Critical View on the Usage of Ribavirin in Already Existing Psychostimulant-Use Disorder

Author(s): Branka Petković*, Srđan Kesić, Vesna Pešić

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Substance-use disorder represents a frequently hidden non-communicable chronic disease. Patients with intravenous drug addiction are at high risk of direct exposure to a variety of viral infections and are considered to be the largest subpopulation infected with the hepatitis C virus. Ribavirin is a synthetic nucleoside analog that has been used as an integral component of hepatitis C therapy. However, ribavirin medication is quite often associated with pronounced psychiatric adverse effects. It is not well understood to what extent ribavirin per se contributes to changes in drug-related neurobehavioral disturbances, especially in the case of psychostimulant drugs, such as amphetamine. It is now well-known that repeated amphetamine usage produces psychosis in humans and behavioral sensitization in animals. On the other hand, ribavirin has an affinity for adenosine A1 receptors that antagonistically modulate the activity of dopamine D1 receptors, which play a critical role in the development of behavioral sensitization. This review will focus on the current knowledge of neurochemical/ neurobiological changes that exist in the psychostimulant drug-addicted brain itself and the antipsychotic-like efficiency of adenosine agonists. Particular attention will be paid to the potential side effects of ribavirin therapy, and the opportunities and challenges related to its application in already existing psychostimulant-use disorder.

Keywords: Ribavirin, adenosine, amphetamine, brain, antipsychotic efficiency, physiological response.

[1]
Verma U, Sharma R, Gupta P, Kapoor B, Bano G, Sawhney V. New uses for old drugs: novel therapeutic options. Indian J Pharmacol 2005; 37: 279-87.
[http://dx.doi.org/10.4103/0253-7613.16850]
[2]
Xue H, Li J, Xie H, Wang Y. Review of drug repositioning approaches and resources. Int J Biol Sci 2018; 14(10): 1232-44.
[http://dx.doi.org/10.7150/ijbs.24612] [PMID: 30123072]
[3]
Huggins JW. Prospects for treatment of viral hemorrhagic fevers with ribavirin, a broad-spectrum antiviral drug. Rev Infect Dis 1989; 11(Suppl. 4): S750-61.
[http://dx.doi.org/10.1093/clinids/11.Supplement_4.S750] [PMID: 2546248]
[4]
Gilbert BE, Wyde PR, Wilson SZ, Robins RK. Aerosol and intraperitoneal administration of ribavirin and ribavirin triacetate: pharmacokinetics and protection of mice against intracerebral infection with influenza A/WSN virus. Antimicrob Agents Chemother 1991; 35(7): 1448-53.
[http://dx.doi.org/10.1128/AAC.35.7.1448] [PMID: 1929307]
[5]
Ishii T, Hosoya M, Mori S, Shigeta S, Suzuki H. Effective ribavirin concentration in hamster brains for antiviral chemotherapy for subacute sclerosing panencephalitis. Antimicrob Agents Chemother 1996; 40(1): 241-3.
[http://dx.doi.org/10.1128/AAC.40.1.241] [PMID: 8787915]
[6]
McJunkin JE, Khan R, de los Reyes EC, et al. treatment of severe la crosse encephalitis with intravenous ribavirin following diagnosis by brain biopsy. Pediatrics 1997; 99(2): 261-7.
[http://dx.doi.org/10.1542/peds.99.2.261] [PMID: 9024460]
[7]
Solbrig MV, Schlaberg R, Briese T, Horscroft N, Lipkin WI. Neuroprotection and reduced proliferation of microglia in ribavirin-treated bornavirus-infected rats. Antimicrob Agents Chemother 2002; 46(7): 2287-91.
[http://dx.doi.org/10.1128/AAC.46.7.2287-2291.2002] [PMID: 12069992]
[8]
Borroto-Esoda K, Myrick F, Feng J, Jeffrey J, Furman P. In vitro combination of amdoxovir and the inosine monophosphate dehydrogenase inhibitors mycophenolic acid and ribavirin demonstrates potent activity against wild-type and drug-resistant variants of human immunodeficiency virus type 1. Antimicrob Agents Chemother 2004; 48(11): 4387-94.
[http://dx.doi.org/10.1128/AAC.48.11.4387-4394.2004] [PMID: 15504868]
[9]
Hosoya M, Mori S, Tomoda A, et al. Pharmacokinetics and effects of ribavirin following intraventricular administration for treatment of subacute sclerosing panencephalitis. Antimicrob Agents Chemother 2004; 48(12): 4631-5.
[http://dx.doi.org/10.1128/AAC.48.12.4631-4635.2004] [PMID: 15561836]
[10]
Abenavoli L, Mazza M, Almasio PL. The optimal dose of ribavirin for chronic hepatitis c: from literature evidence to clinical practice: The optimal dose of ribavirin for chronic hepatitis C. Hepat Mon 2011; 11(4): 240-6.
[PMID: 22087150]
[11]
Beaucourt S, Vignuzzi M. Ribavirin: a drug active against many viruses with multiple effects on virus replication and propagation. Molecular basis of ribavirin resistance. Curr Opin Virol 2014; 8: 10-5.
[http://dx.doi.org/10.1016/j.coviro.2014.04.011] [PMID: 24846716]
[12]
Marcelin JR, Wilson JW, Razonable RR. Mayo clinic hematology/oncology and transplant infectious diseases services. oral ribavirin therapy for respiratory syncytial virus infections in moderately to severely immunocompromised patients. Transpl Infect Dis 2014; 16(2): 242-50.
[http://dx.doi.org/10.1111/tid.12194] [PMID: 24621016]
[13]
Zając M, Muszalska I, Sobczak A, et al. Hepatitis C - New drugs and treatment prospects. Eur J Med Chem 2019; 165: 225-49.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.025] [PMID: 30685524]
[14]
Malaguarnera M, Laurino A, Di Fazio I, et al. Neuropsychiatric effects and type of IFN-alpha in chronic hepatitis C. J Interferon Cytokine Res 2001; 21(5): 273-8.
[http://dx.doi.org/10.1089/107999001300177457] [PMID: 11429157]
[15]
de Knegt RJ, Bezemer G, Van Gool AR, et al. Randomised clinical trial: escitalopram for the prevention of psychiatric adverse events during treatment with peginterferon-alfa-2a and ribavirin for chronic hepatitis C. Aliment Pharmacol Ther 2011; 34(11-12): 1306-17.
[http://dx.doi.org/10.1111/j.1365-2036.2011.04867.x] [PMID: 21999489]
[16]
Fioravante M, Alegre SM, Marin DM, Lorena SL, Pereira TS, Soares EC. Weight loss and resting energy expenditure in patients with chronic hepatitis C before and during standard treatment. Nutrition 2012; 28(6): 630-4.
[http://dx.doi.org/10.1016/j.nut.2011.08.010] [PMID: 22196981]
[17]
Cattie JE, Letendre SL, Woods SP, et al. Translational methamphetamine AIDS research center (TMARC) group. Persistent neurocognitive decline in a clinic sample of hepatitis C virus-infected persons receiving interferon and ribavirin treatment. J Neurovirol 2014; 20(6): 561-70.
[http://dx.doi.org/10.1007/s13365-014-0265-3] [PMID: 25326107]
[18]
Mahajan S, Avasthi A, Grover S, Chawla YK. Role of baseline depressive symptoms in the development of depressive episode in patients receiving antiviral therapy for hepatitis C infection. J Psychosom Res 2014; 77(2): 109-15.
[http://dx.doi.org/10.1016/j.jpsychores.2014.05.008] [PMID: 25077851]
[19]
Janać B, Pesić V, Peković S, Rakić L, Stojiljković M. Different effects of adenosine A1 agonist ribavirin on amphetamine-induced total locomotor and stereotypic activities in rats. Ann N Y Acad Sci 2005; 1048: 396-9.
[http://dx.doi.org/10.1196/annals.1342.048] [PMID: 16154961]
[20]
Janać B, Pesić V, Peković S, Rakić L, Stojiljković M. The time-course of ribavirin-provoked changes of basal and AMPH-induced motor activities in rats. Exp Brain Res 2005; 165(3): 402-6.
[http://dx.doi.org/10.1007/s00221-005-2311-0] [PMID: 15883801]
[21]
Petković B, Stojadinović G, Kesić S, et al. Psychomotor activity and body weight gain after exposure to low ribavirin doses in rats: Role of treatment duration. Arch Biol Sci 2019; 71: 357-68.
[http://dx.doi.org/10.2298/ABS190205018P]
[22]
WHO. Global status report on noncommunicable diseases 2014. Available at: https://www.who.int/nmh/publications/ncd-status-report-2014/en
[23]
Parry CD, Patra J, Rehm J. Alcohol consumption and non-communicable diseases: epidemiology and policy implications. Addiction 2011; 106(10): 1718-24.
[http://dx.doi.org/10.1111/j.1360-0443.2011.03605.x] [PMID: 21819471]
[24]
Glantz S, Gonzalez M. Effective tobacco control is key to rapid progress in reduction of non-communicable diseases. Lancet 2012; 379(9822): 1269-71.
[http://dx.doi.org/10.1016/S0140-6736(11)60615-6] [PMID: 21963004]
[25]
Lee IM, Shiroma EJ, Lobelo F, et al. Lancet physical activity series working group. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 2012; 380(9838): 219-29.
[http://dx.doi.org/10.1016/S0140-6736(12)61031-9] [PMID: 22818936]
[26]
Hyseni L, Atkinson M, Bromley H, et al. The effects of policy actions to improve population dietary patterns and prevent diet-related non-communicable diseases: scoping review. Eur J Clin Nutr 2017; 71(6): 694-711.
[http://dx.doi.org/10.1038/ejcn.2016.234] [PMID: 27901036]
[27]
Lopez AD, Williams TN, Levin A, et al. Remembering the forgotten non-communicable diseases. BMC Med 2014; 12: 200.
[http://dx.doi.org/10.1186/s12916-014-0200-8] [PMID: 25604462]
[28]
Wang PS, Aguilar-Gaxiola S, Alonso J, et al. Use of mental health services for anxiety, mood, and substance disorders in 17 countries in the WHO world mental health surveys. Lancet 2007; 370(9590): 841-50.
[http://dx.doi.org/10.1016/S0140-6736(07)61414-7] [PMID: 17826169]
[29]
Rehm J, Shield KD, Gmel G, Rehm MX, Frick U. Modeling the impact of alcohol dependence on mortality burden and the effect of available treatment interventions in the European Union. Eur Neuropsychopharmacol 2013; 23(2): 89-97.
