Treatment with the Ketone Body D-β-hydroxybutyrate Attenuates Autophagy Activated by NMDA and Reduces Excitotoxic Neuronal Damage in the Rat Striatum In Vivo

Author(s): Teresa Montiel, Luis A. Montes-Ortega, Susana Flores-Yáñez, Lourdes Massieu*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 12 , 2020

Become EABM
Become Reviewer

Abstract:

Background: The ketone bodies (KB), β-hydroxybutyrate (BHB) and acetoacetate, have been proposed for the treatment of acute and chronic neurological disorders, however, the molecular mechanisms involved in KB protection are not well understood. KB can substitute for glucose and support mitochondrial metabolism increasing cell survival. We have reported that the D-isomer of BHB (D-BHB) stimulates autophagic degradation during glucose deprivation in cultured neurons increasing cell viability. Autophagy is a lysosomal degradation process of damaged proteins and organelles activated during nutrient deprivation to obtain building blocks and energy. However, impaired or excessive autophagy can contribute to neuronal death.

Objective: The aim of the present study was to test whether D-BHB can preserve autophagic function in an in vivo model of excitotoxic damage induced by the administration of the glutamate receptor agonist, N-methyl-Daspartate (NMDA), in the rat striatum.

Methods: D-BHB was administered through an intravenous injection followed by either an intraperitoneal injection (i.v+i.p) or a continuous epidural infusion (i.v+pump), or through a continuous infusion of D-BHB alone. Changes in the autophagy proteins ATG7, ATG5, BECLIN 1 (BECN1), LC3, Sequestrosome1/p62 (SQSTM1/ p62) and the lysosomal membrane protein LAMP2, were evaluated by immunoblot. The lesion volume was measured in cresyl violet-stained brain sections.

Results: Autophagy is activated early after NMDA injection but autophagic degradation is impaired due to the cleavage of LAMP2. Twenty-four h after NMDA intrastriatal injection, the autophagic flux is re-established, but LAMP2 cleavage is still observed. The administration of D-BHB through the i.v+pump protocol reduced the content of autophagic proteins and the cleavage of LAMP2, suggesting decreased autophagosome formation and lysosomal membrane preservation, improving autophagic degradation. D-BHB also reduced brain injury. The i.v+i.p administration protocol and the infusion of D-BHB alone showed no effect on autophagy activation or degradation.

Keywords: Autophagic flux, ketone bodies, excitotoxicity, striatum, lysosomal degradation, neuronal death.

