The Renin-Angiotensin System in Huntington’s Disease: Villain or Hero?

Author(s): Thatiane C.G. Machado, Cristina Guatimosim*, Lucas M. Kangussu*

Journal Name: Protein & Peptide Letters

Volume 27 , Issue 6 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Huntington’s Disease (HD) is an autosomal dominant, progressive neurodegenerative disorder characterized by severe symptoms, including motor impairment, cognitive decline, and psychiatric alterations. Several systems, molecules, and mediators have been associated with the pathophysiology of HD. Among these, there is the Renin-Angiotensin System (RAS), a peptide hormone system that has been associated with the pathology of neuropsychiatric and neurodegenerative disorders. Important alterations in this system have been demonstrated in HD. However, the role of RAS components in HD is still unclear and needs further investigation. Nonetheless, modulation of the RAS components may represent a potential therapeutic strategy for the treatment of HD.

Keywords: Renin angiotensin system, angiotensin peptides, Huntington’s disease, neurodegenerative disorder, pathophysiology, peptide hormone.

[1]
Bates, G.P.; Dorsey, R.; Gusella, J.F.; Hayden, M.R.; Kay, C.; Leavitt, B.R.; Nance, M.; Ross, C.A.; Scahill, R.I.; Wetzel, R.; Wild, E.J.; Tabrizi, S.J. Huntington disease. Nat. Rev. Dis. Primers, 2015, 1(1), 15005.
[http://dx.doi.org/10.1038/nrdp.2015.5] [PMID: 27188817]
[2]
Bano, D.; Zanetti, F.; Mende, Y.; Nicotera, P. Neurodegenerative processes in Huntington’s disease. Cell Death Dis., 2011, 2(11)e228
[http://dx.doi.org/10.1038/cddis.2011.112] [PMID: 22071633]
[3]
Ross, C.A.; Tabrizi, S.J. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol., 2011, 10(1), 83-98.
[http://dx.doi.org/10.1016/S1474-4422(10)70245-3] [PMID: 21163446]
[4]
Shao, J.; Diamond, M.I. Polyglutamine diseases: Emerging concepts in pathogenesis and therapy. Hum. Mol. Genet., 2007, 16 Spec No. 2(R2), R115-R123.
[http://dx.doi.org/10.1093/hmg/ddm213] [PMID: 17911155]
[5]
Rosas, H.D.; Salat, D.H.; Lee, S.Y.; Zaleta, A.K.; Pappu, V.; Fischl, B.; Greve, D.; Hevelone, N.; Hersch, S.M. Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain, 2008, 131(Pt 4), 1057-1068.
[http://dx.doi.org/10.1093/brain/awn025] [PMID: 18337273]
[6]
Rüb, U.; Hoche, F.; Brunt, E.R.; Heinsen, H.; Seidel, K.; Del Turco, D.; Paulson, H.L.; Bohl, J.; von Gall, C.; Vonsattel, J.P.; Korf, H.W.; den Dunnen, W.F. Degeneration of the cerebellum in Huntington’s disease (HD): possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process. Brain Pathol., 2013, 23(2), 165-177.
[http://dx.doi.org/10.1111/j.1750-3639.2012.00629.x] [PMID: 22925167]
[7]
Oyanagi, K.; Takeda, S.; Takahashi, H.; Ohama, E.; Ikuta, F. A quantitative investigation of the substantia nigra in Huntington’s disease. Ann. Neurol., 1989, 26(1), 13-19.
[http://dx.doi.org/10.1002/ana.410260103] [PMID: 2528318]
[8]
Kiferle, L.; Mazzucchi, S.; Unti, E.; Pesaresi, I.; Fabbri, S.; Nicoletti, V.; Volterrani, D.; Cosottini, M.; Bonuccelli, U.; Ceravolo, R. Nigral involvement and nigrostriatal dysfunction in Huntington’s disease: evidences from an MRI and SPECT study. Parkinsonism Relat. Disord., 2013, 19(9), 800-805.