[http://dx.doi.org/10.1016/j.euroneuro.2012.08.001] [PMID: 22920734]
[30]
Evans-Lacko S, Aguilar-Gaxiola S, Al-Hamzawi A, et al. Socio-economic variations in the mental health treatment gap for people with anxiety, mood, and substance use disorders: results from the WHO world mental health (WMH) surveys. Psychol Med 2018; 48(9): 1560-71.
[http://dx.doi.org/10.1017/S0033291717003336] [PMID: 29173244]
[31]
McLellan AT. Substance misuse and substance use disorders: Why do they matter in healthcare? Trans Am Clin Climatol Assoc 2017; 128: 112-30.
[PMID: 28790493]
[32]
Koob GF, Sanna PP, Bloom FE. Neuroscience of addiction. Neuron 1998; 21(3): 467-76.
[http://dx.doi.org/10.1016/S0896-6273(00)80557-7] [PMID: 9768834]
[33]
Koob GF. The neurobiology of addiction: a neuroadaptational view relevant for diagnosis. Addiction 2006; 101(Suppl. 1): 23-30.
[http://dx.doi.org/10.1111/j.1360-0443.2006.01586.x] [PMID: 16930158]
[34]
Torregrossa MM, Kalivas PW. Microdialysis and the neurochemistry of addiction. Pharmacol Biochem Behav 2008; 90(2): 261-72.
[http://dx.doi.org/10.1016/j.pbb.2007.09.001] [PMID: 17928041]
[35]
Gould TJ. Addiction and cognition. Addict Sci Clin Pract 2010; 5(2): 4-14.
[PMID: 22002448]
[36]
Gardner EL. Addiction and brain reward and antireward pathways. Adv Psychosom Med 2011; 30: 22-60.
[http://dx.doi.org/10.1159/000324065] [PMID: 21508625]
[37]
McLellan AT, Lewis DC, O’Brien CP, Kleber HD. Drug dependence, a chronic medical illness: implications for treatment, insurance, and outcomes evaluation. JAMA 2000; 284(13): 1689-95.
[http://dx.doi.org/10.1001/jama.284.13.1689] [PMID: 11015800]
[38]
Koelega HS. Stimulant drugs and vigilance performance: a review. Psychopharmacology (Berl) 1993; 111(1): 1-16.
[http://dx.doi.org/10.1007/BF02257400] [PMID: 7870923]
[39]
Khantzian EJ. The self-medication hypothesis of addictive disorders: focus on heroin and cocaine dependence. Am J Psychiatry 1985; 142(11): 1259-64.
[http://dx.doi.org/10.1176/ajp.142.11.1259] [PMID: 3904487]
[40]
Schiffer F. Psychotherapy of nine successfully treated cocaine abusers: techniques and dynamics. J Subst Abuse Treat 1988; 5(3): 131-7.
[http://dx.doi.org/10.1016/0740-5472(88)90001-3] [PMID: 3236386]
[41]
WHO. Technical Briefs on amphetamine-type stimulants (ATS) 2011. Available at: https://www.who.int/hiv/pub/idu/ats_ tech_brief/en/
[42]
UNODC. World Drug Report 2012. Available at: https://www.unodc.org/unodc/en/data-and-analysis/WDR-2012.html
[43]
Clement BA, Goff CM, Forbes TDA. Toxic amines and alkaloids from Acacia berlandieri. Phytochemistry 1997; 46: 249-54.
[http://dx.doi.org/10.1016/S0031-9422(97)00240-9]
[44]
Clement BA, Goff CM, Forbes TDA. Toxic amines and alkaloids from Acacia rigidula. Phytochemistry 1998; 49: 1377-80.
[http://dx.doi.org/10.1016/S0031-9422(97)01022-4]
[45]
Rasmussen N. On speed: the many lives of amphetamine. New York, New York University Press: 2008. Ix.
[46]
Piness G, Miller H, Alles G. Clinical observations on phenylaminoethanol sulphate. JAMA 1930; 94: 790-1.
[http://dx.doi.org/10.1001/jama.1930.02710370034010]
[47]
AMA Council on Pharmacy and Chemistry. Benzedrine. JAMA 1933; 101: 1315.
[48]
Rasmussen N. America’s first amphetamine epidemic 1929-1971: a quantitative and qualitative retrospective with implications for the present. Am J Public Health 2008; 98(6): 974-85.
[http://dx.doi.org/10.2105/AJPH.2007.110593] [PMID: 18445805]
[49]
Bradley C. The behavior of children receiving benzedrine. Am J Psychiatry 1937; 94: 577-85.
[http://dx.doi.org/10.1176/ajp.94.3.577]
[50]
Rasmussen N. Medical science and the military: the allies’ use of amphetamine during World War II. J Interdiscip Hist 2011; 42(2): 205-33.
[http://dx.doi.org/10.1162/JINH_a_00212] [PMID: 22073434]
[51]
Heal DJ, Smith SL, Gosden J, Nutt DJ. Amphetamine, past and present-a pharmacological and clinical perspective. J Psychopharmacol (Oxford) 2013; 27(6): 479-96.
[http://dx.doi.org/10.1177/0269881113482532] [PMID: 23539642]
[52]
Yokel RA, Pickens R. Self-administration of optical isomers of amphetamine and methylamphetamine by rats. J Pharmacol Exp Ther 1973; 187(1): 27-33.
[PMID: 4795731]
[53]
Van Kammen DP, Murphy DL. Attenuation of the euphoriant and activating effects of d- and l-amphetamine by lithium carbonate treatment. Psychopharmacology (Berl) 1975; 44(3): 215-24.
[http://dx.doi.org/10.1007/BF00428897] [PMID: 1824]
[54]
Berman SM, Kuczenski R, McCracken JT, London ED. Potential adverse effects of amphetamine treatment on brain and behavior: a review. Mol Psychiatry 2009; 14(2): 123-42.
[http://dx.doi.org/10.1038/mp.2008.90] [PMID: 18698321]
[55]
Herzberg D. Entitled to Addiction? Pharmaceuticals, race, and America’s first drug war. Bull Hist Med 2017; 91(3): 586-623.
[http://dx.doi.org/10.1353/bhm.2017.0061] [PMID: 29081434]
[56]
Connell PH. Clinical manifestations and treatment of amphetamine type of dependence. JAMA 1966; 196: 718-23.
[http://dx.doi.org/10.1001/jama.1966.03100210088024]
[57]
Nishino S. Narcolepsy: pathophysiology and pharmacology. J Clin Psychiatry 2007; 68(Suppl. 13): 9-15.
[PMID: 18078360]
[58]
Mitler MM, Aldrich MS, Koob GF, Zarcone VP. Narcolepsy and its treatment with stimulants. ASDA standards of practice. Sleep 1994; 17(4): 352-71.
[PMID: 7973321]
[59]
Ioannides-Demos LL, Proietto J, McNeil JJ. Pharmacotherapy for obesity. Drugs 2005; 65(10): 1391-418.
[http://dx.doi.org/10.2165/00003495-200565100-00006] [PMID: 15977970]
[60]
Pérez-Mañá C, Castells X, Torrens M, Capellà D, Farre M. Efficacy of psychostimulant drugs for amphetamine abuse or dependence. Cochrane Database Syst Rev 2013; (9): CD009695
[PMID: 23996457]
[61]
Kramer JC, Fischman VS, Littlefield DC. Amphetamine abuse. Pattern and effects of high doses taken intravenously. JAMA 1967; 201(5): 305-9.
[http://dx.doi.org/10.1001/jama.1967.03130050039011] [PMID: 6071725]
[62]
Lynch WJ, Nicholson KL, Dance ME, Morgan RW, Foley PL. Animal models of substance abuse and addiction: implications for science, animal welfare, and society. Comp Med 2010; 60(3): 177-88.
[PMID: 20579432]
[63]
Bozarth MA. Drug addiction as a psychobiological process Addiction controversies. London: harwood academic publishers. 1990; 112-34.
[64]
Post RM. Intermittent versus continuous stimulation: effect of time interval on the development of sensitization or tolerance. Life Sci 1980; 26(16): 1275-82.
[http://dx.doi.org/10.1016/0024-3205(80)90085-5] [PMID: 6991841]
[65]
Kalivas PW, Stewart J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev 1991; 16(3): 223-44.
[http://dx.doi.org/10.1016/0165-0173(91)90007-U] [PMID: 1665095]
[66]
Strakowski SM, Sax KW, Rosenberg HL, DelBello MP, Adler CM. Human response to repeated low-dose d-amphetamine: evidence for behavioral enhancement and tolerance. Neuropsychopharmacology 2001; 25(4): 548-54.
[http://dx.doi.org/10.1016/S0893-133X(01)00253-6] [PMID: 11557168]
[67]
Robinson TE, Becker JB. Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 1986; 396(2): 157-98.
[http://dx.doi.org/10.1016/0165-0173(86)90002-0] [PMID: 3527341]
[68]
Post RM, Weiss SR, Pert A. Sensitization and kindling effects of chronic cocaine administration. Cocaine: pharmacology, physiology and clinical strategies. Ann Arbor 1992; 115-61.
[69]
Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 1993; 18(3): 247-91.
[http://dx.doi.org/10.1016/0165-0173(93)90013-P] [PMID: 8401595]
[70]
Robinson TE, Berridge KC. Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci 2008; 363(1507): 3137-46.
[http://dx.doi.org/10.1098/rstb.2008.0093] [PMID: 18640920]
[71]
Vezina P. Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neurosci Biobehav Rev 2004; 27(8): 827-39.
[http://dx.doi.org/10.1016/j.neubiorev.2003.11.001] [PMID: 15019432]
[72]
Valjent E, Bertran-Gonzalez J, Aubier B, Greengard P, Hervé D, Girault JA. Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol. Neuropsychopharmacology 2010; 35(2): 401-15.
[http://dx.doi.org/10.1038/npp.2009.143] [PMID: 19759531]
[73]
Steketee JD, Kalivas PW. Drug wanting: behavioral sensitization and relapse to drug-seeking behavior. Pharmacol Rev 2011; 63(2): 348-65.
[http://dx.doi.org/10.1124/pr.109.001933] [PMID: 21490129]
[74]
Cador M, Bjijou Y, Stinus L. Evidence of a complete independence of the neurobiological substrates for the induction and expression of behavioral sensitization to amphetamine. Neuroscience 1995; 65(2): 385-95.
[http://dx.doi.org/10.1016/0306-4522(94)00524-9] [PMID: 7777156]
[75]
Wood S, Sage JR, Shuman T, Anagnostaras SG. Psychostimulants and cognition: a continuum of behavioral and cognitive activation. Pharmacol Rev 2013; 66(1): 193-221.