[1]
Freeman JM, Vining EP. Seizures decrease rapidly after fasting: preliminary studies of the ketogenic diet. Arch Pediatr Adolesc Med 1999; 153(9): 946-9.
[http://dx.doi.org/10.1001/archpedi.153.9.946] [PMID: 10482210]
[2]
Masino SA, Rho JM. Mechanisms of ketogenic diet action Jasper’s basic mechanisms of the epilepsies Bethesda, MD. National Center for Biotechnology Information(US). 2012; pp. 1483-515.
[http://dx.doi.org/10.1093/med/9780199746545.003.0078]
[3]
Lutas A, Yellen G. The ketogenic diet: metabolic influences on brain excitability and epilepsy. Trends Neurosci 2013; 36(1): 32-40.
[http://dx.doi.org/10.1016/j.tins.2012.11.005] [PMID: 23228828]
[4]
Puchowicz MA, Smith CL, Bomont C, Koshy J, David F, Brunengraber H. Dog model of therapeutic ketosis induced by oral administration of R,S-1,3-butanediol diacetoacetate. J Nutr Biochem 2000; 11(5): 281-7.
[http://dx.doi.org/10.1016/S0955-2863(00)00079-6] [PMID: 10876102]
[5]
Puchowicz MA, Zechel JL, Valerio J, et al. Neuroprotection in diet-induced ketotic rat brain after focal ischemia. J Cereb Blood Flow Metab 2008; 28(12): 1907-16.
[http://dx.doi.org/10.1038/jcbfm.2008.79] [PMID: 18648382]
[6]
Yin J, Han P, Tang Z, Liu Q, Shi J. Sirtuin 3 mediates neuroprotection of ketones against ischemic stroke. J Cereb Blood Flow Metab 2015; 35(11): 1783-9.
[http://dx.doi.org/10.1038/jcbfm.2015.123] [PMID: 26058697]
[7]
Guo M, Wang X, Zhao Y, et al. Ketogenic diet improves brain ischemic tolerance and inhibits NLRP3 inflammasome activation by preventing drp1-mediated mitochondrial fission and endoplasmic reticulum stress. Front Mol Neurosci 2018; 11: 86.
[http://dx.doi.org/10.3389/fnmol.2018.00086] [PMID: 29662437]
[8]
Prins ML, Lee SM, Fujima LS, Hovda DA. Increased cerebral uptake and oxidation of exogenous betaHB improves ATP following traumatic brain injury in adult rats. J Neurochem 2004; 90(3): 666-72.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02542.x] [PMID: 15255945]
[9]
Prins ML, Fujima LS, Hovda DA. Age-dependent reduction of cortical contusion volume by ketones after traumatic brain injury. J Neurosci Res 2005; 82(3): 413-20.
[http://dx.doi.org/10.1002/jnr.20633] [PMID: 16180224]
[10]
Van der Auwera I, Wera S, Van Leuven F, Henderson ST. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease. Nutr Metab (Lond) 2005; 2: 28-8.
[http://dx.doi.org/10.1186/1743-7075-2-28] [PMID: 16229744]
[11]
Zhang J, Cao Q, Li S, et al. 3-Hydroxybutyrate methyl ester as a potential drug against Alzheimer’s disease via mitochondria protection mechanism. Biomaterials 2013; 34(30): 7552-62.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.043] [PMID: 23849878]
[12]
Newport MT, VanItallie TB, Kashiwaya Y, King MT, Veech RL. A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease. Alzheimers Dement 2015; 11(1): 99-103.
[http://dx.doi.org/10.1016/j.jalz.2014.01.006] [PMID: 25301680]
[13]
Croteau E, Castellano CA, Richard MA, et al. Ketogenic medium chain triglycerides increase brain energy metabolism in Alzheimer’s disease. J Alzheimers Dis 2018; 64(2): 551-61.
[http://dx.doi.org/10.3233/JAD-180202] [PMID: 29914035]
[14]
Lim S, Chesser AS, Grima JC, et al. D-β-hydroxybutyrate is protective in mouse models of Huntington’s disease. PLoS One 2011; 6(9) e24620
[http://dx.doi.org/10.1371/journal.pone.0024620] [PMID: 21931779]
[15]
Phillips MCL, Murtagh DKJ, Gilbertson LJ, Asztely FJS, Lynch CDP. Low-fat versus ketogenic diet in Parkinson’s disease: a pilot randomized controlled trial. Mov Disord 2018; 33(8): 1306-14.
[http://dx.doi.org/10.1002/mds.27390] [PMID: 30098269]
[16]
Maalouf M, Sullivan PG, Davis L, Kim DY, Rho JM. Ketones inhibit mitochondrial of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience 2007; 145(1): 256-64.
[http://dx.doi.org/10.1016/j.neuroscience.2006.11.065] [PMID: 17240074]
[17]
Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Brain Res Rev 2009; 59(2): 293-315.
[http://dx.doi.org/10.1016/j.brainresrev.2008.09.002] [PMID: 18845187]
[18]
Marosi K, Kim SW, Moehl K, et al. 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons. J Neurochem 2016; 139(5): 769-81.
