org/10.1002/cncr.21386] [PMID: 16130126]
[8]
Wang, Y.S.; Zhou, S.T.; Wei, H.L. [Apoptosis effects of drug sensitivity leukemia cells induced by nano-realgar]. Zhongguo Zhongyao Zazhi, 2013, 38(13), 2202-2205.
[PMID: 24079254]
[9]
Yang, Y.; Chen, J.; Yi, J.; Wei, H.L.; Li, H. The apoptotic effects on lung cancer A549 cells and their cancer stem cells induced by realgar nanoparticle. Pharmacology and Clinics of Chinese Materia Medica, 2010, 26(6), 36-39.
[10]
Wang, X.; Xi, R.; Zhang, Z.; Wang, J.; Yao, W. Study on pharmacokinetics of nanoparticle realgar powders in rabbit. Pharm. J. Chin. PLA, 2002, 18(6), 324-326.
[11]
Pastorek, M.; Gronesova, P.; Cholujova, D.; Hunakova, L.; Bujnakova, Z.; Balaz, P.; Duraj, J.; Lee, T.C.; Sedlak, J. Realgar (As4S4) nanoparticles and arsenic trioxide (As2O3) induced autophagy and apoptosis in human melanoma cells in vitro. Neoplasma, 2014, 61(6), 700-709.
[http://dx.doi.org/10.4149/neo_2014_085] [PMID: 25150315]
[12]
Xi, X.; Fan, L.; Xi, D.; Wei, H.; Tian, Y.; Zhang, J.; Chen, J. Study on the anti-tumor and anti-angiogenesis action of realgar nanoparticles on B16 malignant melanoma in mice. Chin. Vet. Sci., 2015, 45(1), 97-103.
[13]
Zhang, L.; Kim, S.; Ding, W.; Tong, Y.; Zhang, X.; Pan, M.; Chen, S. Arsenic sulfide inhibits cell migration and invasion of gastric cancer in vitro and in vivo. Drug Des. Devel. Ther., 2015, 9, 5579-5590.
[PMID: 26487802]
[14]
Zhang, L.; Tong, Y.; Zhang, X.; Pan, M.; Chen, S. Arsenic sulfide combined with JQ1, chemotherapy agents, or celecoxib inhibit gastric and colon cancer cell growth. Drug Des. Devel. Ther., 2015, 9, 5851-5862.
[PMID: 26586936]
[15]
He, P.; Liu, Y.; Qi, J.; Zhu, H.; Wang, Y.; Zhao, J.; Cheng, X.; Wang, C.; Zhang, M. Prohibitin promotes apoptosis of promyelocytic leukemia induced by arsenic sulfide. Int. J. Oncol., 2015, 47(6), 2286-2295.
[http://dx.doi.org/10.3892/ijo.2015.3217] [PMID: 26498315]
[16]
Cao, H.; Feng, Y.; Chen, L. Repression of microRNA-372 by arsenic sulphide inhibits prostate cancer cell proliferation and migration through regulation of large tumour suppressor kinase 2. Basic Clin. Pharmacol. Toxicol., 2017, 120(3), 256-263.
[http://dx.doi.org/10.1111/bcpt.12687] [PMID: 27730751]
[17]
Wang, S.; Zhang, C.; Li, Y.; Li, P.; Zhang, D.; Li, C. Anti-liver cancer effect and the mechanism of arsenic sulfide in vitro and in vivo. Cancer Chemother. Pharmacol., 2019, 83(3), 519-530.
[http://dx.doi.org/10.1007/s00280-018-3755-9] [PMID: 30542770]
[18]
Francia, G.; Cruz-Munoz, W.; Man, S.; Xu, P.; Kerbel, R.S. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat. Rev. Cancer, 2011, 11(2), 135-141.
[http://dx.doi.org/10.1038/nrc3001] [PMID: 21258397]
[19]
Fantozzi, A.; Christofori, G. Mouse models of breast cancer metastasis. Breast Cancer Res., 2006, 8(4), 212-223.