[http://dx.doi.org/10.1124/pr.112.007054] [PMID: 24344115]
[76]
Berridge CW, Stalnaker TA. Relationship between low-dose amphetamine-induced arousal and extracellular norepinephrine and dopamine levels within prefrontal cortex. Synapse 2002; 46(3): 140-9.
[http://dx.doi.org/10.1002/syn.10131] [PMID: 12325041]
[77]
Grilly DM, Loveland A. What is a “low dose” of d-amphetamine for inducing behavioral effects in laboratory rats? Psychopharmacology (Berl) 2001; 153(2): 155-69.
[http://dx.doi.org/10.1007/s002130000580] [PMID: 11205415]
[78]
Walker-Batson D, Smith P, Curtis S, Unwin H, Greenlee R. Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence. Stroke 1995; 26(12): 2254-9.
[http://dx.doi.org/10.1161/01.STR.26.12.2254] [PMID: 7491646]
[79]
Walker-Batson D, Curtis S, Wolf T, Porch B. Amphetamine treatment accelerates recovery from aphasia. Brain Lang 1996; 55: 27-9.
[80]
Rognli EB, Bramness JG. Understanding the relationship between amphetamines and psychosis. Curr Addict Rep 2015; 2: 285-92.
[http://dx.doi.org/10.1007/s40429-015-0077-4]
[81]
Kelly PH, Iversen SD. Selective 6OHDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant-induced locomotor activity in rats. Eur J Pharmacol 1976; 40(1): 45-56.
[http://dx.doi.org/10.1016/0014-2999(76)90352-6] [PMID: 1033072]
[82]
Swerdlow NR, Vaccarino FJ, Amalric M, Koob GF. The neural substrates for the motor-activating properties of psychostimulants: a review of recent findings. Pharmacol Biochem Behav 1986; 25(1): 233-48.
[http://dx.doi.org/10.1016/0091-3057(86)90261-3] [PMID: 2875470]
[83]
Solanto MV. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res 1998; 94(1): 127-52.
[http://dx.doi.org/10.1016/S0166-4328(97)00175-7] [PMID: 9708845]
[84]
Porrino LJ, Lucignani G, Dow-Edwards D, Sokoloff L. Correlation of dose-dependent effects of acute amphetamine administration on behavior and local cerebral metabolism in rats. Brain Res 1984; 307(1-2): 311-20.
[http://dx.doi.org/10.1016/0006-8993(84)90485-2] [PMID: 6540614]
[85]
Kuczenski R. Biphasic effects of amphetamine on striatal dopamine dynamics. Eur J Pharmacol 1977; 46(3): 249-57.
[http://dx.doi.org/10.1016/0014-2999(77)90340-5] [PMID: 590334]
[86]
Tyler CB, Galloway MP. Acute administration of amphetamine: differential regulation of dopamine synthesis in dopamine projection fields. J Pharmacol Exp Ther 1992; 261(2): 567-73.
[PMID: 1578374]
[87]
dela Peña I, Gevorkiana R, Shi WX. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms. Eur J Pharmacol 2015; 764: 562-70.
[http://dx.doi.org/10.1016/j.ejphar.2015.07.044] [PMID: 26209364]
[88]
Kuczenski R, Segal DS. Regional norepinephrine response to amphetamine using dialysis: comparison with caudate dopamine. Synapse 1992; 11(2): 164-9.
[http://dx.doi.org/10.1002/syn.890110210] [PMID: 1626314]
[89]
Florin SM, Kuczenski R, Segal DS. Regional extracellular norepinephrine responses to amphetamine and cocaine and effects of clonidine pretreatment. Brain Res 1994; 654(1): 53-62.
[http://dx.doi.org/10.1016/0006-8993(94)91570-9] [PMID: 7982098]
[90]
Kuczenski R, Segal D. Concomitant characterization of behavioral and striatal neurotransmitter response to amphetamine using in vivo microdialysis. J Neurosci 1989; 9(6): 2051-65.
[http://dx.doi.org/10.1523/JNEUROSCI.09-06-02051.1989] [PMID: 2566664]
[91]
Florin SM, Kuczenski R, Segal DS. Amphetamine-induced changes in behavior and caudate extracellular acetylcholine. Brain Res 1992; 581(1): 53-8.
[http://dx.doi.org/10.1016/0006-8993(92)90343-8] [PMID: 1498671]
[92]
Vanderschuren LJ, Schmidt ED, De Vries TJ, Van Moorsel CA, Tilders FJ, Schoffelmeer AN. A single exposure to amphetamine is sufficient to induce long-term behavioral, neuroendocrine, and neurochemical sensitization in rats. J Neurosci 1999; 19(21): 9579-86.
[http://dx.doi.org/10.1523/JNEUROSCI.19-21-09579.1999] [PMID: 10531460]
[93]
Wolgin DL. Contingent tolerance to amphetamine hypophagia: new insights into the role of environmental context in the expression of stereotypy. Neurosci Biobehav Rev 2000; 24(3): 279-94.
[http://dx.doi.org/10.1016/S0149-7634(99)00070-6] [PMID: 10781692]
[94]
Carlton PL, Wolgin DL. Contingent tolerance to the anorexigenic effects of amphetamine. Physiol Behav 1971; 7(2): 221-3.
[http://dx.doi.org/10.1016/0031-9384(71)90287-3] [PMID: 5148908]
[95]
Wolgin DL, Thompson GB, Oslan IA. Tolerance to amphetamine: contingent suppression of stereotypy mediates recovery of feeding. Behav Neurosci 1987; 101(2): 264-71.
[http://dx.doi.org/10.1037/0735-7044.101.2.264] [PMID: 3580129]
[96]
Wolgin DL. Development and reversal of sensitization to amphetamine-induced hypophagia: role of temporal, pharmacological, and behavioral variables. Psychopharmacology (Berl) 1995; 117(1): 49-54.
[http://dx.doi.org/10.1007/BF02245097] [PMID: 7724702]
[97]
Caprioli D, Celentano M, Paolone G, Badiani A. Modeling the role of environment in addiction. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31(8): 1639-53.
[http://dx.doi.org/10.1016/j.pnpbp.2007.08.029] [PMID: 17889978]
[98]
Harris SC, Ivy AC, Searle LM. The mechanism of amphetamine-induced loss of weight; a consideration of the theory of hunger and appetite. J Am Med Assoc 1947; 134(17): 1468-75.
[http://dx.doi.org/10.1001/jama.1947.02880340022005] [PMID: 20255617]
[99]
Foltin RW, Kelly TH, Fischman MW. The effects of d-amphetamine on food intake of humans living in a residential laboratory. Appetite 1990; 15(1): 33-45.
[http://dx.doi.org/10.1016/0195-6663(90)90098-S] [PMID: 2241141]
[100]
Makris AP, Rush CR, Frederich RC, Kelly TH. Wake-promoting agents with different mechanisms of action: comparison of effects of modafinil and amphetamine on food intake and cardiovascular activity. Appetite 2004; 42(2): 185-95.
[http://dx.doi.org/10.1016/j.appet.2003.11.003] [PMID: 15010183]
[101]
Foltin RW, Kelly TH, Fischman MW. Effect of amphetamine on human macronutrient intake. Physiol Behav 1995; 58(5): 899-907.
[http://dx.doi.org/10.1016/0031-9384(95)00149-D] [PMID: 8577886]
[102]
MacPhail RC, Gollub LR. Independence of the effects of d-amphetamine and food deprivation or body weight on the food consumption of rats. Psychopharmacology (Berl) 1974; 34(2): 163-73.
[http://dx.doi.org/10.1007/BF00421941] [PMID: 4818023]
[103]
Paul SM, Hulihan-Giblin B, Skolnick P. (+)-Amphetamine binding to rat hypothalamus: relation to anorexic potency for phenylethylamines. Science 1982; 218(4571): 487-90.
[http://dx.doi.org/10.1126/science.7123250] [PMID: 7123250]
[104]
Hauger R, Hulihan-Giblin B, Angel I, et al. Glucose regulates [3H](+)-amphetamine binding and Na+K+ ATPase activity in the hypothalamus: a proposed mechanism for the glucostatic control of feeding and satiety. Brain Res Bull 1986; 16(2): 281-8.
[http://dx.doi.org/10.1016/0361-9230(86)90043-2] [PMID: 3008957]
[105]
Kuo DY, Hsu CT, Cheng JT. Role of hypothalamic neuropeptide Y (NPY) in the change of feeding behavior induced by repeated treatment of amphetamine. Life Sci 2001; 70(3): 243-51.
[http://dx.doi.org/10.1016/S0024-3205(01)01401-1] [PMID: 12005258]
[106]
Hsieh YS, Yang SF, Kuo DY. Amphetamine, an appetite suppressant, decreases neuropeptide Y immunoreactivity in rat hypothalamic paraventriculum. Regul Pept 2005; 127(1-3): 169-76.
[http://dx.doi.org/10.1016/j.regpep.2004.11.007] [PMID: 15680483]
[107]
Leibowitz SF. Catecholaminergic mechanisms of the lateral hypothalamus: their role in the mediation of amphetamine anorexia. Brain Res 1975; 98(3): 529-45.
[http://dx.doi.org/10.1016/0006-8993(75)90371-6] [PMID: 1182535]
[108]
McGregor C, Srisurapanont M, Jittiwutikarn J, Laobhripatr S, Wongtan T, White JM. The nature, time course and severity of methamphetamine withdrawal. Addiction 2005; 100(9): 1320-9.
[http://dx.doi.org/10.1111/j.1360-0443.2005.01160.x] [PMID: 16128721]
[109]
Der-Avakian A, Markou A. Withdrawal from chronic exposure to amphetamine, but not nicotine, leads to an immediate and enduring deficit in motivated behavior without affecting social interaction in rats. Behav Pharmacol 2010; 21(4): 359-68.
[http://dx.doi.org/10.1097/FBP.0b013e32833c7cc8] [PMID: 20571366]
[110]
Orsini CA, Ginton G, Shimp KG, Avena NM, Gold MS, Setlow B. Food consumption and weight gain after cessation of chronic amphetamine administration. Appetite 2014; 78: 76-80.
[http://dx.doi.org/10.1016/j.appet.2014.03.013] [PMID: 24667154]
[111]
Pathiraja A, Marazziti D, Cassano GB, Diamond BI, Borison RL. Phenomenology and neurobiology of cocaine withdrawal: are they related? Prog Neuropsychopharmacol Biol Psychiatry 1995; 19(6): 1021-34.