[http://dx.doi.org/10.1016/j.parkreldis.2013.05.005] [PMID: 23769177]
[9]
Walker, F.O. Huntington’s disease. Lancet, 2007, 369(9557), 218-228.
[http://dx.doi.org/10.1016/S0140-6736(07)60111-1] [PMID: 17240289]
[10]
Baig, S.S.; Strong, M.; Quarrell, O.W. The global prevalence of Huntington’s disease: a systematic review and discussion. Neurodegener. Dis. Manag., 2016, 6(4), 331-343.
[http://dx.doi.org/10.2217/nmt-2016-0008] [PMID: 27507223]
[11]
Rawlins, M.D.; Wexler, N.S.; Wexler, A.R.; Tabrizi, S.J.; Douglas, I.; Evans, S.J.; Smeeth, L. The prevalence of Huntington’s disease. Neuroepidemiology, 2016, 46(2), 144-153.
[http://dx.doi.org/10.1159/000443738] [PMID: 26824438]
[12]
Paradisi, I.; Hernández, A.; Arias, S. Huntington disease mutation in Venezuela: age of onset, haplotype analyses and geographic aggregation. J. Hum. Genet., 2008, 53(2), 127-135.
[http://dx.doi.org/10.1007/s10038-007-0227-1] [PMID: 18157708]
[13]
McColgan, P.; Tabrizi, S.J. Huntington’s disease: a clinical review. Eur. J. Neurol., 2018, 25(1), 24-34.
[http://dx.doi.org/10.1111/ene.13413] [PMID: 28817209]
[14]
van der Burg, J.M.M.; Björkqvist, M.; Brundin, P. Beyond the brain: widespread pathology in Huntington’s disease. Lancet Neurol., 2009, 8(8), 765-774.
[http://dx.doi.org/10.1016/S1474-4422(09)70178-4] [PMID: 19608102]
[15]
Papoutsi, M.; Labuschagne, I.; Tabrizi, S.J.; Stout, J.C. The cognitive burden in Huntington’s disease: pathology, phenotype, and mechanisms of compensation. Mov. Disord., 2014, 29(5), 673-683.
[http://dx.doi.org/10.1002/mds.25864] [PMID: 24757115]
[16]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[17]
Kumar, A.; Ratan, R.R. Oxidative stress and Huntington’s disease: The good, the bad, and the ugly. J. Huntingtons Dis., 2016, 5(3), 217-237.
[http://dx.doi.org/10.3233/JHD-160205] [PMID: 27662334]
[18]
Crotti, A.; Glass, C.K. The choreography of neuroinflammation in Huntington’s disease. Trends Immunol., 2015, 36(6), 364-373.
[http://dx.doi.org/10.1016/j.it.2015.04.007] [PMID: 26001312]
[19]
Ribeiro, F.M.; Paquet, M.; Ferreira, L.T.; Cregan, T.; Swan, P.; Cregan, S.P.; Ferguson, S.S.G. Metabotropic glutamate receptor-mediated cell signaling pathways are altered in a mouse model of Huntington’s disease. J. Neurosci., 2010, 30(1), 316-324.
[http://dx.doi.org/10.1523/JNEUROSCI.4974-09.2010] [PMID: 20053912]
[20]
Ribeiro, F.M.; Pires, R.G.W.; Ferguson, S.S.G. Huntington’s disease and Group I metabotropic glutamate receptors. Mol. Neurobiol., 2011, 43(1), 1-11.
[http://dx.doi.org/10.1007/s12035-010-8153-1] [PMID: 21153060]
[21]
Garrett, M.C.; Soares-da-Silva, P. Increased cerebrospinal fluid dopamine and 3,4-dihydroxyphenylacetic acid levels in Huntington’s disease: evidence for an overactive dopaminergic brain transmission. J. Neurochem., 1992, 58(1), 101-106.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb09283.x] [PMID: 1309230]
[22]
Kish, S.J.; Shannak, K.; Hornykiewicz, O. Elevated serotonin and reduced dopamine in subregionally divided Huntington’s disease striatum. Ann. Neurol., 1987, 22(3), 386-389.