[http://dx.doi.org/10.1186/bcr1530] [PMID: 16887003]
[20]
Yan, L.; Li, L.; Hao, F.; Shen, W.; Zhang, L.; Guo, H. Establishment of mice breast cancer model in BALB/c mice with 4T1 cells. Chin. J. Immunol., 2014, 30(6), 794-796.
[21]
Talmadge, J.E. Models of metastasis in drug discovery. Methods Mol. Biol., 2010, 602, 215-233.
[http://dx.doi.org/10.1007/978-1-60761-058-8_13] [PMID: 20012401]
[22]
Baklaushev, V.P.; Kilpeläinen, A.; Petkov, S.; Abakumov, M.A.; Grinenko, N.F.; Yusubalieva, G.M.; Latanova, A.A.; Gubskiy, I.L.; Zabozlaev, F.G.; Starodubova, E.S.; Abakumova, T.O.; Isaguliants, M.G.; Chekhonin, V.P. Luciferase expression allows bioluminescence imaging but imposes limitations on the orthotopic mouse (4T1) model of breast cancer. Sci. Rep., 2017, 7(1), 7715-7732.
[http://dx.doi.org/10.1038/s41598-017-07851-z] [PMID: 28798322]
[23]
Tu, S.H.; Chiou, Y.S.; Kalyanam, N.; Ho, C.T.; Chen, L.C.; Pan, M.H. Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA2 and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model. Food Funct., 2017, 8(3), 1067-1079.
[http://dx.doi.org/10.1039/C6FO01588C] [PMID: 28145547]
[24]
Condeelis, J.; Weissleder, R. In vivo imaging in cancer. Cold Spring Harb. Perspect. Biol., 2010, 2(12) a003848
[http://dx.doi.org/10.1101/cshperspect.a003848] [PMID: 20861158]
[25]
Roura, S.; Gálvez-Montón, C.; Bayes-Genis, A. Bioluminescence imaging: A shining future for cardiac regeneration. J. Cell. Mol. Med., 2013, 17(6), 693-703.
[http://dx.doi.org/10.1111/jcmm.12018] [PMID: 23402217]
[26]
Madero-Visbal, R.A.; Colon, J.F.; Hernandez, I.C.; Limaye, A.; Smith, J.; Lee, C.M.; Arlen, P.A.; Herrera, L.; Baker, C.H. Bioluminescence imaging correlates with tumor progression in an orthotopic mouse model of lung cancer. Surg. Oncol., 2012, 21(1), 23-29.
[http://dx.doi.org/10.1016/j.suronc.2010.07.008] [PMID: 20801643]
[27]
Poeschinger, T.; Renner, A.; Weber, T.; Scheuer, W. Bioluminescence imaging correlates with tumor serum marker, organ weights, histology, and human DNA levels during treatment of orthotopic tumor xenografts with antibodies. Mol. Imaging Biol., 2013, 15(1), 28-39.
[http://dx.doi.org/10.1007/s11307-012-0559-x] [PMID: 22528864]
[28]
Wang, Y.; Wang, L.; Yin, C.; An, B.; Hao, Y.; Wei, T.; Li, L.; Song, G. Arsenic trioxide inhibits breast cancer cell growth via microRNA-328/hERG pathway in MCF-7 cells. Mol. Med. Rep., 2015, 12(1), 1233-1238.
[http://dx.doi.org/10.3892/mmr.2015.3558] [PMID: 25824027]
[29]
Nooshinfar, E.; Bashash, D.; Safaroghli-Azar, A.; Bayati, S.; Rezaei-Tavirani, M.; Ghaffari, S.H.; Akbari, M.E. Melatonin promotes ATO-induced apoptosis in MCF-7 cells: Proposing novel therapeutic potential for breast cancer. Biomed. Pharmacother., 2016, 83, 456-465.