[http://dx.doi.org/10.1016/0278-5846(95)00194-8] [PMID: 8584680]
[112]
Barr AM, Phillips AG. Withdrawal following repeated exposure to d-amphetamine decreases responding for a sucrose solution as measured by a progressive ratio schedule of reinforcement. Psychopharmacology (Berl) 1999; 141(1): 99-106.
[http://dx.doi.org/10.1007/s002130050812] [PMID: 9952071]
[113]
Riley DE, Liu L, Cohen B, Robinson S, Groessl EJ, Ho SB. Characteristics and impact of methamphetamine use in patients with chronic hepatitis C. J Addict Med 2014; 8(1): 25-32.
[http://dx.doi.org/10.1097/ADM.0000000000000001] [PMID: 24343127]
[114]
WHO. Global hepatitis report 2017. Availbale at: https://www. who.int/hepatitis/publications/global-hepatitis-report2017/en/
[115]
Nelson PK, Mathers BM, Cowie B, et al. Global epidemiology of hepatitis B and hepatitis C in people who inject drugs: results of systematic reviews. Lancet 2011; 378(9791): 571-83.
[http://dx.doi.org/10.1016/S0140-6736(11)61097-0] [PMID: 21802134]
[116]
Hilsden RJ, Macphail G, Grebely J, Conway B, Lee SS. Directly observed pegylated interferon plus self-administered ribavirin for the treatment of hepatitis C virus infection in people actively using drugs: a randomized controlled trial. Clin Infect Dis 2013; 57(Suppl. 2): S90-6.
[http://dx.doi.org/10.1093/cid/cit327] [PMID: 23884072]
[117]
Ho SB, Brau N, Cheung R, et al. Integrated care increases treatment and improves outcomes of patients with chronic hepatitis C virus infection and psychiatric illness or substance abuse Clin Gastroenterol Hepatol 2015; 13: 14. e1-3.
[http://dx.doi.org/10.1016/j.cgh.2015.02.022]
[118]
Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 2001; 24: 31-55.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.31] [PMID: 11283304]
[119]
Boison D. Adenosine as a modulator of brain activity. Drug News Perspect 2007; 20(10): 607-11.
[http://dx.doi.org/10.1358/dnp.2007.20.10.1181353] [PMID: 18301794]
[120]
Fredholm BB. Adenosine-a physiological or pathophysiological agent? J Mol Med (Berl) 2014; 92(3): 201-6.
[http://dx.doi.org/10.1007/s00109-013-1101-6] [PMID: 24362516]
[121]
Rial D, Lara DR, Cunha RA. The adenosine neuromodulation system in schizophrenia. Int Rev Neurobiol 2014; 119: 395-449.
[http://dx.doi.org/10.1016/B978-0-12-801022-8.00016-7] [PMID: 25175974]
[122]
Sheth S, Brito R, Mukherjea D, Rybak LP, Ramkumar V. Adenosine receptors: expression, function and regulation. Int J Mol Sci 2014; 15(2): 2024-52.
[http://dx.doi.org/10.3390/ijms15022024] [PMID: 24477263]
[123]
Ballarín M, Fredholm BB, Ambrosio S, Mahy N. Extracellular levels of adenosine and its metabolites in the striatum of awake rats: inhibition of uptake and metabolism. Acta Physiol Scand 1991; 142(1): 97-103.
[http://dx.doi.org/10.1111/j.1748-1716.1991.tb09133.x] [PMID: 1877368]
[124]
Dunwiddie TV, Diao L. Extracellular adenosine concentrations in hippocampal brain slices and the tonic inhibitory modulation of evoked excitatory responses. J Pharmacol Exp Ther 1994; 268(2): 537-45.
[PMID: 8113965]
[125]
Berman RF, Fredholm BB, Aden U, O’Connor WT. Evidence for increased dorsal hippocampal adenosine release and metabolism during pharmacologically induced seizures in rats. Brain Res 2000; 872(1-2): 44-53.
[http://dx.doi.org/10.1016/S0006-8993(00)02441-0] [PMID: 10924674]
[126]
Latini S, Pedata F. Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 2001; 79(3): 463-84.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00607.x] [PMID: 11701750]
[127]
Akula KK, Kulkarni SK. Adenosinergic system: an assorted approach to therapeutics for drug addiction. Future Neurol 2012; 7: 307-27.
[http://dx.doi.org/10.2217/fnl.12.19]
[128]
Ballesteros-Yáñez I, Castillo CA, Merighi S, Gessi S. The role of adenosine receptors in psychostimulant addiction. Front Pharmacol 2018; 8: 985.
[http://dx.doi.org/10.3389/fphar.2017.00985] [PMID: 29375384]
[129]
Fouyssac M, Everitt BJ, Belin D. Cellular basis of the intrastriatal functional shifts that underlie the development of habits: relevance for drug addiction. Curr Opin Behav Sci 2017; 13: 144-51.
[http://dx.doi.org/10.1016/j.cobeha.2016.11.018]
[130]
Brown SJ, Gill R, Evenden JL, Iversen SD, Richardson PJ. Striatal A2 receptor regulates apomorphine-induced turning in rats with unilateral dopamine denervation. Psychopharmacology (Berl) 1991; 103(1): 78-82.
[http://dx.doi.org/10.1007/BF02244078] [PMID: 1900945]
[131]
Turgeon SM, Pollack AE, Schusheim L, Fink JS. Effects of selective adenosine A1 and A2a agonists on amphetamine-induced locomotion and c-Fos in striatum and nucleus accumbens. Brain Res 1996; 707(1): 75-80.
[http://dx.doi.org/10.1016/0006-8993(95)01223-0] [PMID: 8866715]
[132]
Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K. Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 1997; 20(10): 482-7.
[http://dx.doi.org/10.1016/S0166-2236(97)01096-5] [PMID: 9347617]
[133]
Rimondini R, Ferré S, Ogren SO, Fuxe K. Adenosine A2A agonists: a potential new type of atypical antipsychotic. Neuropsychopharmacology 1997; 17(2): 82-91.
[http://dx.doi.org/10.1016/S0893-133X(97)00033-X] [PMID: 9252983]
[134]
Yoshimatsu A, Shimazoe T, Kawashimo A, et al. Effects of adenosine A1- and A2A-receptor agonists on enhancement of dopamine release from the striatum in methamphetamine-sensitized rats. Jpn J Pharmacol 2001; 86(2): 254-7.
[http://dx.doi.org/10.1254/jjp.86.254] [PMID: 11459131]
[135]
Chen JF, Moratalla R, Yu L, et al. Inactivation of adenosine A2A receptors selectively attenuates amphetamine-induced behavioral sensitization. Neuropsychopharmacology 2003; 28(6): 1086-95.
[http://dx.doi.org/10.1038/sj.npp.1300152] [PMID: 12700712]
[136]
Fuxe K, Ferré S, Genedani S, Franco R, Agnati LF. Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav 2007; 92(1-2): 210-7.
[http://dx.doi.org/10.1016/j.physbeh.2007.05.034] [PMID: 17572452]
[137]
Bachtell RK. Cocaine addiction and adenosine A1 and A2A receptorsThe neuroscience of cocaine. San Diego: Academic Press 2017; pp. 429-37.
[http://dx.doi.org/10.1016/B978-0-12-803750-8.00043-9]
[138]
Kobayashi H, Ujike H, Iwata N, et al. The adenosine A2A receptor is associated with methamphetamine dependence/psychosis in the Japanese population. Behav Brain Funct 2010; 6: 50.
[http://dx.doi.org/10.1186/1744-9081-6-50] [PMID: 20799992]
[139]
Moscoso-Castro M, Gracia-Rubio I, Ciruela F, Valverde O. Genetic blockade of adenosine A2A receptors induces cognitive impairments and anatomical changes related to psychotic symptoms in mice. Eur Neuropsychopharmacol 2016; 26(7): 1227-40.
[http://dx.doi.org/10.1016/j.euroneuro.2016.04.003] [PMID: 27133030]
[140]
Shen HY, Singer P, Lytle N, et al. Adenosine augmentation ameliorates psychotic and cognitive endophenotypes of schizophrenia. J Clin Invest 2012; 122(7): 2567-77.
[http://dx.doi.org/10.1172/JCI62378] [PMID: 22706302]
[141]
Ciruela F, Fernández-Dueñas V, Altafaj X, et al. The adenosinergic system in the neurobiology of schizophrenia: Prospective adenosine receptor-based pharmacotherapy. Psychiatry and neuroscience update - vol II: a translational approach. Cham: Springer International Publishing. 2017; 405-19.
[142]
Asaoka N, Nishitani N, Kinoshita H, et al. An adenosine A2A receptor antagonist improves multiple symptoms of repeated quinpirole-induced psychosis. eNeuro 2019; 6(1): 6.
[http://dx.doi.org/10.1523/ENEURO.0366-18.2019] [PMID: 30834304]
[143]
Boison D, Singer P, Shen HY, Feldon J, Yee BK. Adenosine hypothesis of schizophrenia-opportunities for pharmacotherapy. Neuropharmacology 2012; 62(3): 1527-43.
[http://dx.doi.org/10.1016/j.neuropharm.2011.01.048] [PMID: 21315743]
[144]
Natarajan R, Yamamoto BK. The basal ganglia as a substrate for the multiple actions of amphetamines. Basal Ganglia 2011; 1(2): 49-57.
[http://dx.doi.org/10.1016/j.baga.2011.05.003] [PMID: 21804952]
[145]
Young CB, Sonne J. Neuroanatomy, Basal Ganglia 2019. Availbe at: https://www.ncbi.nlm.nih.gov/books/NBK537141/
[146]
Wise RA. Roles for nigrostriatal-not just mesocorticolimbic-dopamine in reward and addiction. Trends Neurosci 2009; 32(10): 517-24.
[http://dx.doi.org/10.1016/j.tins.2009.06.004] [PMID: 19758714]
[147]
Rivkees SA, Price SL, Zhou FC. Immunohistochemical detection of A1 adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia. Brain Res 1995; 677(2): 193-203.
[http://dx.doi.org/10.1016/0006-8993(95)00062-U] [PMID: 7552243]
[148]
Ochiishi T, Chen L, Yukawa A, et al. Cellular localization of adenosine A1 receptors in rat forebrain: immunohistochemical analysis using adenosine A1 receptor-specific monoclonal antibody. J Comp Neurol 1999; 411(2): 301-16.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19990823)411:2<301:AID-CNE10>3.0.CO;2-H] [PMID: 10404255]
[149]
Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev 1998; 50(3): 413-92.