[http://dx.doi.org/10.1002/ana.410220318] [PMID: 2445259]
[23]
Chen, J.Y.; Wang, E.A.; Cepeda, C.; Levine, M.S. Dopamine imbalance in Huntington’s disease: a mechanism for the lack of behavioral flexibility. Front. Neurosci., 2013, 7, 114.
[http://dx.doi.org/10.3389/fnins.2013.00114] [PMID: 23847463]
[24]
Cepeda, C.; Murphy, K.P.; Parent, M.; Levine, M.S. The role of dopamine in Huntington’s disease. Prog. Brain Res., 2014, 211, 235-254.
[http://dx.doi.org/10.1016/B978-0-444-63425-2.00010-6] [PMID: 24968783]
[25]
Arregui, A.; Bennett, J.P., Jr; Bird, E.D.; Yamamura, H.I.; Iversen, L.L.; Snyder, S.H. Huntington’s chorea: selective depletion of activity of angiotensin coverting enzyme in the corpus striatum. Ann. Neurol., 1977, 2(4), 294-298.
[http://dx.doi.org/10.1002/ana.410020406] [PMID: 214022]
[26]
Arregui, A.; Emson, P.C.; Spokes, E.G. Angiotensin-converting enzyme in substantia nigra: reduction of activity in Huntington’s disease and after intrastriatal kainic acid in rats. Eur. J. Pharmacol., 1978, 52(1), 121-124.
[http://dx.doi.org/10.1016/0014-2999(78)90029-8] [PMID: 214307]
[27]
Schweisfurth, H.; Schiöberg-Schiegnitz, S.; Kuhn, W.; Parusel, B.; Angiotensin, I. Angiotensin I converting enzyme in cerebrospinal fluid of patients with neurological diseases. Klin. Wochenschr., 1987, 65(20), 955-958.
[http://dx.doi.org/10.1007/BF01717829] [PMID: 2828757]
[28]
De Mello, W.C.; Gerena, Y.; Ayala-Peña, S. Angiotensins and Huntington’s disease: A study on immortalized progenitor striatal cell lines. Front. Endocrinol. (Lausanne), 2017, 8, 108.
[http://dx.doi.org/10.3389/fendo.2017.00108] [PMID: 28596754]
[29]
Paul, M.; Poyan Mehr, A.; Kreutz, R. Physiology of local renin-angiotensin systems. Physiol. Rev., 2006, 86(3), 747-803.
[http://dx.doi.org/10.1152/physrev.00036.2005] [PMID: 16816138]
[30]
Lavoie, J.L.; Sigmund, C.D. Minireview: overview of the renin-angiotensin system--an endocrine and paracrine system. Endocrinology, 2003, 144(6), 2179-2183.
[http://dx.doi.org/10.1210/en.2003-0150] [PMID: 12746271]
[31]
von Bohlen und Halbach, O.; Albrecht, D. The CNS renin-angiotensin system. Cell Tissue Res., 2006, 326(2), 599-616.
[http://dx.doi.org/10.1007/s00441-006-0190-8] [PMID: 16555051]
[32]
Xu, P.; Sriramula, S.; Lazartigues, E. ACE2/ANG-(1-7)/Mas pathway in the brain: the axis of good. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, 300(4), R804-R817.
[http://dx.doi.org/10.1152/ajpregu.00222.2010] [PMID: 21178125]
[33]
Gironacci, M.M.; Vicario, A.; Cerezo, G.; Silva, M.G. The depressor axis of the renin-angiotensin system and brain disorders: a translational approach. Clin. Sci. (Lond.), 2018, 132(10), 1021-1038.
[http://dx.doi.org/10.1042/CS20180189] [PMID: 29802208]
[34]
Kangussu, L.M.; Almeida-Santos, A.F.; Bader, M.; Alenina, N.; Fontes, M.A.P.; Santos, R.A.; Aguiar, D.C.; Campagnole-Santos, M.J. Angiotensin-(1-7) attenuates the anxiety and depression-like behaviors in transgenic rats with low brain angiotensinogen. Behav. Brain Res., 2013, 257, 25-30.