[http://dx.doi.org/10.1016/j.biopha.2016.07.004] [PMID: 27427852]
[30]
Yun, S.M.; Woo, S.H.; Oh, S.T.; Hong, S.E.; Choe, T.B.; Ye, S.K.; Kim, E.K.; Seong, M.K.; Kim, H.A.; Noh, W.C.; Lee, J.K.; Jin, H.O.; Lee, Y.H.; Park, I.C. Melatonin enhances arsenic trioxide-induced cell death via sustained upregulation of Redd1 expression in breast cancer cells. Mol. Cell. Endocrinol., 2016, 422, 64-73.
[http://dx.doi.org/10.1016/j.mce.2015.11.016] [PMID: 26607805]
[31]
Xi, X.; Fan, L.; Wei, H.; Wu, R. Experimental study on acute toxicity of realgar nanoparticles in mice. Heilongjiang Animal Sci. Vet. Med., 2013, 23(64), 12-15.
[32]
Xi, X.; Fan, L.; Xi, D.; Wei, H.; Tian, Y.; Zhang, J.; Chen, J. The anti-tumor effects and mechanism of realgar nanoparticles on orthotopic breast cancer in mice. Chin. J. Clin. Pharmacol. Ther., 2013, 18(9), 981-987.
[33]
Miller, W.H., Jr; Schipper, H.M.; Lee, J.S.; Singer, J.; Waxman, S. Mechanisms of action of arsenic trioxide. Cancer Res., 2002, 62(14), 3893-3903.
[PMID: 12124315]
[34]
Douer, D.; Tallman, M.S. Arsenic trioxide: New clinical experience with an old medication in hematologic malignancies. J. Clin. Oncol., 2005, 23(10), 2396-2410.
[http://dx.doi.org/10.1200/JCO.2005.10.217] [PMID: 15800332]
[35]
Liu, J.; Lu, Y.; Wu, Q.; Goyer, R.A.; Waalkes, M.P. Mineral arsenicals in traditional medicines: Orpiment, realgar, and arsenolite. J. Pharmacol. Exp. Ther., 2008, 326(2), 363-368.
[http://dx.doi.org/10.1124/jpet.108.139543] [PMID: 18463319]
[36]
Emadi, A.; Gore, S.D. Arsenic trioxide - An old drug rediscovered. Blood Rev., 2010, 24(4-5), 191-199.
[http://dx.doi.org/10.1016/j.blre.2010.04.001] [PMID: 20471733]
[37]
Baláž, P.; Sedlák, J. Arsenic in cancer treatment: challenges for application of realgar nanoparticles (a minireview). Toxins (Basel), 2010, 2(6), 1568-1581.
[http://dx.doi.org/10.3390/toxins2061568] [PMID: 22069650]
[38]
Wu, J.; Shao, Y.; Liu, J.; Chen, G.; Ho, P.C. The medicinal use of realgar (As4S4) and its recent development as an anticancer agent. J. Ethnopharmacol., 2011, 135(3), 595-602.
[http://dx.doi.org/10.1016/j.jep.2011.03.071] [PMID: 21497649]
[39]
Prajapati, V.; Kale, R.K.; Singh, R.P. Arsenic and its combinations in cancer therapeutics. Ther. Deliv., 2011, 2(6), 793-806.
[http://dx.doi.org/10.4155/tde.11.51] [PMID: 22822509]
[40]
Tian, Y.; Wang, X.; Xi, R.; Pan, W.; Jiang, S.; Li, Z.; Zhao, Y.; Gao, G.; Liu, D. Enhanced antitumor activity of realgar mediated by milling it to nanosize. Int. J. Nanomedicine, 2014, 9, 745-757.
[PMID: 24516332]
[41]
Ding, W.; Zhang, L.; Kim, S.; Tian, W.; Tong, Y.; Liu, J.; Ma, Y.; Chen, S. Arsenic sulfide as a potential anti-cancer drug. Mol. Med. Rep., 2015, 11(2), 968-974.
[http://dx.doi.org/10.3892/mmr.2014.2838] [PMID: 25371265]
[42]
Kamangar, F.; Dores, G.M.; Anderson, W.F. Patterns of cancer incidence, mortality, and prevalence across five continents: Defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol., 2006, 24(14), 2137-2150.