[PMID: 9755289]
[150]
Wei CJ, Li W, Chen JF. Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies. Biochim Biophys Acta 2011; 1808(5): 1358-79.
[http://dx.doi.org/10.1016/j.bbamem.2010.12.018] [PMID: 21185258]
[151]
Moser A, Liebetrau A, Cramer H. Adenosine receptor-coupled adenylate cyclase in the caudate nucleus of the rat brain. Neuropharmacology 1991; 30(7): 769-73.
[http://dx.doi.org/10.1016/0028-3908(91)90185-E] [PMID: 1922688]
[152]
Okada M, Mizuno K, Kaneko S. Adenosine A1 and A2 receptors modulate extracellular dopamine levels in rat striatum. Neurosci Lett 1996; 212(1): 53-6.
[http://dx.doi.org/10.1016/0304-3940(96)12780-4] [PMID: 8823761]
[153]
Flagmeyer I, Haas HL, Stevens DR. Adenosine A1 receptor-mediated depression of corticostriatal and thalamostriatal glutamatergic synaptic potentials in vitro. Brain Res 1997; 778(1): 178-85.
[http://dx.doi.org/10.1016/S0006-8993(97)01060-3] [PMID: 9462890]
[154]
Ferre S, O’Connor WT, Svenningsson P, et al. Dopamine D1 receptor-mediated facilitation of GABAergic neurotransmission in the rat strioentopenduncular pathway and its modulation by adenosine A1 receptor-mediated mechanisms. Eur J Neurosci 1996; 8(7): 1545-53.
[http://dx.doi.org/10.1111/j.1460-9568.1996.tb01617.x] [PMID: 8758962]
[155]
Mango D, Bonito-Oliva A, Ledonne A, et al. Adenosine A1 receptor stimulation reduces D1 receptor-mediated GABAergic transmission from striato-nigral terminals and attenuates l-DOPA-induced dyskinesia in dopamine-denervated mice. Exp Neurol 2014; 261: 733-43.
[http://dx.doi.org/10.1016/j.expneurol.2014.08.022] [PMID: 25173217]
[156]
Rosin DL, Robeva A, Woodard RL, Guyenet PG, Linden J. Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol 1998; 401(2): 163-86.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19981116)401:2<163:AID-CNE2>3.0.CO;2-D] [PMID: 9822147]
[157]
Svenningsson P, Le Moine C, Fisone G, Fredholm BB. Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 1999; 59(4): 355-96.
[http://dx.doi.org/10.1016/S0301-0082(99)00011-8] [PMID: 10501634]
[158]
Hauber W, Nagel J, Sauer R, Müller CE. Motor effects induced by a blockade of adenosine A2A receptors in the caudate-putamen. Neuroreport 1998; 9(8): 1803-6.
[http://dx.doi.org/10.1097/00001756-199806010-00024] [PMID: 9665604]
[159]
Mogul DJ, Adams ME, Fox AP. Differential activation of adenosine receptors decreases N-type but potentiates P-type Ca2+ current in hippocampal CA3 neurons. Neuron 1993; 10(2): 327-34.
[http://dx.doi.org/10.1016/0896-6273(93)90322-I] [PMID: 8382501]
[160]
Song WJ, Tkatch T, Surmeier DJ. Adenosine receptor expression and modulation of Ca(2+) channels in rat striatal cholinergic interneurons. J Neurophysiol 2000; 83(1): 322-32.
[http://dx.doi.org/10.1152/jn.2000.83.1.322] [PMID: 10634875]
[161]
Cunha RA. Neuroprotection by adenosine in the brain: From A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal 2005; 1(2): 111-34.
[http://dx.doi.org/10.1007/s11302-005-0649-1] [PMID: 18404497]
[162]
Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 2011; 1808(5): 1380-99.
[http://dx.doi.org/10.1016/j.bbamem.2010.12.001] [PMID: 21145878]
[163]
Kalaria RN, Sromek S, Wilcox BJ, Unnerstall JR. Hippocampal adenosine A1 receptors are decreased in Alzheimer’s disease. Neurosci Lett 1990; 118(2): 257-60.
[http://dx.doi.org/10.1016/0304-3940(90)90641-L] [PMID: 2274280]
[164]
Cunha RA, Constantino MC, Sebastião AM, Ribeiro JA. Modification of A1 and A2a adenosine receptor binding in aged striatum, hippocampus and cortex of the rat. Neuroreport 1995; 6(11): 1583-8.
[http://dx.doi.org/10.1097/00001756-199507310-00029] [PMID: 7579154]
[165]
Popoli P, Reggio R, Pèzzola A, Fuxe K, Ferré S. Adenosine A1 and A2A receptor antagonists stimulate motor activity: evidence for an increased effectiveness in aged rats. Neurosci Lett 1998; 251(3): 201-4.
[http://dx.doi.org/10.1016/S0304-3940(98)00533-3] [PMID: 9726378]
[166]
Prediger RD, Batista LC, Takahashi RN. Caffeine reverses age-related deficits in olfactory discrimination and social recognition memory in rats. Involvement of adenosine A1 and A2A receptors. Neurobiol Aging 2005; 26(6): 957-64.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.08.012] [PMID: 15718055]
[167]
Fukumitsu N, Ishii K, Kimura Y, et al. Adenosine A(1) receptors using 8-dicyclopropylmethyl-1-[(11)C]methyl-3-propylxanthine PET in Alzheimer’s disease. Ann Nucl Med 2008; 22(10): 841-7.
[http://dx.doi.org/10.1007/s12149-008-0185-5] [PMID: 19142702]
[168]
Mishina M, Kimura Y, Sakata M, et al. Age-related decrease in male extra-striatal adenosine A1 receptors measured using(11)C-MPDX PET. Front Pharmacol 2017; 8: 903.
[http://dx.doi.org/10.3389/fphar.2017.00903] [PMID: 29326588]
[169]
Meyer PT, Elmenhorst D, Boy C, et al. Effect of aging on cerebral A1 adenosine receptors: a [18F]CPFPX PET study in humans. Neurobiol Aging 2007; 28(12): 1914-24.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.08.005] [PMID: 16996650]
[170]
Mishina M, Kimura Y, Naganawa M, et al. Differential effects of age on human striatal adenosine A and A(2A) receptors. Synapse 2012; 66(9): 832-9.
[http://dx.doi.org/10.1002/syn.21573] [PMID: 22623181]
[171]
Fuxe K, Ferré S, Zoli M, Agnati LF. Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia. Brain Res Brain Res Rev 1998; 26(2-3): 258-73.
[http://dx.doi.org/10.1016/S0165-0173(97)00049-0] [PMID: 9651540]
[172]
Franco R, Ferré S, Agnati L, et al. Evidence for adenosine/dopamine receptor interactions: indications for heteromerization. Neuropsychopharmacology 2000; 23(4)(Suppl.): S50-9.
[http://dx.doi.org/10.1016/S0893-133X(00)00144-5] [PMID: 11008067]
[173]
Mayfield RD, Suzuki F, Zahniser NR. Adenosine A2a receptor modulation of electrically evoked endogenous GABA release from slices of rat globus pallidus. J Neurochem 1993; 60(6): 2334-7.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb03526.x] [PMID: 8492136]
[174]
Mayfield RD, Jones BA, Miller HA, Simosky JK, Larson GA, Zahniser NR. Modulation of endogenous GABA release by an antagonistic adenosine A1/dopamineD1 receptor interaction in rat brain limbic regions but not basal ganglia. Synapse 1999; 33(4): 274-81.
[http://dx.doi.org/10.1002/(SICI)1098-2396(19990915)33:4<274:AID-SYN4>3.0.CO;2-3] [PMID: 10421708]
[175]
Florán B, Barajas C, Florán L, Erlij D, Aceves J. Adenosine A1 receptors control dopamine D1-dependent [(3)H]GABA release in slices of substantia nigra pars reticulata and motor behavior in the rat. Neuroscience 2002; 115(3): 743-51.
[http://dx.doi.org/10.1016/S0306-4522(02)00479-7] [PMID: 12435413]
[176]
Botsakis K, Tondikidou V, Panagopoulos N, Margariti M, Matsokis N, Angelatou F. Increased sensitivity in the interaction of the dopaminergic/adenosinergic system at the level of the adenylate cyclase activity in the striatum of the “weaver” mouse. Neurochem Int 2016; 99: 233-8.
[http://dx.doi.org/10.1016/j.neuint.2016.08.002] [PMID: 27498335]
[177]
Hughes RN. Neotic preferences in laboratory rodents: issues, assessment and substrates. Neurosci Biobehav Rev 2007; 31(3): 441-64.
[http://dx.doi.org/10.1016/j.neubiorev.2006.11.004] [PMID: 17198729]
[178]
Schomaker J. Unexplored territory: beneficial effects of novelty on memory. Neurobiol Learn Mem 2019; 161: 46-50.
[http://dx.doi.org/10.1016/j.nlm.2019.03.005] [PMID: 30862524]
[179]
Knight R. Contribution of human hippocampal region to novelty detection. Nature 1996; 383(6597): 256-9.
[http://dx.doi.org/10.1038/383256a0] [PMID: 8805701]
[180]
Düzel E, Bunzeck N, Guitart-Masip M, Düzel S. NOvelty-related motivation of anticipation and exploration by dopamine (NOMAD): implications for healthy aging. Neurosci Biobehav Rev 2010; 34(5): 660-9.
[http://dx.doi.org/10.1016/j.neubiorev.2009.08.006] [PMID: 19715723]
[181]
Guitart-Masip M, Bunzeck N, Stephan KE, Dolan RJ, Düzel E. Contextual novelty changes reward representations in the striatum. J Neurosci 2010; 30(5): 1721-6.
[http://dx.doi.org/10.1523/JNEUROSCI.5331-09.2010] [PMID: 20130181]
[182]
Bunzeck N, Doeller CF, Dolan RJ, Duzel E. Contextual interaction between novelty and reward processing within the mesolimbic system. Hum Brain Mapp 2012; 33(6): 1309-24.
[http://dx.doi.org/10.1002/hbm.21288] [PMID: 21520353]
[183]
Faurholt-Jepsen M, Brage S, Vinberg M, Kessing LV. State-related differences in the level of psychomotor activity in patients with bipolar disorder - continuous heart rate and movement monitoring. Psychiatry Res 2016; 237: 166-74.