[http://dx.doi.org/10.1016/j.bbr.2013.09.003] [PMID: 24016839]
[35]
Almeida-Santos, A.F.; Kangussu, L.M.; Moreira, F.A.; Santos, R.A.S.; Aguiar, D.C.; Campagnole-Santos, M.J. Anxiolytic- and antidepressant-like effects of angiotensin-(1-7) in hypertensive transgenic (mRen2)27 rats. Clin. Sci. (Lond.), 2016, 130(14), 1247-1255.
[http://dx.doi.org/10.1042/CS20160116] [PMID: 27129185]
[36]
Kangussu, L.M.; Almeida-Santos, A.F.; Moreira, F.A.; Fontes, M.A.P.; Santos, R.A.S.; Aguiar, D.C.; Campagnole-Santos, M.J. Reduced anxiety-like behavior in transgenic rats with chronically overproduction of angiotensin-(1-7): Role of the Mas receptor. Behav. Brain Res., 2017, 331, 193-198.
[http://dx.doi.org/10.1016/j.bbr.2017.05.026] [PMID: 28502733]
[37]
Jiang, T.; Zhang, Y.D.; Zhou, J.S.; Zhu, X.C.; Tian, Y.Y.; Zhao, H.D.; Lu, H.; Gao, Q.; Tan, L.; Yu, J.T. Angiotensin-(1-7) is reduced and inversely correlates with Tau hyperphosphorylation in animal models of Alzheimer’s Disease. Mol. Neurobiol., 2016, 53(4), 2489-2497.
[http://dx.doi.org/10.1007/s12035-015-9260-9] [PMID: 26044748]
[38]
Kehoe, P.G.; Miners, S.; Love, S. Angiotensins in Alzheimer’s disease - friend or foe? Trends Neurosci., 2009, 32(12), 619-628.
[http://dx.doi.org/10.1016/j.tins.2009.07.006] [PMID: 19796831]
[39]
Tian, M.; Zhu, D.; Xie, W.; Shi, J. Central angiotensin II-induced Alzheimer-like tau phosphorylation in normal rat brains. FEBS Lett., 2012, 586(20), 3737-3745.
[http://dx.doi.org/10.1016/j.febslet.2012.09.004] [PMID: 22982863]
[40]
Mertens, B.; Vanderheyden, P.; Michotte, Y.; Sarre, S. The role of the central renin-angiotensin system in Parkinson’s disease. J. Renin Angiotensin Aldosterone Syst., 2010, 11(1), 49-56.
[http://dx.doi.org/10.1177/1470320309347789] [PMID: 19861346]
[41]
Rocha, N.P.; Scalzo, P.L.; Barbosa, I.G.; de Campos-Carli, S.M.; Tavares, L.D.; de Souza, M.S.; Christo, P.P.; Reis, H.J.; Simões E Silva, A.C.; Teixeira, A.L. Peripheral levels of angiotensins are associated with depressive symptoms in Parkinson’s disease. J. Neurol. Sci., 2016, 368, 235-239.
[http://dx.doi.org/10.1016/j.jns.2016.07.031] [PMID: 27538640]
[42]
Dominguez-Meijide, A.; Villar-Cheda, B.; Garrido-Gil, P.; Sierrra-Paredes, G.; Guerra, M.J.; Labandeira-Garcia, J.L. Effect of chronic treatment with angiotensin type 1 receptor antagonists on striatal dopamine levels in normal rats and in a rat model of Parkinson’s disease treated with L-DOPA. Neuropharmacology, 2014, 76(Pt A), 156-168.,
[http://dx.doi.org/10.1016/j.neuropharm.2013.07.016] [PMID: 23973568]
[43]
Fyhrquist, F.; Saijonmaa, O. Renin-angiotensin system revisited. J. Intern. Med., 2008, 264(3), 224-236.