[http://dx.doi.org/10.1111/jnc.13868] [PMID: 27739595]
[19]
Julio-Amilpas A, Montiel T, Soto-Tinoco E, Gerónimo-Olvera C, Massieu L. Protection of hypoglycemia-induced neuronal death by β-hydroxybutyrate involves the preservation of energy levels and decreased production of reactive oxygen species. J Cereb Blood Flow Metab 2015; 35(5): 851-60.
[http://dx.doi.org/10.1038/jcbfm.2015.1] [PMID: 25649993]
[20]
Yudkoff M, Daikhin Y, Nissim I, et al. Response of brain amino acid metabolism to ketosis. Neurochem Int 2005; 47(1-2): 119-28.
[http://dx.doi.org/10.1016/j.neuint.2005.04.014] [PMID: 15888376]
[21]
Juge N, Gray JA, Omote H, et al. Metabolic control of vesicular glutamate transport and release. Neuron 2010; 68(1): 99-112.
[http://dx.doi.org/10.1016/j.neuron.2010.09.002] [PMID: 20920794]
[22]
Ma W, Berg J, Yellen G. Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels. J Neurosci 2007; 27(14): 3618-25.
[http://dx.doi.org/10.1523/JNEUROSCI.0132-07.2007] [PMID: 17409226]
[23]
Haces ML, Hernández-Fonseca K, Medina-Campos ON, Montiel T, Pedraza-Chaverri J, Massieu L. Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions. Exp Neurol 2008; 211(1): 85-96.
[http://dx.doi.org/10.1016/j.expneurol.2007.12.029] [PMID: 18339375]
[24]
Shimazu T, Hirschey MD, Newman J, et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 2013; 339(6116): 211-4.
[http://dx.doi.org/10.1126/science.1227166] [PMID: 23223453]
[25]
Youm YH, Nguyen KY, Grant RW, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 2015; 21(3): 263-9.
[http://dx.doi.org/10.1038/nm.3804] [PMID: 25686106]
[26]
Camberos-Luna L, Gerónimo-Olvera C, Montiel T, Rincon-Heredia R, Massieu L. The ketone body, β-hydroxybutyrate stimulates the autophagic flux and prevents neuronal death induced by glucose deprivation in cortical cultured neurons. Neurochem Res 2016; 41(3): 600-9.
[http://dx.doi.org/10.1007/s11064-015-1700-4] [PMID: 26303508]
[27]
Gerónimo-Olvera C, Montiel T, Rincon-Heredia R, Castro-Obregón S, Massieu L. Autophagy fails to prevent glucose deprivation/glucose reintroduction-induced neuronal death due to calpain-mediated lysosomal dysfunction in cortical neurons. Cell Death Dis 2017; 8(6) e2911
[http://dx.doi.org/10.1038/cddis.2017.299] [PMID: 28661473]
[28]
Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 2009; 30(4): 379-87.
[http://dx.doi.org/10.1038/aps.2009.24] [PMID: 19343058]
[29]
Bano D, Ankarcrona M. Beyond the critical point: An overview of excitotoxicity, calcium overload and the downstream consequences. Neurosci Lett 2018; 663: 79-85.
[http://dx.doi.org/10.1016/j.neulet.2017.08.048] [PMID: 28843346]
[30]
Camacho A, Massieu L. Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death. Arch Med Res 2006; 37(1): 11-8.
[http://dx.doi.org/10.1016/j.arcmed.2005.05.014] [PMID: 16314180]
[31]
Kostandy BB. The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol Sci 2012; 33(2): 223-37.
[http://dx.doi.org/10.1007/s10072-011-0828-5] [PMID: 22044990]
[32]
Estrada Sánchez AM, Mejía-Toiber J, Massieu L. Excitotoxic neuronal death and the pathogenesis of Huntington’s disease. Arch Med Res 2008; 39(3): 265-76.
[http://dx.doi.org/10.1016/j.arcmed.2007.11.011] [PMID: 18279698]
[33]
Corona JC, Tovar-y-Romo LB, Tapia R. Glutamate excitotoxicity and therapeutic targets for amyotrophic lateral sclerosis. Expert Opin Ther Targets 2007; 11(11): 1415-28.
[http://dx.doi.org/10.1517/14728222.11.11.1415] [PMID: 18028007]
[34]
Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004; 6(4): 463-77.
[http://dx.doi.org/10.1016/S1534-5807(04)00099-1] [PMID: 15068787]
[35]
Kulkarni VV, Maday S. Neuronal endosomes to lysosomes: A journey to the soma. J Cell Biol 2018; 217: 2977-9.
[http://dx.doi.org/10.1083/jcb.201806139]
[36]
Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2016; 12(1): 1-222.
[37]
Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell 2010; 40(2): 280-93.
[http://dx.doi.org/10.1016/j.molcel.2010.09.023] [PMID: 20965422]
[38]
Li L, Chen Y, Gibson SB. Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal 2013; 25(1): 50-65.