[http://dx.doi.org/10.1016/j.psychres.2016.01.047] [PMID: 26832835]
[184]
Ku KM, Weir RK, Silverman JL, Berman RF, Bauman MD. Behavioral phenotyping of juvenile long-evans and sprague-dawley rats: implications for preclinical models of autism spectrum disorders. PLoS One 2016; 11(6) e0158150
[http://dx.doi.org/10.1371/journal.pone.0158150] [PMID: 27351457 ]
[185]
Flagel SB, Robinson TE. Quantifying the psychomotor activating effects of cocaine in the rat. Behav Pharmacol 2007; 18(4): 297-302.
[http://dx.doi.org/10.1097/FBP.0b013e3281f522a4] [PMID: 17551322]
[186]
Lever C, Burton S, O’Keefe J. Rearing on hind legs, environmental novelty, and the hippocampal formation. Rev Neurosci 2006; 17(1-2): 111-33.
[http://dx.doi.org/10.1515/REVNEURO.2006.17.1-2.111] [PMID: 16703946]
[187]
Seeley RJ, Brozoski TJ. Measurement and quantification of stereotypy in freely behaving subjects: an information analysis. Behav Res Methods Instrum Comput 1989; 21: 271-4.
[http://dx.doi.org/10.3758/BF03205594]
[188]
Biedermann SV, Biedermann DG, Wenzlaff F, et al. An elevated plus-maze in mixed reality for studying human anxiety-related behavior. BMC Biol 2017; 15(1): 125.
[http://dx.doi.org/10.1186/s12915-017-0463-6] [PMID: 29268740]
[189]
Rodgers RJ, Haller J, Holmes A, Halasz J, Walton TJ, Brain PF. Corticosterone response to the plus-maze: high correlation with risk assessment in rats and mice. Physiol Behav 1999; 68(1-2): 47-53.
[http://dx.doi.org/10.1016/S0031-9384(99)00140-7] [PMID: 10627061]
[190]
Fukushiro DF, Frussa-Filho R. Chronic amphetamine transforms the emotional significance of a novel but not a familiar environment: implications for addiction. Int J Neuropsychopharmacol 2011; 14(7): 955-65.
[http://dx.doi.org/10.1017/S1461145710001379] [PMID: 21156091]
[191]
Ujike H, Akiyama K, Nishikawa H, Onoue T, Otsuki S. Lasting increase in D1 dopamine receptors in the lateral part of the substantia nigra pars reticulata after subchronic methamphetamine administration. Brain Res 1991; 540(1-2): 159-63.
[http://dx.doi.org/10.1016/0006-8993(91)90503-N] [PMID: 1829015]
[192]
Bonhomme N, Cador M, Stinus L, Le Moal M, Spampinato U. Short and long-term changes in dopamine and serotonin receptor binding sites in amphetamine-sensitized rats: a quantitative autoradiographic study. Brain Res 1995; 675(1-2): 215-23.
[http://dx.doi.org/10.1016/0006-8993(95)00067-Z] [PMID: 7796132]
[193]
Henry DJ, Hu XT, White FJ. Adaptations in the mesoaccumbens dopamine system resulting from repeated administration of dopamine D1 and D2 receptor-selective agonists: relevance to cocaine sensitization. Psychopharmacology (Berl) 1998; 140(2): 233-42.
[http://dx.doi.org/10.1007/s002130050762] [PMID: 9860115]
[194]
Quarta D, Borycz J, Solinas M, et al. Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-D-aspartate receptor stimulation. J Neurochem 2004; 91(4): 873-80.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02761.x] [PMID: 15525341]
[195]
Borycz J, Pereira MF, Melani A, et al. Differential glutamate-dependent and glutamate-independent adenosine A1 receptor-mediated modulation of dopamine release in different striatal compartments. J Neurochem 2007; 101(2): 355-63.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04386.x] [PMID: 17254024]
[196]
O’Neill C, Nolan BJ, Macari A, O’Boyle KM, O’Connor JJ. Adenosine A1 receptor-mediated inhibition of dopamine release from rat striatal slices is modulated by D1 dopamine receptors. Eur J Neurosci 2007; 26(12): 3421-8.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05953.x] [PMID: 18052983]
[197]
Jain N, Kemp N, Adeyemo O, Buchanan P, Stone TW. Anxiolytic activity of adenosine receptor activation in mice. Br J Pharmacol 1995; 116(3): 2127-33.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb16421.x] [PMID: 8640355]
[198]
Bardo MT, Donohew RL, Harrington NG. Psychobiology of novelty seeking and drug seeking behavior. Behav Brain Res 1996; 77(1-2): 23-43.
[http://dx.doi.org/10.1016/0166-4328(95)00203-0] [PMID: 8762157]
[199]
Legault M, Wise RA. Novelty-evoked elevations of nucleus accumbens dopamine: dependence on impulse flow from the ventral subiculum and glutamatergic neurotransmission in the ventral tegmental area. Eur J Neurosci 2001; 13(4): 819-28.
[http://dx.doi.org/10.1046/j.0953-816x.2000.01448.x] [PMID: 11207817]
[200]
Kaplan GB, Leite-Morris KA, Klufas MA, Fan W. Intra-VTA adenosine A1 receptor activation blocks morphine stimulation of motor behavior and cortical and limbic Fos immunoreactivity. Eur J Pharmacol 2009; 602(2-3): 268-76.
[http://dx.doi.org/10.1016/j.ejphar.2008.10.052] [PMID: 19027733]
[201]
Hooks MS, Kalivas PW. The role of mesoaccumbens-pallidal circuitry in novelty-induced behavioral activation. Neuroscience 1995; 64(3): 587-97.
[http://dx.doi.org/10.1016/0306-4522(94)00409-X] [PMID: 7715773]
[202]
Roman V, Keijser JN, Luiten PG, Meerlo P. Repetitive stimulation of adenosine A1 receptors in vivo: changes in receptor numbers, G-proteins and A1 receptor agonist-induced hypothermia. Brain Res 2008; 1191: 69-74.
[http://dx.doi.org/10.1016/j.brainres.2007.11.044] [PMID: 18163981]
[203]
Ruiz MA, León DA, Albasanz JL, Martín M. Desensitization of adenosine A(1) receptors in rat immature cortical neurons. Eur J Pharmacol 2011; 670(2-3): 365-71.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.027] [PMID: 21946103]
[204]
Jacobson KA, von Lubitz DK, Daly JW, Fredholm BB. Adenosine receptor ligands: differences with acute versus chronic treatment. Trends Pharmacol Sci 1996; 17(3): 108-13.
[http://dx.doi.org/10.1016/0165-6147(96)10002-X] [PMID: 8936347]
[205]
Kawashimo A, Shimazoe T, Yoshimatsu A, Watanabe S. Repeated adenosine pre-treatment potentiates the acute effect of methamphetamine in rats. Jpn J Pharmacol 2000; 84(1): 78-81.
[http://dx.doi.org/10.1254/jjp.84.78] [PMID: 11043458]
[206]
Poleszak E, Malec D. Influence of adenosine receptor agonists and antagonists on amphetamine-induced stereotypy in rats. Pol J Pharmacol 2000; 52(6): 423-9.
[PMID: 11334236]
[207]
Witkowski JT, Robins RK, Sidwell RW, Simon LN. Design, synthesis, and broad spectrum antiviral activity of 1 -D-ribofuranosyl-1, 2, 4-triazole-3-carboxamide and related nucleosides. J Med Chem 1972; 15(11): 1150-4.
[http://dx.doi.org/10.1021/jm00281a014] [PMID: 4347550]
[208]
Cai S, Li QS, Borchardt RT, Kuczera K, Schowen RL. The antiviral drug ribavirin is a selective inhibitor of S-adenosyl-L-homocysteine hydrolase from Trypanosoma cruzi. Bioorg Med Chem 2007; 15(23): 7281-7.
[http://dx.doi.org/10.1016/j.bmc.2007.08.029] [PMID: 17845853]
[209]
Raza M, Khan Z, Ahmad A, et al. In silico 3-D structure prediction and molecular docking studies of inosine monophosphate dehydrogenase from Plasmodium falciparum. Comput Biol Chem 2017; 71: 10-9.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.09.002] [PMID: 28957725]
[210]
Peković S, Filipović R, Subasić S, et al. Downregulation of glial scarring after brain injury: the effect of purine nucleoside analogue ribavirin. Ann N Y Acad Sci 2005; 1048: 296-310.
[http://dx.doi.org/10.1196/annals.1342.027] [PMID: 16154942]
[211]
Stojkov D, Lavrnja I, Pekovic S, et al. Therapeutic effects of combined treatment with ribavirin and tiazofurin on experimental autoimmune encephalomyelitis development: clinical and histopathological evaluation. J Neurol Sci 2008; 267(1-2): 76-85.
[http://dx.doi.org/10.1016/j.jns.2007.10.010] [PMID: 17996253]
[212]
Lavrnja I, Savic D, Bjelobaba I, et al. The effect of ribavirin on reactive astrogliosis in experimental autoimmune encephalomyelitis. J Pharmacol Sci 2012; 119(3): 221-32.
[http://dx.doi.org/10.1254/jphs.12004FP] [PMID: 22785017]
[213]
De la Cruz-Hernandez E, Medina-Franco JL, Trujillo J, et al. Ribavirin as a tri-targeted antitumor repositioned drug. Oncol Rep 2015; 33(5): 2384-92.
[http://dx.doi.org/10.3892/or.2015.3816] [PMID: 25738706]
[214]
Teng L, Ding D, Chen Y, et al. Anti-tumor effect of ribavirin in combination with interferon-α on renal cell carcinoma cell lines in vitro. Cancer Cell Int 2014; 14: 63.
[http://dx.doi.org/10.1186/1475-2867-14-63] [PMID: 25904822]
[215]
Volpin F, Casaos J, Sesen J, et al. Use of an anti-viral drug, Ribavirin, as an anti-glioblastoma therapeutic. Oncogene 2017; 36(21): 3037-47.
[http://dx.doi.org/10.1038/onc.2016.457] [PMID: 27941882]
[216]
Chen J, Xu X, Chen J. Clinically relevant concentration of anti-viral drug ribavirin selectively targets pediatric osteosarcoma and increases chemosensitivity. Biochem Biophys Res Commun 2018; 506(3): 604-10.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.124] [PMID: 30454696]
[217]
Ochiai Y, Sano E, Okamoto Y, et al. Efficacy of ribavirin against malignant glioma cell lines: follow-up study. Oncol Rep 2018; 39(2): 537-44.