[http://dx.doi.org/10.1111/j.1365-2796.2008.01981.x] [PMID: 18793332]
[44]
Jankowski, V.; Vanholder, R.; van der Giet, M.; Tölle, M.; Karadogan, S.; Gobom, J.; Furkert, J.; Oksche, A.; Krause, E.; Tran, T.N.; Tepel, M.; Schuchardt, M.; Schlüter, H.; Wiedon, A.; Beyermann, M.; Bader, M.; Todiras, M.; Zidek, W.; Jankowski, J. Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler. Thromb. Vasc. Biol., 2007, 27(2), 297-302.
[http://dx.doi.org/10.1161/01.ATV.0000253889.09765.5f] [PMID: 17138938]
[45]
Lautner, R.Q.; Villela, D.C.; Fraga-Silva, R.A.; Silva, N.; Verano-Braga, T.; Costa-Fraga, F.; Jankowski, J.; Jankowski, V.; Sousa, F.; Alzamora, A.; Soares, E.; Barbosa, C.; Kjeldsen, F.; Oliveira, A.; Braga, J.; Savergnini, S.; Maia, G.; Peluso, A.B.; Passos-Silva, D.; Ferreira, A.; Alves, F.; Martins, A.; Raizada, M.; Paula, R.; Motta-Santos, D.; Klempin, F.; Pimenta, A.; Alenina, N.; Sinisterra, R.; Bader, M.; Campagnole-Santos, M.J.; Santos, R.A. Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ. Res., 2013, 112(8), 1104-1111.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301077] [PMID: 23446738]
[46]
Santos, R.A.S.; Oudit, G.Y.; Verano-Braga, T.; Canta, G.; Steckelings, U.M.; Bader, M. The renin-angiotensin system: going beyond the classical paradigms. Am. J. Physiol. Heart Circ. Physiol., 2019, 316(5), H958-H970.
[http://dx.doi.org/10.1152/ajpheart.00723.2018] [PMID: 30707614]
[47]
Santos, R.A.; Simoes e Silva, A.C.; Maric, C.; Silva, D.M.; Machado, R.P.; de Buhr, I.; Heringer-Walther, S.; Pinheiro, S.V.; Lopes, M.T.; Bader, M.; Mendes, E.P.; Lemos, V.S.; Campagnole-Santos, M.J.; Schultheiss, H.P.; Speth, R.; Walther, T. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8258-8263.
[http://dx.doi.org/10.1073/pnas.1432869100] [PMID: 12829792]
[48]
Metzger, R.; Bader, M.; Ludwig, T.; Berberich, C.; Bunnemann, B.; Ganten, D. Expression of the mouse and rat mas proto-oncogene in the brain and peripheral tissues. FEBS Lett., 1995, 357(1), 27-32.
[http://dx.doi.org/10.1016/0014-5793(94)01292-9] [PMID: 8001672]
[49]
Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J. The ACE2/Angiotensin-(1-7)/MAS axis of the renin-angiotensin system: Focus on angiotensin-(1-7). Physiol. Rev., 2018, 98(1), 505-553.
[http://dx.doi.org/10.1152/physrev.00023.2016] [PMID: 29351514]
[50]
Zhu, D.; Shi, J.; Zhang, Y.; Wang, B.; Liu, W.; Chen, Z.; Tong, Q. Central angiotensin II stimulation promotes β amyloid production in Sprague Dawley rats. PLoS One, 2011, 6(1)e16037
[http://dx.doi.org/10.1371/journal.pone.0016037] [PMID: 21297982]
[51]
Almeida-Santos, A.F.; Kangussu, L.M.; Campagnole-Santos, M.J. The renin-angiotensin system and the neurodegenerative diseases: A brief review. Protein Pept. Lett., 2017, 24(9), 841-853.
[http://dx.doi.org/10.2174/0929866524666170822120258] [PMID: 28828974]
[52]
von Bohlen und Halbach, O.; Albrecht, D. Angiotensin II inhibits long-term potentiation within the lateral nucleus of the amygdala through AT1 receptors. Peptides, 1998, 19(6), 1031-1036.
