Role of microRNA and Long Non-Coding RNA in Hepatocellular Carcinoma

Author(s): Meenakshi Gupta, Kumari Chandan, Maryam Sarwat*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 4 , 2020

Become EABM
Become Reviewer

Abstract:

Hepatocellular carcinoma (HCC) accounts for about 80-90% of all liver cancers and is found to be the third most common cause of cancer mortality in the Asia-Pacific region. Risk factors include hepatitis B and C virus, cirrhosis, aflatoxin-contaminated food, alcohol, and diabetes. Surgically removing the tumor tissue seems effective but a high chance of recurrence has led to an urgent need to develop novel molecules for the treatment of HCC. Clinical management with sorafenib is found to be effective but it is only able to prolong survival for a few months. Various side effects like gastrointestinal and abdominal pain, hypertension, and hemorrhage are also associated with sorafenib, which calls for the unmet need of effective therapies against HCC. Similarly, the genetic mechanisms behind the occurrence of HCC are still unknown and need to be expounded further for developing newer candidates. Since unearthing the concept of these variants, transcriptomics has revealed the role of noncoding RNAs (ncRNAs) in many cellular, physiological and pathobiological processes. They are also found to be widely associated and abundantly expressed in a variety of cancer. Aberrant expression and mutations are closely related to tumorigenesis and metastasis and hence are classified as novel biomarkers and therapeutic targets for the treatment of cancer, including HCC. Herein, this review summarises the relationship between ncRNAs and hepatocellular carcinoma.

Keywords: microRNA (miR), long non-coding RNA (LncRNA), hepatocellular carcinoma, liver cancer, hepatotumorigenesis, hepatitis B and C virus.

[1]
Abdel-Hamid NM, Abass SA, Mohamed AA, Muneam Hamid D. Herbal management of hepatocellular carcinoma through cutting the pathways of the common risk factors. Biomed Pharmacother 2018; 107: 1246-58.
[http://dx.doi.org/10.1016/j.biopha.2018.08.104 ] [PMID: 30257339]
[2]
Wang Z, Li J, Ji Y, An P, Zhang S, Li Z. Traditional herbal medicine: a review of potential of inhibitory hepatocellular carcinoma in basic research and clinical trial. Evid Based Complement Alternat Med 2013; 2013268963
[http://dx.doi.org/10.1155/2013/268963] [PMID: 23956767]
[3]
Ding B, Lou W, Xu L, Fan W. Non-coding RNA in drug resistance of hepatocellular carcinoma. Biosci Rep 2018; 38(5)BSR20180915
[http://dx.doi.org/10.1042/BSR20180915] [PMID: 30224380]
[4]
Callegari E, Elamin BK, Sabbioni S, Gramantieri L, Negrini M. Role of microRNAs in hepatocellular carcinoma: a clinical perspective. OncoTargets Ther 2013; 6: 1167-78.
[PMID: 24039437]
[5]
George J, Patel T. Noncoding RNA as therapeutic targets for hepatocellular carcinoma.Seminars in liver disease. Thieme Medical Publishers 2015; 35: 063-74.>
[http://dx.doi.org/10.1055/s-0034-1397350]
[6]
Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genom Proteom Bioinf 2016; 14: 42-54.
[http://dx.doi.org/10.1016/j.gpb.2015.09.006]
[7]
Hauptman N, Glavač D. Long non-coding RNA in cancer. Int J Mol Sci 2013; 14(3): 4655-69.
[http://dx.doi.org/10.3390/ijms14034655] [PMID: 23443164]
[8]
He Y, Meng XM, Huang C, et al. Long noncoding RNAs: Novel insights into hepatocelluar carcinoma. Cancer Lett 2014; 344(1): 20-7.
[http://dx.doi.org/10.1016/j.canlet.2013.10.021] [PMID: 24183851]
[9]
Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429(6990): 457-63.
[http://dx.doi.org/10.1038/nature02625] [PMID: 15164071]
[10]
Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science 2001; 293(5532): 1068-70.
[http://dx.doi.org/10.1126/science.1063852] [PMID: 11498573]
[11]
Karpf AR, Jones DA. Reactivating the expression of methylation silenced genes in human cancer. Oncogene 2002; 21(35): 5496-503.