[http://dx.doi.org/10.1016/j.cellsig.2012.09.020] [PMID: 23000343]
[39]
Chen Y, Azad MB, Gibson SB. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 2009; 16(7): 1040-52.
[http://dx.doi.org/10.1038/cdd.2009.49] [PMID: 19407826]
[40]
Ogata M, Hino S, Saito A, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 2006; 26(24): 9220-31.
[http://dx.doi.org/10.1128/MCB.01453-06] [PMID: 17030611]
[41]
Vidal RL, Hetz C. Crosstalk between the UPR and autophagy pathway contributes to handling cellular stress in neurodegenerative disease. Autophagy 2012; 8(6): 970-2.
[http://dx.doi.org/10.4161/auto.20139] [PMID: 22617512]
[42]
Rashid HO, Yadav RK, Kim HR, Chae HJ. ER stress: Autophagy induction, inhibition and selection. Autophagy 2015; 11(11): 1956-77.
[http://dx.doi.org/10.1080/15548627.2015.1091141] [PMID: 26389781]
[43]
Gerónimo-Olvera C, Massieu L. Autophagy as a homeostatic mechanism in response to stress conditions in the central nervous system. Mol Neurobiol 2019; 56(9): 6594-608.
[http://dx.doi.org/10.1007/s12035-019-1546-x] [PMID: 30905004]
[44]
Galluzzi L, Bravo-San Pedro JM, Blomgren K, Kroemer G. Autophagy in acute brain injury. Nat Rev Neurosci 2016; 17(8): 467-84.
[http://dx.doi.org/10.1038/nrn.2016.51] [PMID: 27256553]
[45]
Rabinowitz JD, White E. Autophagy and metabolism. Science 2010; 330(6009): 1344-8.
[http://dx.doi.org/10.1126/science.1193497] [PMID: 21127245]
[46]
Dong XX, Wang YR, Qin S, et al. p53 mediates autophagy activation and mitochondria dysfunction in kainic acid-induced excitotoxicity in primary striatal neurons. Neuroscience 2012; 207: 52-64.
[http://dx.doi.org/10.1016/j.neuroscience.2012.01.018] [PMID: 22330834]
[47]
Descloux C, Ginet V, Rummel C, Truttmann AC, Puyal J. Enhanced autophagy contributes to excitotoxic lesions in a rat model of preterm brain injury. Cell Death Dis 2018; 9(9): 853.
[http://dx.doi.org/10.1038/s41419-018-0916-z] [PMID: 30154458]
[48]
Wang L, Song LF, Chen XY, et al. MiR-181b inhibits P38/JNK signaling pathway to attenuate autophagy and apoptosis in juvenile rats with kainic acid-induced epilepsy via targeting TLR4. CNS Neurosci Ther 2019; 25: 112-22.
[49]
Yin WY, Ye Q, Huang HJ, et al. Salidroside protects cortical neurons against glutamate-induced cytotoxicity by inhibiting autophagy. Mol Cell Biochem 2016; 419(1-2): 53-64.
[http://dx.doi.org/10.1007/s11010-016-2749-3] [PMID: 27357827]
[50]
Kim H, Choi J, Ryu J, et al. Activation of autophagy during glutamate-induced HT22 cell death. Biochem Biophys Res Commun 2009; 388(2): 339-44.
[http://dx.doi.org/10.1016/j.bbrc.2009.08.007] [PMID: 19665009]
[51]
Yang Y, Luo P, Xu H, et al. RNF146 Inhibits Excessive Autophagy by Modulating the Wnt-β-Catenin Pathway in Glutamate Excitotoxicity Injury. Front Cell Neurosci 2017; 11: 59.
[http://dx.doi.org/10.3389/fncel.2017.00059] [PMID: 28321181]
[52]
Fulceri F, Ferrucci M, Lazzeri G, et al. Autophagy activation in glutamate-induced motor neuron loss. Arch Ital Biol 2011; 149(1): 101-11.
[PMID: 21412719]
[53]
Pérez-Carrión MD, Pérez-Martínez FC, Merino S, et al. Dendrimer-mediated siRNA delivery knocks down Beclin 1 and potentiates NMDA-mediated toxicity in rat cortical neurons. J Neurochem 2012; 120(2): 259-68.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07556.x] [PMID: 22035151]
[54]
Sadasivan S, Zhang Z, Larner SF, et al. Acute NMDA toxicity in cultured rat cerebellar granule neurons is accompanied by autophagy induction and late onset autophagic cell death phenotype. BMC Neurosci 2010; 11: 21.
[http://dx.doi.org/10.1186/1471-2202-11-21] [PMID: 20167092]
[55]
Kulbe JR, Mulcahy Levy JM, Coultrap SJ, Thorburn A, Bayer KU. Excitotoxic glutamate insults block autophagic flux in hippocampal neurons. Brain Res 2014; 1542: 12-9.
[http://dx.doi.org/10.1016/j.brainres.2013.10.032] [PMID: 24505621]
[56]
Seabold S, Perktold J. Statsmodels: Econometric and statistical modeling with python. Proceedings of the 9th Python in Science Conference. 2010 June 28-July 3; Texas, USA.
[57]
Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 2nd ed. 1986.
[58]