[http://dx.doi.org/10.1016/s0196-9781(98)00044-8]
[53]
Tchekalarova, J.; Albrecht, D.; Angiotensin, I.I. Angiotensin II suppresses long-term depression in the lateral amygdala of mice via L-type calcium channels. Neurosci. Lett., 2007, 415(1), 68-72.
[http://dx.doi.org/10.1016/j.neulet.2006.12.040] [PMID: 17289261]
[54]
Tota, S.; Goel, R.; Pachauri, S.D.; Rajasekar, N.; Najmi, A.K.; Hanif, K.; Nath, C. Effect of angiotensin II on spatial memory, cerebral blood flow, cholinergic neurotransmission, and brain derived neurotrophic factor in rats. Psychopharmacology (Berl.), 2013, 226(2), 357-369.
[http://dx.doi.org/10.1007/s00213-012-2913-8] [PMID: 23192311]
[55]
Hellner, K.; Walther, T.; Schubert, M.; Albrecht, D. Angiotensin-(1-7) enhances LTP in the hippocampus through the G-protein-coupled receptor Mas. Mol. Cell. Neurosci., 2005, 29(3), 427-435.
[http://dx.doi.org/10.1016/j.mcn.2005.03.012] [PMID: 15950155]
[56]
Lazaroni, T.L.; Raslan, A.C.S.; Fontes, W.R.; de Oliveira, M.L.; Bader, M.; Alenina, N.; Moraes, M.F.; Dos Santos, R.A.; Pereira, G.S. Angiotensin-(1-7)/Mas axis integrity is required for the expression of object recognition memory. Neurobiol. Learn. Mem., 2012, 97(1), 113-123.
[http://dx.doi.org/10.1016/j.nlm.2011.10.003] [PMID: 22067210]
[57]
Ge, J.; Barnes, N.M. Alterations in angiotensin AT1 and AT2 receptor subtype levels in brain regions from patients with neurodegenerative disorders. Eur. J. Pharmacol., 1996, 297(3), 299-306.
[http://dx.doi.org/10.1016/0014-2999(95)00762-8] [PMID: 8666063]
[58]
Guimond, M.O.; Gallo-Payet, N. How does angiotensin AT2 receptor activation help neuronal differentiation and improve neuronal pathological situations? Front. Endocrinol., 2012, 164(3), 1-12.
[http://dx.doi.org/10.3389/fendo.2012.00164]
[59]
Lu, J.; Wu, L.; Jiang, T.; Wang, Y.; Zhao, H.; Gao, Q.; Pan, Y.; Tian, Y.; Zhang, Y. Angiotensin AT2 receptor stimulation inhibits activation of NADPH oxidase and ameliorates oxidative stress in rotenone model of Parkinson’s disease in CATH.a cells. Neurotoxicol. Teratol., 2015, 47, 16-24.
[http://dx.doi.org/10.1016/j.ntt.2014.11.004] [PMID: 25446015]
[60]
Kramár, E.A.; Armstrong, D.L.; Ikeda, S.; Wayner, M.J.; Harding, J.W.; Wright, J.W. The effects of angiotensin IV analogs on long-term potentiation within the CA1 region of the hippocampus in vitro. Brain Res., 2001, 897(1-2), 114-121.
[http://dx.doi.org/10.1016/S0006-8993(01)02100-X] [PMID: 11282364]
[61]
Lee, J.; Albiston, A.L.; Allen, A.M.; Mendelsohn, F.A.; Ping, S.E.; Barrett, G.L.; Murphy, M.; Morris, M.J.; McDowall, S.G.; Chai, S.Y. Effect of I.C.V. injection of AT4 receptor ligands, NLE1-angiotensin IV and LVV-hemorphin 7, on spatial learning in rats. Neuroscience, 2004, 124(2), 341-349.
[http://dx.doi.org/10.1016/j.neuroscience.2003.12.006] [PMID: 14980384]
[62]
Olson, M.L.; Cero, I.J. Intrahippocampal Norleucine1-Angiotensin IV mitigates scopolamine-induced spatial working memory deficits. Peptides, 2010, 31(12), 2209-2215.