[http://dx.doi.org/10.1038/sj.onc.1205602] [PMID: 12154410]
[12]
Herceg Z, Paliwal A. Epigenetic mechanisms in hepatocellular carcinoma: how environmental factors influence the epigenome Mutat res-rev mutat 2011; 727: 55-6
[http://dx.doi.org/10.1016/j.mrrev.2011.04.001]
[13]
Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res 2017; 77(15): 3965-81.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634] [PMID: 28701486]
[14]
Huang JL, Zheng L, Hu YW, Wang Q. Characteristics of long non-coding RNA and its relation to hepatocellular carcinoma. Carcinogenesis 2014; 35(3): 507-14.
[http://dx.doi.org/10.1093/carcin/bgt405] [PMID: 24296588]
[15]
Liu YR, Tang RX, Huang WT, et al. Long noncoding RNAs in hepatocellular carcinoma: novel insights into their mechanism. World J Hepatol 2015; 7(28): 2781-91.
[http://dx.doi.org/10.4254/wjh.v7.i28.2781] [PMID: 26668690]
[16]
Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer 2011; 10: 38.
[http://dx.doi.org/10.1186/1476-4598-10-38] [PMID: 21489289]
[17]
Gong Z, Zhang S, Zhang W, et al. Long non-coding RNAs in cancer. Sci China Life Sci 2012; 55(12): 1120-4.
[http://dx.doi.org/10.1007/s11427-012-4413-9] [PMID: 23233227]
[18]
Li G, Zhang H, Wan X, et al. Long noncoding RNA plays a key role in metastasis and prognosis of hepatocellular carcinoma. BioMed Res Int 2014; 2014 780521
[http://dx.doi.org/10.1155/2014/780521] [PMID: 24757675]
[19]
Parasramka MA, Maji S, Matsuda A, Yan IK, Patel T. Long non-coding RNAs as novel targets for therapy in hepatocellular carcinoma. Pharmacol Ther 2016; 161: 67-78.
[http://dx.doi.org/10.1016/j.pharmthera.2016.03.004] [PMID: 27013343]
[20]
Miyoshi N, Wagatsuma H, Wakana S, et al. Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells 2000; 5(3): 211-20.
[http://dx.doi.org/10.1046/j.1365-2443.2000.00320.x] [PMID: 10759892]
[21]
Tang J, Zhuo H, Zhang X, et al. A novel biomarker Linc00974 interacting with KRT19 promotes proliferation and metastasis in hepatocellular carcinoma. Cell Death Dis 2014; 5(12)e1549
[http://dx.doi.org/10.1038/cddis.2014.518] [PMID: 25476897]
[22]
Chen P, Wan D, Zheng D, Zheng Q, Wu F, Zhi Q. Long non-coding RNA UCA1 promotes the tumorigenesis in pancreatic cancer. Biomed Pharmacother 2016; 83: 1220-6.
[http://dx.doi.org/10.1016/j.biopha.2016.08.041] [PMID: 27562722]
[23]
Zhou B, Zhuang XM, Wang YY, et al. Long non-coding RNA UCA1 increases chemoresistance of tongue cancer cells by regulating autophagy signaling. Int J Oral Maxillofac Surg 2017; 46: 139.
[http://dx.doi.org/10.1016/j.ijom.2017.02.482]
[24]
Liu H, Wang G, Yang L, Qu J, Yang Z, Zhou X. Knockdown of long non-coding RNA UCA1 increases the tamoxifen sensitivity of breast cancer cells through inhibition of Wnt/β-catenin pathway. PLoS One 2016; 11(12) e0168406
[http://dx.doi.org/10.1371/journal.pone.0168406] [PMID: 27977766]
[25]
DiStefano JK. Long noncoding RNAs in the initiation, progression, and metastasis of hepatocellular carcinoma. Noncoding RNA Res 2017; 2(3-4): 129-36.
[http://dx.doi.org/10.1016/j.ncrna.2017.11.001] [PMID: 30159431]
[26]
Mehra M, Chauhan R. Long noncoding RNAs as a key player in hepatocellular carcinoma Cancer Biomark 2017; 9: pii: 1179299X17737301
[http://dx.doi.org/10.1177/1179299X17737301]
[27]
Zhang H, Chen Z, Wang X, Huang Z, He Z, Chen Y. Long non-coding RNA: a new player in cancer. J Hematol Oncol 2013; 6(1): 37.