Zhang S, Zhu C, Liu Q, Wei Y, Wang W. Effect of chloroquine on expressions of Li-1β and TNF-α in hippocampus and cerebral cortex of rats with seizures induced by penetylenetetrazole. Chin J Histochem Cytochem 2005; pp. 2005-05.
[59]
Villalpando Rodriguez GE, Torriglia A. Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2. Biochim Biophys Acta 2013; 1833(10): 2244-53.
[http://dx.doi.org/10.1016/j.bbamcr.2013.05.019] [PMID: 23747342]
[60]
Redmann M, Benavides GA, Berryhill TF, et al. Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons. Redox Biol 2017; 11: 73-81.
[http://dx.doi.org/10.1016/j.redox.2016.11.004] [PMID: 27889640]
[61]
Gao Z, Gammoh N, Wong PM, Erdjument-Bromage H, Tempst P, Jiang X. Processing of autophagic protein LC3 by the 20S proteasome. Autophagy 2010; 6(1): 126-37.
[http://dx.doi.org/10.4161/auto.6.1.10928] [PMID: 20061800]
[62]
Ruschak AM, Slassi M, Kay LE, Schimmer AD. Novel proteasome inhibitors to overcome bortezomib resistance. J Natl Cancer Inst 2011; 103(13): 1007-17.
[http://dx.doi.org/10.1093/jnci/djr160] [PMID: 21606441]
[63]
Newman JC, Verdin E. Ketone bodies as signaling metabolites. Trends Endocrinol Metab 2014; 25(1): 42-52.
[http://dx.doi.org/10.1016/j.tem.2013.09.002] [PMID: 24140022]
[64]
Wood TR, Stubbs BJ, Juul SE. Exogenous ketone bodies as promising neuroprotective agents for developmental brain injury. Dev Neurosci 2018; 40(5-6): 451-62.
[http://dx.doi.org/10.1159/000499563] [PMID: 31085911]
[65]
Evans M, Cogan KE, Egan B. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation 2017; 595:: 2857-71.
[http://dx.doi.org/10.1113/JP273185]
[66]
Koppel SJ, Swerdlow RH. Neuroketotherapeutics: a modern review of a century-old therapy. Neurochem Int 2018; 117: 114-25.
[http://dx.doi.org/10.1016/j.neuint.2017.05.019] [PMID: 28579059]
[67]
Suzuki M, Suzuki M, Sato K, et al. Effect of beta-hydroxybutyrate, a cerebral function improving agent, on cerebral hypoxia, anoxia and ischemia in mice and rats. Jpn J Pharmacol 2001; 87(2): 143-50.
[http://dx.doi.org/10.1254/jjp.87.143] [PMID: 11700013]
[68]
Suzuki M, Suzuki M, Kitamura Y, et al. Beta-hydroxybutyrate, a cerebral function improving agent, protects rat brain against ischemic damage caused by permanent and transient focal cerebral ischemia. Jpn J Pharmacol 2002; 89(1): 36-43.
[http://dx.doi.org/10.1254/jjp.89.36] [PMID: 12083741]
[69]
Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122(6): 927-39.
[http://dx.doi.org/10.1016/j.cell.2005.07.002] [PMID: 16179260]
[70]
Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 2008; 30(6): 678-88.
[http://dx.doi.org/10.1016/j.molcel.2008.06.001] [PMID: 18570871]
[71]
Sahara S, Yamashima T. Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death. Biochem Biophys Res Commun 2010; 393(4): 806-11.
[http://dx.doi.org/10.1016/j.bbrc.2010.02.087] [PMID: 20171158]
[72]
Yamashima T, Saido TC, Takita M, et al. Transient brain ischaemia provokes Ca2+, PIP2 and calpain responses prior to delayed neuronal death in monkeys. Eur J Neurosci 1996; 8(9): 1932-44.
[http://dx.doi.org/10.1111/j.1460-9568.1996.tb01337.x] [PMID: 8921284]
[73]
Mejía-Toiber J, Montiel T, Massieu L. D-beta-hydroxybutyrate prevents glutamate-mediated lipoperoxidation and neuronal damage elicited during glycolysis inhibition in vivo. Neurochem Res 2006; 31(12): 1399-408.
[http://dx.doi.org/10.1007/s11064-006-9189-5] [PMID: 17115265]
[74]
Higgins GC, Devenish RJ, Beart PM, Nagley P. Autophagic activity in cortical neurons under acute oxidative stress directly contributes to cell death. Cell Mol Life Sci 2011; 68(22): 3725-40.
[http://dx.doi.org/10.1007/s00018-011-0667-9] [PMID: 21437645]
[75]
Castino R, Bellio N, Follo C, Murphy D, Isidoro C. Inhibition of PI3k class III-dependent autophagy prevents apoptosis and necrosis by oxidative stress in dopaminergic neuroblastoma cells. Toxicol Sci 2010; 117(1): 152-62.
[http://dx.doi.org/10.1093/toxsci/kfq170] [PMID: 20525898]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 12
Year: 2020
Page: [1377 - 1387]
Pages: 11
DOI: 10.2174/1381612826666200115103646
Price: $65

Article Metrics

PDF: 16
HTML: 2