[http://dx.doi.org/10.1200/JCO.2005.05.2308] [PMID: 16682732]
[43]
Bael, T.E.; Peterson, B.L.; Gollob, J.A. Phase II trial of arsenic trioxide and ascorbic acid with temozolomide in patients with metastatic melanoma with or without central nervous system metastases. Melanoma Res., 2008, 18(2), 147-151.
[http://dx.doi.org/10.1097/CMR.0b013e3282f2a7ae] [PMID: 18337652]
[44]
Recht, A.; Come, S.E.; Henderson, I.C.; Gelman, R.S.; Silver, B.; Hayes, D.F.; Shulman, L.N.; Harris, J.R. The sequencing of chemotherapy and radiation therapy after conservative surgery for early-stage breast cancer. N. Engl. J. Med., 1996, 334(21), 1356-1361.
[http://dx.doi.org/10.1056/NEJM199605233342102] [PMID: 8614420]
[45]
Hess, K.R.; Varadhachary, G.R.; Taylor, S.H.; Wei, W.; Raber, M.N.; Lenzi, R.; Abbruzzese, J.L. Metastatic patterns in adenocarcinoma. Cancer, 2006, 106(7), 1624-1633.
[http://dx.doi.org/10.1002/cncr.21778] [PMID: 16518827]
[46]
Wu, Q.; Li, J.; Zhu, S.; Wu, J.; Chen, C.; Liu, Q.; Wei, W.; Zhang, Y.; Sun, S. Breast cancer subtypes predict the preferential site of distant metastases: A SEER based study. Oncotarget, 2017, 8(17), 27990-27996.
[http://dx.doi.org/10.18632/oncotarget.15856] [PMID: 28427196]
[47]
Fan, L.; Xi, X.; Wei, H. Study on anti-tumor effect of arsenic trioxide on orthotopic breast cancer in mice by the optical in vivo imaging technology. Chin. Vet. Sci., 2013, 43(2), 170-176.
[48]
Kasukabe, T.; Okabe-Kado, J.; Kato, N.; Honma, Y.; Kumakura, S. Cotylenin A and arsenic trioxide cooperatively suppress cell proliferation and cell invasion activity in human breast cancer cells. Int. J. Oncol., 2015, 46(2), 841-848.
[http://dx.doi.org/10.3892/ijo.2014.2760] [PMID: 25405645]
[49]
Zhang, S.; Ma, C.; Pang, H.; Zeng, F.; Cheng, L.; Fang, B.; Ma, J.; Shi, Y.; Hong, H.; Chen, J.; Wang, Z.; Xia, J. Arsenic trioxide suppresses cell growth and migration via inhibition of miR-27a in breast cancer cells. Biochem. Biophys. Res. Commun., 2016, 469(1), 55-61.
[http://dx.doi.org/10.1016/j.bbrc.2015.11.071] [PMID: 26592661]
[50]
Wang, T.; Meng, J.; Wang, C.; Wen, T.; Jia, M.; Ge, Y.; Xie, L.; Hao, S.; Liu, J.; Xu, H. Inhibition of murine breast cancer metastases by hydrophilic As4S4 nanoparticles is associated with decreased ROS and HIF-1α downregulation. Front. Oncol., 2019, 9, 333.
[http://dx.doi.org/10.3389/fonc.2019.00333] [PMID: 31106156]
[51]
Valastyan, S.; Weinberg, R.A. Tumor metastasis: Molecular insights and evolving paradigms. Cell, 2011, 147(2), 275-292.
[http://dx.doi.org/10.1016/j.cell.2011.09.024] [PMID: 22000009]
[52]
Liotta, L.A.; Stetler-Stevenson, W.G. Tumor invasion and metastasis: An imbalance of positive and negative regulation. Cancer Res., 1991, 51(18)(Suppl.), 5054s-5059s.
[PMID: 1884381]
[53]
MacDonald, I.C.; Groom, A.C.; Chambers, A.F. Cancer spread and micrometastasis development: Quantitative approaches for in vivo models. BioEssays, 2002, 24(10), 885-893.