[http://dx.doi.org/10.1186/1756-8722-6-37] [PMID: 23725405]
[28]
Du Y, Kong G, You X, et al. Elevation of highly up-regulated in liver cancer (HULC) by hepatitis B virus X protein promotes hepatoma cell proliferation via down-regulating p18. J Biol Chem 2012; 287(31): 26302-11.
[http://dx.doi.org/10.1074/jbc.M112.342113] [PMID: 22685290]
[29]
Liz J, Esteller M. lncRNAs and microRNAs with a role in cancer development. Biochimica et Biophysica Acta (BBA). Gene Regulatory Mechanisms 2016; 1859: 169-76.
[30]
Klingenberg M, Matsuda A, Diederichs S, Patel T. Non-coding RNA in hepatocellular carcinoma: mechanisms, biomarkers and therapeutic targets. J Hepatol 2017; 67(3): 603-18.
[http://dx.doi.org/10.1016/j.jhep.2017.04.009] [PMID: 28438689]
[31]
Lai MC, Yang Z, Zhou L, et al. Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol 2012; 29(3): 1810-6.
[http://dx.doi.org/10.1007/s12032-011-0004-z] [PMID: 21678027]
[32]
Ying L, Chen Q, Wang Y, Zhou Z, Huang Y, Qiu F. Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol Biosyst 2012; 8(9): 2289-94.
[http://dx.doi.org/10.1039/c2mb25070e] [PMID: 22722759]
[33]
Yang X, Xie X, Xiao YF, et al. The emergence of long non-coding RNAs in the tumorigenesis of hepatocellular carcinoma. Cancer Lett 2015; 360(2): 119-24.
[http://dx.doi.org/10.1016/j.canlet.2015.02.035] [PMID: 25721084]
[34]
Huang D, Fang J, Luo G. Roles of long noncoding RNAs in hepatocellular carcinoma. Open Life Sci 2016; 11: 91-7.
[http://dx.doi.org/10.1515/biol-2016-0012]
[35]
Bayoumi AS, Sayed A, Broskova Z, et al. Crosstalk between long noncoding RNAs and microRNAs in health and disease. Int J Mol Sci 2016; 17(3): 356.
[http://dx.doi.org/10.3390/ijms17030356] [PMID: 26978351]
[36]
Matouk IJ, DeGroot N, Mezan S, et al. The H19 non-coding RNA is essential for human tumor growth. PLoS One 2007; 2(9)e845
[http://dx.doi.org/10.1371/journal.pone.0000845] [PMID: 17786216]
[37]
Zhang L, Yang F, Yuan JH, et al. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis 2013; 34(3): 577-86.
[http://dx.doi.org/10.1093/carcin/bgs381] [PMID: 23222811]
[38]
Zhang X, Rice K, Wang Y, et al. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 2010; 151(3): 939-47.
[http://dx.doi.org/10.1210/en.2009-0657] [PMID: 20032057]
[39]
Yuan SX, Wang J, Yang F, et al. Long noncoding RNA DANCR increases stemness features of hepatocellular carcinoma by derepression of CTNNB1. Hepatology 2016; 63(2): 499-511.
[http://dx.doi.org/10.1002/hep.27893] [PMID: 25964079]
[40]
Wang F, Ying HQ, He BS, et al. Upregulated lncRNA-UCA1 contributes to progression of hepatocellular carcinoma through inhibition of miR-216b and activation of FGFR1/ERK signaling pathway. Oncotarget 2015; 6(10): 7899-917.
[http://dx.doi.org/10.18632/oncotarget.3219] [PMID: 25760077]
[41]
Zheng Q, Lin Z, Li X, et al. Inflammatory cytokine IL6 cooperates with CUDR to aggravate hepatocyte-like stem cells malignant transformation through NF-κB signaling. Sci Rep 2016; 6: 36843.
[http://dx.doi.org/10.1038/srep36843] [PMID: 27833137]
[42]
Hu JJ, Song W, Zhang SD, et al. HBx-upregulated lncRNA UCA1 promotes cell growth and tumorigenesis by recruiting EZH2 and repressing p27Kip1/CDK2 signaling. Sci Rep 2016; 6: 23521.