[PMID: 29251333]
[218]
Casaos J, Gorelick NL, Huq S, et al. The use of ribavirin as an anticancer therapeutic: Will it go viral? Mol Cancer Ther 2019; 18(7): 1185-94.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0666] [PMID: 31263027]
[219]
Wu JZ, Larson G, Walker H, Shim JH, Hong Z. Phosphorylation of ribavirin and viramidine by adenosine kinase and cytosolic 5′-nucleotidase II: implications for ribavirin metabolism in erythrocytes. Antimicrob Agents Chemother 2005; 49(6): 2164-71.
[http://dx.doi.org/10.1128/AAC.49.6.2164-2171.2005] [PMID: 15917509]
[220]
Todt D, Walter S, Brown RJ, Steinmann E. Mutagenic effects of ribavirin on hepatitis E virus-viral extinction versus selection of fitness-enhancing mutations. Viruses 2016; 8(10): 8.
[http://dx.doi.org/10.3390/v8100283] [PMID: 27754363]
[221]
Paeshuyse J, Dallmeier K, Neyts J. Ribavirin for the treatment of chronic hepatitis C virus infection: a review of the proposed mechanisms of action. Curr Opin Virol 2011; 1(6): 590-8.
[http://dx.doi.org/10.1016/j.coviro.2011.10.030] [PMID: 22440916]
[222]
Debing Y, Emerson SU, Wang Y, et al. Ribavirin inhibits in vitro hepatitis E virus replication through depletion of cellular GTP pools and is moderately synergistic with alpha interferon. Antimicrob Agents Chemother 2014; 58(1): 267-73.
[http://dx.doi.org/10.1128/AAC.01795-13] [PMID: 24145541]
[223]
Franchetti P, Cappellacci L, Grifantini M, Senatore G, Martini C, Lucacchini A. Tiazofurin analogues as selective agonists of A1 adenosine receptors. Res Commun Mol Pathol Pharmacol 1995; 87: 103-5.
[224]
Abdel-Salam OM. Antinociceptive and behavioral effects of ribavirin in mice. Pharmacol Biochem Behav 2006; 83(2): 230-8.
[http://dx.doi.org/10.1016/j.pbb.2006.01.010] [PMID: 16563475]
[225]
Ward RP, Kugelmas M. Using pegylated interferon and ribavirin to treat patients with chronic hepatitis C. Am Fam Physician 2005; 72(4): 655-62.
[PMID: 16127955]
[226]
Ibarra KD, Pfeiffer JK. Reduced ribavirin antiviral efficacy via nucleoside transporter-mediated drug resistance. J Virol 2009; 83(9): 4538-47.
[http://dx.doi.org/10.1128/JVI.02280-08] [PMID: 19244331]
[227]
Smith AA, Wohl BM, Kryger MB, et al. Macromolecular prodrugs of ribavirin: concerted efforts of the carrier and the drug. Adv Healthc Mater 2014; 3(9): 1404-7.
[http://dx.doi.org/10.1002/adhm.201300637] [PMID: 24408515]
[228]
Davoodi L, Masoum B, Moosazadeh M, Jafarpour H, Haghshenas MR, Mousavi T. Psychiatric side effects of pegylated interferon-α and ribavirin therapy in Iranian patients with chronic hepatitis C: a meta-analysis. Exp Ther Med 2018; 16(2): 971-8.
[http://dx.doi.org/10.3892/etm.2018.6255] [PMID: 30116347]
[229]
Ravichandran R, Manian M. Ribavirin therapy for Chikungunya arthritis. J Infect Dev Ctries 2008; 2(2): 140-2.
[http://dx.doi.org/10.3855/T2.2.140] [PMID: 19738340]
[230]
Colombo G, Lorenzini L, Zironi E, et al. Brain distribution of ribavirin after intranasal administration. Antiviral Res 2011; 92(3): 408-14.
[http://dx.doi.org/10.1016/j.antiviral.2011.09.012] [PMID: 22001322]
[231]
Yeon JE. Does the old-fashioned sofosbuvir plus ribavirin treatment in genotype 2 chronic hepatitis C patients still works for Koreans? Clin Mol Hepatol 2018; 24(3): 294-6.
[http://dx.doi.org/10.3350/cmh.2018.1009] [PMID: 30200750]
[232]
Reddy KR, Nelson DR, Zeuzem S. Ribavirin: current role in the optimal clinical management of chronic hepatitis C. J Hepatol 2009; 50(2): 402-11.
[http://dx.doi.org/10.1016/j.jhep.2008.11.006] [PMID: 19091439]
[233]
Huang Y, Li MH, Hou M, Xie Y. Peginterferon alfa-2a for the treatment of chronic hepatitis C in the era of direct-acting antivirals. HBPD INT 2017; 16(5): 470-9.
[http://dx.doi.org/10.1016/S1499-3872(17)60044-4] [PMID: 28992878]
[234]
Testoni B, Levrero M, Durantel D. Mechanism of action of ribavirin in anti-HCV regimens: new insights for an age-old question? Gut 2014; 63(1): 3-4.
[http://dx.doi.org/10.1136/gutjnl-2013-304528] [PMID: 23661602]
[235]
Briolant S, Garin D, Scaramozzino N, Jouan A, Crance JM. In vitro inhibition of chikungunya and semliki forest viruses replication by antiviral compounds: synergistic effect of interferon-alpha and ribavirin combination. Antiviral Res 2004; 61(2): 111-7.
[http://dx.doi.org/10.1016/j.antiviral.2003.09.005] [PMID: 14670584]
[236]
Scagnolari C, Caputo B, Rezza G, Antonelli G. Antiviral activity of the combination of interferon and ribavirin against Chikungunya virus: are the results conclusive? J Infect Dis 2017; 215(3): 492-3.
[PMID: 28003356]
[237]
Franco EJ, Rodriquez JL, Pomeroy JJ, Hanrahan KC, Brown AN. The effectiveness of antiviral agents with broad-spectrum activity against chikungunya virus varies between host cell lines. Antivir Chem Chemother 2018. 262040206618807580
[http://dx.doi.org/10.1177/2040206618807580] [PMID: 30354193]
[238]
Rothan HA, Bahrani H, Mohamed Z, et al. A combination of doxycycline and ribavirin alleviated chikungunya infection. PLoS One 2015; 10(5)e0126360
[http://dx.doi.org/10.1371/journal.pone.0126360] [PMID: 25970853]
[239]
Rothan HA, Bahrani H, Abdulrahman AY, et al. Mefenamic acid in combination with ribavirin shows significant effects in reducing chikungunya virus infection in vitro and in vivo. Antiviral Res 2016; 127: 50-6.
[http://dx.doi.org/10.1016/j.antiviral.2016.01.006] [PMID: 26794398]
[240]
Gilbert BE, Wyde PR. Pharmacokinetics of ribavirin aerosol in mice. Antimicrob Agents Chemother 1988; 32(1): 117-21.
[http://dx.doi.org/10.1128/AAC.32.1.117] [PMID: 3348604]
[241]
Tomoda A, Shiraishi S, Hosoya M, Hamada A, Miike T. Combined treatment with interferon-alpha and ribavirin for subacute sclerosing panencephalitis. Pediatr Neurol 2001; 24(1): 54-9.
[http://dx.doi.org/10.1016/S0887-8994(00)00233-2] [PMID: 11182282]
[242]
Giuliani A, Balducci AG, Zironi E, et al. In vivo nose-to-brain delivery of the hydrophilic antiviral ribavirin by microparticle agglomerates. Drug Deliv 2018; 25(1): 376-87.
[http://dx.doi.org/10.1080/10717544.2018.1428242] [PMID: 29382237]
[243]
Beaird OE, Freifeld A, Ison MG, et al. Current practices for treatment of respiratory syncytial virus and other non-influenza respiratory viruses in high-risk patient populations: a survey of institutions in the midwestern respiratory virus collaborative. Transpl Infect Dis 2016; 18(2): 210-5.
[http://dx.doi.org/10.1111/tid.12510] [PMID: 26923867]
[244]
Trang TP, Whalen M, Hilts-Horeczko A, Doernberg SB, Liu C. Comparative effectiveness of aerosolized versus oral ribavirin for the treatment of respiratory syncytial virus infections: a single-center retrospective cohort study and review of the literature. Transpl Infect Dis 2018; 20(2) e12844
[http://dx.doi.org/10.1111/tid.12844] [PMID: 29360277]
[245]
Riner A, Chan-Tack KM, Murray JS. Original research: intravenous ribavirin-review of the FDA’s emergency investigational new drug database (1997-2008) and literature review. Postgrad Med 2009; 121(3): 139-46.
[http://dx.doi.org/10.3810/pgm.2009.05.2014] [PMID: 19491552]
[246]
Soares-Weiser K, Thomas S, Thomson G, Garner P. Ribavirin for crimean-congo hemorrhagic fever: systematic review and meta-analysis. BMC Infect Dis 2010; 10: 207.
[http://dx.doi.org/10.1186/1471-2334-10-207] [PMID: 20626907]
[247]
Westover JB, Sefing EJ, Bailey KW, et al. Low-dose ribavirin potentiates the antiviral activity of favipiravir against hemorrhagic fever viruses. Antiviral Res 2016; 126: 62-8.
[http://dx.doi.org/10.1016/j.antiviral.2015.12.006] [PMID: 26711718]
[248]
Kilgore PE, Ksiazek TG, Rollin PE, et al. Treatment of bolivian hemorrhagic fever with intravenous ribavirin. Clin Infect Dis 1997; 24(4): 718-22.
[http://dx.doi.org/10.1093/clind/24.4.718] [PMID: 9145749]
[249]
Dieperink E, Ho SB, Thuras P, Willenbring ML. A prospective study of neuropsychiatric symptoms associated with interferon-alpha-2b and ribavirin therapy for patients with chronic hepatitis C. Psychosomatics 2003; 44(2): 104-12.
[http://dx.doi.org/10.1176/appi.psy.44.2.104] [PMID: 12618532]
[250]
Predescu O, Streba LA, Irimia E, Streba L, Mogoantă L. Adverse effects of peg-interferon and ribavirin combined antiviral treatment in a romanian hepatitis C virus infected cohort. Rom J Morphol Embryol 2012; 53(3): 497-502.
[PMID: 23010773]
[251]
Fried MW. Side effects of therapy of hepatitis C and their management. Hepatology 2002; 36(5)(Suppl. 1): S237-44.
[PMID: 12407599]
[252]
Kamei S, Sakai T, Matsuura M, et al. Alterations of quantitative EEG and mini-mental state examination in interferon-alpha-treated hepatitis C. Eur Neurol 2002; 48(2): 102-7.