[http://dx.doi.org/10.1002/bies.10156] [PMID: 12325121]
[54]
Liu, Y.; Cao, X. Characteristics and Significance of the pre-metastatic niche. Cancer Cell, 2016, 30(5), 668-681.
[http://dx.doi.org/10.1016/j.ccell.2016.09.011] [PMID: 27846389]
[55]
Li, X.; Li, H.; Xu, Y. The mechanism of nanometer realgar to inhibit the epithelial mesenchymal transition of breast cancer MCF-7 cells. World Chin. Medicine, 2016, 11(3), 495-497.
[56]
Li, X.; Li, H.; Xu, Y. Effect of Nanometer Realgar on Breast Cancer MCF-7 Cells’s Malignant Behavior of Invasion and Metastasis. J. Shandong Univ. TCM, 2015, 39(5), 453-455.
[57]
Verma, R.P.; Hansch, C. Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q)SARs. Bioorg. Med. Chem., 2007, 15(6), 2223-2268.
[http://dx.doi.org/10.1016/j.bmc.2007.01.011] [PMID: 17275314]
[58]
Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell, 2010, 141(1), 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[59]
Jablonska-Trypuc, A.; Matejczyk, M.; Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzyme Inhib Med Chem, 2016, 31(sup1), 177-183.
[60]
Cui, N.; Hu, M.; Khalil, R.A. Biochemical and biological attributes of matrix metalloproteinases. Prog. Mol. Biol. Transl. Sci., 2017, 147, 1-73.
[http://dx.doi.org/10.1016/bs.pmbts.2017.02.005] [PMID: 28413025]
[61]
Coussens, L.M.; Werb, Z. Matrix metalloproteinases and the development of cancer. Chem. Biol., 1996, 3(11), 895-904.
[http://dx.doi.org/10.1016/S1074-5521(96)90178-7] [PMID: 8939708]
[62]
Nabeshima, K.; Inoue, T.; Shimao, Y.; Sameshima, T. Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol. Int., 2002, 52(4), 255-264.
[http://dx.doi.org/10.1046/j.1440-1827.2002.01343.x] [PMID: 12031080]
[63]
Zhang, Y.; Chen, Q. Relationship between matrix metalloproteinases and the occurrence and development of ovarian cancer. Braz. J. Med. Biol. Res., 2017, 50(6)e6104
[http://dx.doi.org/10.1590/1414-431x20176104] [PMID: 28538838]
[64]
Alaseem, A.; Alhazzani, K.; Dondapati, P.; Alobid, S.; Bishayee, A.; Rathinavelu, A. Matrix metalloproteinases: A challenging paradigm of cancer management. Semin. Cancer Biol., 2019, 56, 100-115.
[http://dx.doi.org/10.1016/j.semcancer.2017.11.008] [PMID: 29155240]
[65]
Si, L.; Yan, X.; Hao, W.; Ma, X.; Ren, H.; Ren, B.; Li, D.; Dong, Z.; Zheng, Q. Licochalcone D induces apoptosis and inhibits migration and invasion in human melanoma A375 cells. Oncol. Rep., 2018, 39(5), 2160-2170.
[PMID: 29565458]
[66]
Lv, Y.; Zhao, X.; Zhu, L.; Li, S.; Xiao, Q.; He, W.; Yin, L. Targeting intracellular MMPs efficiently inhibits tumor metastasis and angiogenesis. Theranostics, 2018, 8(10), 2830-2845.
[http://dx.doi.org/10.7150/thno.23209] [PMID: 29774078]
[67]
Gomes, L.R.; Terra, L.F.; Wailemann, R.A.M.; Labriola, L.; Sogayar, M.C. TGF-β1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells. BMC Cancer, 2012, 12, 26.
[http://dx.doi.org/10.1186/1471-2407-12-26] [PMID: 22260435]
[68]
Wang, L.; Cao, H.; Pang, X.; Li, K.; Dang, W.; Tang, H.; Chen, T. [The effect of leptin and its mechanisms on the migration and invasion of human breast cancer MCF-7 cells]. Xibao Yu Fenzi Mianyixue Zazhi, 2013, 29(12), 1272-1276.