[http://dx.doi.org/10.1038/srep23521] [PMID: 27009634]
[43]
Tsang WP, Wong TW, Cheung AH, Co CN, Kwok TT. Induction of drug resistance and transformation in human cancer cells by the noncoding RNA CUDR. RNA 2007; 13(6): 890-8.
[http://dx.doi.org/10.1261/rna.359007] [PMID: 17416635]
[44]
Thorenoor N, Faltejskova-Vychytilova P, Hombach S, et al. Long non-coding RNA ZFAS1 interacts with CDK1 and is involved in p53-dependent cell cycle control and apoptosis in colorectal cancer. Oncotarget 2016; 7(1): 622-37.
[http://dx.doi.org/10.18632/oncotarget.5807] [PMID: 26506418]
[45]
Nie F, Yu X, Huang M, et al. Long noncoding RNA ZFAS1 promotes gastric cancer cells proliferation by epigenetically repressing KLF2 and NKD2 expression. Oncotarget 2017; 8(24): 38227-38.
[http://dx.doi.org/10.18632/oncotarget.9611] [PMID: 27246976]
[46]
Peng L, Yuan XQ, Zhang CY, et al. The emergence of long non-coding RNAs in hepatocellular carcinoma: an update. J Cancer 2018; 9(14): 2549-58.
[http://dx.doi.org/10.7150/jca.24560] [PMID: 30026854]
[47]
Deng L, Yang SB, Xu FF, Zhang JH. Long noncoding RNA CCAT1 promotes hepatocellular carcinoma progression by functioning as let-7 sponge. J Exp Clin Cancer Res 2015; 34: 18.
[http://dx.doi.org/10.1186/s13046-015-0136-7] [PMID: 25884472]
[48]
Yuan SX, Yang F, Yang Y, et al. Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients’ poor recurrence-free survival after hepatectomy. Hepatology 2012; 56(6): 2231-41.
[http://dx.doi.org/10.1002/hep.25895] [PMID: 22706893]
[49]
Zhang Y, Guan DG, Yang JH, Shao P, Zhou H, Qu LH. ncRNAimprint: a comprehensive database of mammalian imprinted noncoding RNAs. RNA 2010; 16(10): 1889-901.
[http://dx.doi.org/10.1261/rna.2226910] [PMID: 20801769]
[50]
Szymanski M, Erdmann VA, Barciszewski J. Noncoding RNAs database (ncRNAdb). Nucleic Acids Res 2007; 35(Database Issue): D162-4.
[http://dx.doi.org/10.1093/nar/gkl994] [PMID: 17169980]
[51]
Zhao Y, Li H, Fang S, et al. NONCODE 2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res 2016; 44(D1): D203-8.
[http://dx.doi.org/10.1093/nar/gkv1252] [PMID: 26586799]
[52]
Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS. lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 2011; 39(Database issue): D146-51.
[http://dx.doi.org/10.1093/nar/gkq1138] [PMID: 21112873]
[53]
Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA family database. Nucleic Acids Res 2003; 31(1): 439-41.
[http://dx.doi.org/10.1093/nar/gkg006] [PMID: 12520045]
[54]
Yuan J, Wu W, Xie C, Zhao G, Zhao Y, Chen R. NPInter v2.0: an updated database of ncRNA interactions. Nucleic Acids Res 2014; 42(Database Issue): D104-8.
[http://dx.doi.org/10.1093/nar/gkt1057] [PMID: 24217916]
[55]
Kin T, Yamada K, Terai G, et al. fRNAdb: a platform for mining/annotating functional RNA candidates from non-coding RNA sequences. Nucleic Acids Res 2007; 35(Database Issue): D145-8.
[http://dx.doi.org/10.1093/nar/gkl837] [PMID: 17099231]
[56]
Dinger ME, Pang KC, Mercer TR, Crowe ML, Grimmond SM, Mattick JS. NRED: a database of long noncoding RNA expression. Nucleic Acids Res 2009; 37(Database Issue): D122-6.
[http://dx.doi.org/10.1093/nar/gkn617] [PMID: 18829717]
[57]
Geng YJ, Xie SL, Li Q, Ma J, Wang GY. Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res 2011; 39(6): 2119-28.
[http://dx.doi.org/10.1177/147323001103900608] [PMID: 22289527]
[58]
Niinuma T, Suzuki H, Nojima M, et al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res 2012; 72(5): 1126-36.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1803] [PMID: 22258453]
[59]
Qi P, Du X. The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol 2013; 26(2): 155-65.