[http://dx.doi.org/10.1159/000062997] [PMID: 12187000]
[253]
Seyam MS, Freshwater DA, O’Donnell K, Mutimer DJ. Weight loss during pegylated interferon and ribavirin treatment of chronic hepatitis C*. J Viral Hepat 2005; 12(5): 531-5.
[http://dx.doi.org/10.1111/j.1365-2893.2005.00637.x] [PMID: 16108770]
[254]
Irwin J, Terrault N. Cognitive impairment in hepatitis C patients on antiviral therapy. Gastroenterol Hepatol (N Y) 2008; 4(1): 65-7.
[PMID: 22798739]
[255]
Schmidt F, Janssen G, Martin G, et al. Factors influencing long-term changes in mental health after interferon-alpha treatment of chronic hepatitis C. Aliment Pharmacol Ther 2009; 30(10): 1049-59.
[http://dx.doi.org/10.1111/j.1365-2036.2009.04123.x] [PMID: 19691667]
[256]
Tam RC, Ramasamy K, Bard J, Pai B, Lim C, Averett DR. The ribavirin analog ICN 17261 demonstrates reduced toxicity and antiviral effects with retention of both immunomodulatory activity and reduction of hepatitis-induced serum alanine aminotransferase levels. Antimicrob Agents Chemother 2000; 44(5): 1276-83.
[http://dx.doi.org/10.1128/AAC.44.5.1276-1283.2000] [PMID: 10770762]
[257]
Afdhal NH, Dieterich DT, Pockros PJ, et al. Proactive study group. Epoetin alfa maintains ribavirin dose in HCV-infected patients: a prospective, double-blind, randomized controlled study. Gastroenterology 2004; 126(5): 1302-11.
[http://dx.doi.org/10.1053/j.gastro.2004.01.027] [PMID: 15131791]
[258]
Sung H, Chang M, Saab S. Management of hepatitis C antiviral therapy adverse effects. Curr Hepat Rep 2011; 10(1): 33-40.
[http://dx.doi.org/10.1007/s11901-010-0078-7] [PMID: 21423320]
[259]
Collantes RS, Younossi ZM. The use of growth factors to manage the hematologic side effects of PEG-interferon alfa and ribavirin. J Clin Gastroenterol 2005; 39(1)(Suppl.): S9-S13.
[http://dx.doi.org/10.1097/01.mcg.0000142583.00102.45] [PMID: 15597026]
[260]
Fukuchi Y, Furihata T, Hashizume M, Iikura M, Chiba K. Characterization of ribavirin uptake systems in human hepatocytes. J Hepatol 2010; 52(4): 486-92.
[http://dx.doi.org/10.1016/j.jhep.2010.01.011] [PMID: 20185188]
[261]
Boswell-Casteel RC, Hays FA. Equilibrative nucleoside transporters-a review. Nucleosides Nucleotides Nucleic Acids 2017; 36(1): 7-30.
[http://dx.doi.org/10.1080/15257770.2016.1210805] [PMID: 27759477]
[262]
Thomas E, Ghany MG, Liang TJ. The application and mechanism of action of ribavirin in therapy of hepatitis C. Antivir Chem Chemother 2012; 23(1): 1-12.
[http://dx.doi.org/10.3851/IMP2125] [PMID: 22592135]
[263]
Dalpiaz A, Pavan B. Nose-to-brain delivery of antiviral drugs: a way to overcome their active efflux? Pharmaceutics 2018; 10(2): 10.
[http://dx.doi.org/10.3390/pharmaceutics10020039] [PMID: 29587409]
[264]
Jeulin H, Venard V, Carapito D, Finance C, Kedzierewicz F. Effective ribavirin concentration in mice brain using cyclodextrin as a drug carrier: evaluation in a measles encephalitis model. Antiviral Res 2009; 81(3): 261-6.
[http://dx.doi.org/10.1016/j.antiviral.2008.12.006] [PMID: 19133295]
[265]
Ferrara EA, Oishi JS, Wannemacher RW Jr, Stephen EL. Plasma disappearance, urine excretion, and tissue distribution of ribavirin in rats and rhesus monkeys. Antimicrob Agents Chemother 1981; 19(6): 1042-9.
[http://dx.doi.org/10.1128/AAC.19.6.1042] [PMID: 7271273]
[266]
Lin CC, Yeh LT, Luu T, Lourenco D, Lau JY. Pharmacokinetics and metabolism of [(14)C]ribavirin in rats and cynomolgus monkeys. Antimicrob Agents Chemother 2003; 47(4): 1395-8.
[http://dx.doi.org/10.1128/AAC.47.4.1395-1398.2003] [PMID: 12654676]
[267]
Ballarin M, Reiriz J, Ambrosio S, Mahy N. Effect of locally infused 2-chloroadenosine, an A1 receptor agonist, on spontaneous and evoked dopamine release in rat neostriatum. Neurosci Lett 1995; 185(1): 29-32.
[http://dx.doi.org/10.1016/0304-3940(94)11217-7] [PMID: 7731548]
[268]
Gołembiowska K, Zylewska A. Adenosine receptors-the role in modulation of dopamine and glutamate release in the rat striatum. Pol J Pharmacol 1997; 49(5): 317-22.
[PMID: 9566030]
[269]
Janać B, Pesić V, Veskov R, et al. The effects of tiazofurin on basal and amphetamine-induced motor activity in rats. Pharmacol Biochem Behav 2004; 77(3): 575-82.
[http://dx.doi.org/10.1016/j.pbb.2003.12.025] [PMID: 15006469]
[270]
Yoon KW, Rothman SM. Adenosine inhibits excitatory but not inhibitory synaptic transmission in the hippocampus. J Neurosci 1991; 11(5): 1375-80.
[http://dx.doi.org/10.1523/JNEUROSCI.11-05-01375.1991] [PMID: 1851219]
[271]
Qi G, van Aerde K, Abel T, Feldmeyer D. Adenosine differentially modulates synaptic transmission of excitatory and inhibitory microcircuits in layer 4 of rat barrel cortex. Cereb Cortex 2017; 27(9): 4411-22.
[http://dx.doi.org/10.1093/cercor/bhw243] [PMID: 27522071]
[272]
Franco R, Lluis C, Canela EI, et al. Receptor-receptor interactions involving adenosine A1 or dopamine D1 receptors and accessory proteins. J Neural Transm (Vienna) 2007; 114(1): 93-104.
[http://dx.doi.org/10.1007/s00702-006-0566-7] [PMID: 17024327]
[273]
Cechova S, Elsobky AM, Venton BJ. A1 receptors self-regulate adenosine release in the striatum: evidence of autoreceptor characteristics. Neuroscience 2010; 171(4): 1006-15.
[http://dx.doi.org/10.1016/j.neuroscience.2010.09.063] [PMID: 20933584]
[274]
Ciruela F, Gómez-Soler M, Guidolin D, et al. Adenosine receptor containing oligomers: their role in the control of dopamine and glutamate neurotransmission in the brain. Biochim Biophys Acta 2011; 1808(5): 1245-55.
[http://dx.doi.org/10.1016/j.bbamem.2011.02.007] [PMID: 21316336]
[275]
Kim DS, Szczypka MS, Palmiter RD. Dopamine-deficient mice are hypersensitive to dopamine receptor agonists. J Neurosci 2000; 20(12): 4405-13.
[http://dx.doi.org/10.1523/JNEUROSCI.20-12-04405.2000] [PMID: 10844009]
[276]
Szczypka MS, Kwok K, Brot MD, et al. Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron 2001; 30(3): 819-28.
[http://dx.doi.org/10.1016/S0896-6273(01)00319-1] [PMID: 11430814]
[277]
Fastbom J, Pazos A, Palacios JM. The distribution of adenosine A1 receptors and 5′-nucleotidase in the brain of some commonly used experimental animals. Neuroscience 1987; 22(3): 813-26.
[http://dx.doi.org/10.1016/0306-4522(87)92961-7] [PMID: 2825070]
[278]
Kim DS, Palmiter RD. Adenosine receptor blockade reverses hypophagia and enhances locomotor activity of dopamine-deficient mice. Proc Natl Acad Sci USA 2003; 100(3): 1346-51.
[http://dx.doi.org/10.1073/pnas.252753799] [PMID: 12538862]
[279]
Lin CC, Yeh LT, Lau JY. Specific, sensitive and accurate liquid chromatographic-tandem mass spectrometric method for the measurement of ribavirin in rat and monkey plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 779(2): 241-8.
[http://dx.doi.org/10.1016/S1570-0232(02)00379-3] [PMID: 12361738]
[280]
Li W, Luo S, Li S, et al. Simultaneous determination of ribavirin and ribavirin base in monkey plasma by high performance liquid chromatography with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 846(1-2): 57-68.
[http://dx.doi.org/10.1016/j.jchromb.2006.08.014] [PMID: 16962398]
[281]
Zironi E, Gazzotti T, Lugoboni B, Barbarossa A, Scagliarini A, Pagliuca G. Development of a rapid LC-MS/MS method for ribavirin determination in rat brain. J Pharm Biomed Anal 2011; 54(4): 889-92.
[http://dx.doi.org/10.1016/j.jpba.2010.11.021] [PMID: 21145682]
[282]
Grebely J, Haire B, Taylor LE, et al. International network for hepatitis in substance users. Excluding people who use drugs or alcohol from access to hepatitis C treatments - is this fair, given the available data? J Hepatol 2015; 63(4): 779-82.
[http://dx.doi.org/10.1016/j.jhep.2015.06.014] [PMID: 26254264]
[283]
Phillips KA, Epstein DH, Preston KL. Psychostimulant addiction treatment. Neuropharmacology 2014; 87: 150-60.
[http://dx.doi.org/10.1016/j.neuropharm.2014.04.002] [PMID: 24727297]
[284]
D’Souza MS. Brain and cognition for addiction medicine: from prevention to recovery neural substrates for treatment of psychostimulant-induced cognitive deficits. Front Psychiatry 2019; 10: 509.
[http://dx.doi.org/10.3389/fpsyt.2019.00509] [PMID: 31396113]
[285]
Jones DN, Holtzman SG. Influence of naloxone upon motor activity induced by psychomotor stimulant drugs. Psychopharmacology (Berl) 1994; 114(2): 215-24.
[http://dx.doi.org/10.1007/BF02244839] [PMID: 7838910]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 4
Year: 2020
Published on: 17 March, 2020
Page: [466 - 484]
Pages: 19
DOI: 10.2174/1381612826666200115094642

Article Metrics

PDF: 37
HTML: 7
EPUB: 1
PRC: 1