[PMID: 24321071]
[69]
Li, Y-J.; Zhang, T.; Tu, J-X.; Li, G.; Zhou, Y. Tangeretin inhibits IL-1β induced proliferation of rheumatoid synovial fibroblasts and the production of COX-2, PGE2 and MMPs via modulation of p38 MAPK/ERK/JNK pathways. Bangladesh J. Pharmacol., 2015, 10(3), 714-725.
[http://dx.doi.org/10.3329/bjp.v10i3.22865]
[70]
Muscella, A.; Vetrugno, C.; Marsigliante, S. CCL20 promotes migration and invasiveness of human cancerous breast epithelial cells in primary culture. Mol. Carcinog., 2017, 56(11), 2461-2473.
[http://dx.doi.org/10.1002/mc.22693] [PMID: 28618084]
[71]
Zanotto-Filho, A.; Rajamanickam, S.; Loranc, E.; Masamsetti, V.P.; Gorthi, A.; Romero, J.C.; Tonapi, S.; Gonçalves, R.M.; Reddick, R.L.; Benavides, R.; Kuhn, J.; Chen, Y.; Bishop, A.J.R. Sorafenib improves alkylating therapy by blocking induced inflammation, invasion and angiogenesis in breast cancer cells. Cancer Lett., 2018, 425, 101-115.
[http://dx.doi.org/10.1016/j.canlet.2018.03.037] [PMID: 29608984]
[72]
Helbig, G.; Christopherson, K.W., II; Bhat-Nakshatri, P.; Kumar, S.; Kishimoto, H.; Miller, K.D.; Broxmeyer, H.E.; Nakshatri, H. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J. Biol. Chem., 2003, 278(24), 21631-21638.
[http://dx.doi.org/10.1074/jbc.M300609200] [PMID: 12690099]
[73]
Qin, M.; Liu, S.; Li, A.; Xu, C.; Tan, L.; Huang, J.; Liu, S. NIK- and IKKβ-binding protein promotes colon cancer metastasis by activating the classical NF-κB pathway and MMPs. Tumour Biol., 2016, 37(5), 5979-5990.
[http://dx.doi.org/10.1007/s13277-015-4433-8] [PMID: 26596835]
[74]
Jia, Y.; Pang, C.; Zhao, K.; Jiang, J.; Zhang, T.; Peng, J.; Sun, P.; Qian, Y. Garcinol Suppresses IL-1β-Induced Chondrocyte Inflammation and Osteoarthritis via Inhibition of the NF-κB Signaling Pathway. Inflammation, 2019, 42(5), 1754-1766.
[http://dx.doi.org/10.1007/s10753-019-01037-7] [PMID: 31201586]
[75]
Hung, C.Y.; Lee, C.H.; Chiou, H.L.; Lin, C.L.; Chen, P.N.; Lin, M.T.; Hsieh, Y.H.; Chou, M.C. Praeruptorin-B Inhibits 12-O-Tetradecanoylphorbol-13-Acetate-Induced cell invasion by targeting AKT/NF-κB via matrix metalloproteinase-2/-9 expression in human cervical cancer cells. Cell. Physiol. Biochem., 2019, 52(6), 1255-1266.
[http://dx.doi.org/10.33594/000000088] [PMID: 31026389]
[76]
Qi, Y.; Li, H.; Liu, Z. Effect of nanometer realgar interfeing on A549 lung cancer cell proliferation and its mechanism. China J. Cancer Prev. Treat., 2013, 20(1), 27-30.
[77]
Qi, Y.; Li, H.; Yu, L. Effects of Nano-realgar on the expression of VEGF and HIF-1 in lung cancer A549 cells. Zhongguo Laonianxue Zazhi, 2015, 35, 720-722.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 2
Year: 2020
Page: [148 - 158]
Pages: 11
DOI: 10.2174/1567201817666200115105633
Price: $65

Article Metrics

PDF: 22
HTML: 4