[http://dx.doi.org/10.1038/modpathol.2012.160] [PMID: 22996375]
[60]
Weiler J, Hunziker J, Hall J. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther 2006; 13(6): 496-502.
[http://dx.doi.org/10.1038/sj.gt.3302654] [PMID: 16195701]
[61]
Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005; 65(14): 6029-33.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0137] [PMID: 16024602]
[62]
Pineau P, Volinia S, McJunkin K, et al. miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci USA 2010; 107(1): 264-9.
[http://dx.doi.org/10.1073/pnas.0907904107] [PMID: 20018759]
[63]
Wong CM, Kai AK, Tsang FH, Ng IO. Regulation of hepatocarcinogenesis by microRNAs. Front Biosci (Elite Ed) 2013; 5: 49-60.
[http://dx.doi.org/10.2741/E595] [PMID: 23276969]
[64]
Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120(5): 635-47.
[http://dx.doi.org/10.1016/j.cell.2005.01.014] [PMID: 15766527]
[65]
Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64(11): 3753-6.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0637] [PMID: 15172979]
[66]
Su H, Yang JR, Xu T, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 2009; 69(3): 1135-42.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2886] [PMID: 19155302]
[67]
Xu Y, An Y, Wang Y, et al. miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep 2013; 29(5): 2019-24.
[http://dx.doi.org/10.3892/or.2013.2338] [PMID: 23483142]
[68]
Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 2009; 28(40): 3526-36.
[http://dx.doi.org/10.1038/onc.2009.211] [PMID: 19617899]
[69]
Kutay H, Bai S, Datta J, et al. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 2006; 99(3): 671-8.
[http://dx.doi.org/10.1002/jcb.20982] [PMID: 16924677]
[70]
Bandiera S, Pfeffer S, Baumert TF, Zeisel MB. miR-122-a key factor and therapeutic target in liver disease. J Hepatol 2015; 62(2): 448-57.
[http://dx.doi.org/10.1016/j.jhep.2014.10.004] [PMID: 25308172]
[71]
Zhao L, Wang W. miR-125b suppresses the proliferation of hepatocellular carcinoma cells by targeting Sirtuin7. Int J Clin Exp Med 2015; 8(10): 18469-75.
[PMID: 26770454]
[72]
Jia HY, Wang YX, Yan WT, et al. MicroRNA-125b functions as a tumor suppressor in hepatocellular carcinoma cells. Int J Mol Sci 2012; 13(7): 8762-74.
[http://dx.doi.org/10.3390/ijms13078762] [PMID: 22942733]
[73]
Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 2006; 25(17): 2537-45.
[http://dx.doi.org/10.1038/sj.onc.1209283] [PMID: 16331254]
[74]
Gramantieri L, Ferracin M, Fornari F, et al. Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 2007; 67(13): 6092-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4607] [PMID: 17616664]
[75]
Liu AM, Zhang C, Burchard J, et al. Global regulation on microRNA in hepatitis B virus-associated hepatocellular carcinoma. OMICS 2011; 15(3): 187-91.
[http://dx.doi.org/10.1089/omi.2010.0098] [PMID: 21319996]
[76]
Jiang J, Gusev Y, Aderca I, et al. Association of MicroRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res 2008; 14(2): 419-27.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0523] [PMID: 18223217]
[77]
Wang W, Peng B, Wang D, et al. Human tumor microRNA signatures derived from large-scale oligonucleotide microarray datasets. Int J Cancer 2011; 129(7): 1624-34.
[http://dx.doi.org/10.1002/ijc.25818] [PMID: 21128228]
[78]
Sato F, Hatano E, Kitamura K, et al. MicroRNA profile predicts recurrence after resection in patients with hepatocellular carcinoma within the Milan Criteria. PLoS One 2011; 6(1)e16435
[http://dx.doi.org/10.1371/journal.pone.0016435] [PMID: 21298008]
[79]
Qu KZ, Zhang K, Li H, Afdhal NH, Albitar M. Circulating microRNAs as biomarkers for hepatocellular carcinoma. J Clin Gastroenterol 2011; 45(4): 355-60.
[http://dx.doi.org/10.1097/MCG.0b013e3181f18ac2] [PMID: 21278583]
[80]
Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133(2): 647-58.
[http://dx.doi.org/10.1053/j.gastro.2007.05.022] [PMID: 17681183]
[81]
He H, Jazdzewski K, Li W, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 2005; 102(52): 19075-80.
[http://dx.doi.org/10.1073/pnas.0509603102] [PMID: 16365291]
[82]
Fornari F, Gramantieri L, Ferracin M, et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 2008; 27(43): 5651-61.
[http://dx.doi.org/10.1038/onc.2008.178] [PMID: 18521080]
[83]
Wong QW, Ching AK, Chan AW, et al. MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin Cancer Res 2010; 16(3): 867-75.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1840] [PMID: 20103675]
[84]
Ji J, Zhao L, Budhu A, et al. Let-7g targets collagen type I α2 and inhibits cell migration in hepatocellular carcinoma. J Hepatol 2010; 52(5): 690-7.
[http://dx.doi.org/10.1016/j.jhep.2009.12.025] [PMID: 20338660]
[85]
Zhao YJ, Ju Q, Li GC. Tumor markers for hepatocellular carcinoma. Mol Clin Oncol 2013; 1(4): 593-8.
[http://dx.doi.org/10.3892/mco.2013.119] [PMID: 24649215]
[86]
Xiong Y, Fang JH, Yun JP, et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 2010; 51(3): 836-45.
[PMID: 20041405]
[87]
Lin CJ, Gong HY, Tseng HC, Wang WL, Wu JL. miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 2008; 375(3): 315-20.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.154] [PMID: 18692484]
[88]
Li S, Fu H, Wang Y, et al. MicroRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma. Hepatology 2009; 49(4): 1194-202.
[http://dx.doi.org/10.1002/hep.22757] [PMID: 19133651]
[89]
Wang H, Tan G, Dong L, et al. Circulating MiR-125b as a marker predicting chemoresistance in breast cancer. PLoS One 2012; 7(4)e34210
[http://dx.doi.org/10.1371/journal.pone.0034210] [PMID: 22523546]
[90]
Shiiba M, Shinozuka K, Saito K, et al. MicroRNA-125b regulates proliferation and radioresistance of oral squamous cell carcinoma. Br J Cancer 2013; 108(9): 1817-21.
[http://dx.doi.org/10.1038/bjc.2013.175] [PMID: 23591197]
[91]
Han Y, Liu Y, Zhang H, et al. Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long non-coding RNA MALAT1. FEBS Lett 2013; 587(23): 3875-82.
[http://dx.doi.org/10.1016/j.febslet.2013.10.023] [PMID: 24396870]
[92]
Visone R, Russo L, Pallante P, et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 2007; 14(3): 791-8.
[http://dx.doi.org/10.1677/ERC-07-0129] [PMID: 17914108]
[93]
Gong J, Zhang JP, Li B, et al. MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene 2013; 32(25): 3071-9.
[http://dx.doi.org/10.1038/onc.2012.318] [PMID: 22824797]
[94]
Jiang JX, Gao S, Pan YZ, Yu C, Sun CY. Overexpression of microRNA-125b sensitizes human hepatocellular carcinoma cells to 5-fluorouracil through inhibition of glycolysis by targeting hexokinase II. Mol Med Rep 2014; 10(2): 995-1002.
[http://dx.doi.org/10.3892/mmr.2014.2271] [PMID: 24865963]
[95]
Esau CC, Monia BP. Therapeutic potential for microRNAs. Adv Drug Deliv Rev 2007; 59(2-3): 101-14.
[http://dx.doi.org/10.1016/j.addr.2007.03.007] [PMID: 17462786]
[96]
Borel F, Konstantinova P, Jansen PL. Diagnostic and therapeutic potential of miRNA signatures in patients with hepatocellular carcinoma. J Hepatol 2012; 56(6): 1371-83.
[http://dx.doi.org/10.1016/j.jhep.2011.11.026] [PMID: 22314424]
[97]
Giordano S, Columbano A. MicroRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology 2013; 57(2): 840-7.
[http://dx.doi.org/10.1002/hep.26095] [PMID: 23081718]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 4
Year: 2020
Page: [415 - 428]
Pages: 14
DOI: 10.2174/1381612826666200115093835

Article Metrics

PDF: 32
HTML: 6
EPUB: 1
PRC: 1