[http://dx.doi.org/10.1016/j.peptides.2010.08.023] [PMID: 20816712]
[63]
Paris, J.J.; Eans, S.O.; Mizrachi, E.; Reilley, K.J.; Ganno, M.L.; McLaughlin, J.P. Central administration of angiotensin IV rapidly enhances novel object recognition among mice. Neuropharmacology, 2013, 70, 247-253.
[http://dx.doi.org/10.1016/j.neuropharm.2013.01.025] [PMID: 23416700]
[64]
Wright, J.W.; Harding, J.W. The angiotensin AT4 receptor subtype as a target for the treatment of memory dysfunction associated with Alzheimer’s disease. J. Renin Angiotensin Aldosterone Syst., 2008, 9(4), 226-237.
[http://dx.doi.org/10.1177/1470320308099084] [PMID: 19126664]
[65]
Villar-Cheda, B.; Rodríguez-Pallares, J.; Valenzuela, R.; Muñoz, A.; Guerra, M.J.; Baltatu, O.C.; Labandeira-Garcia, J.L. Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson’s disease. Eur. J. Neurosci., 2010, 32(10), 1695-1706.
[http://dx.doi.org/10.1111/j.1460-9568.2010.07448.x] [PMID: 20964730]
[66]
Labandeira-García, J.L.; Garrido-Gil, P.; Rodriguez-Pallares, J.; Valenzuela, R.; Borrajo, A.; Rodríguez-Perez, A.I. Brain renin-angiotensin system and dopaminergic cell vulnerability. Front. Neuroanat., 2014, 8, 67.
[PMID: 25071471]
[67]
Brown, D.C.; Steward, L.J.; Ge, J.; Barnes, N.M. Ability of angiotensin II to modulate striatal dopamine release via the AT1 receptor in vitro and in vivo. Br. J. Pharmacol., 1996, 118(2), 414-420.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb15418.x] [PMID: 8735646]
[68]
Jenkins, T.A.; Chai, S.Y.; Mendelsohn, F.A.O. Effect of angiotensin II on striatal dopamine release in the spontaneous hypertensive rat. Clin. Exp. Hypertens., 1997, 19(5-6), 645-658.
[http://dx.doi.org/10.3109/10641969709083176] [PMID: 9247745]
[69]
Stragier, B.; Hristova, I.; Sarre, S.; Ebinger, G.; Michotte, Y. In vivo characterization of the angiotensin-(1-7)-induced dopamine and γ-aminobutyric acid release in the striatum of the rat. Eur. J. Neurosci., 2005, 22(3), 658-664.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04188.x] [PMID: 16101747]
[70]
Jenkins, T.A.; Mendelsohn, F.A.O.; Chai, S.Y. Angiotensin-converting enzyme modulates dopamine turnover in the striatum. J. Neurochem., 1997, 68(3), 1304-1311.
[http://dx.doi.org/10.1046/j.1471-4159.1997.68031304.x] [PMID: 9048778]
[71]
Fujita, T.; Hirooka, K.; Nakamura, T.; Itano, T.; Nishiyama, A.; Nagai, Y.; Shiraga, F. Neuroprotective effects of angiotensin II type 1 receptor (AT1-R) blocker via modulating AT1-R signaling and decreased extracellular glutamate levels. Invest. Ophthalmol. Vis. Sci., 2012, 53(7), 4099-4110.
[http://dx.doi.org/10.1167/iovs.11-9167] [PMID: 22661470]
[72]
Qi, J.; Zhang, D.M.; Suo, Y.P.; Song, X.A.; Yu, X.J.; Elks, C.; Lin, Y.X.; Xu, Y.Y.; Zang, W.J.; Zhu, Z.; Kang, Y.M. Renin-angiotensin system modulates neurotransmitters in the paraventricular nucleus and contributes to angiotensin II-induced hypertensive response. Cardiovasc. Toxicol., 2013, 13(1), 48-54.
[http://dx.doi.org/10.1007/s12012-012-9184-9] [PMID: 22971929]
[73]
Lin, F.C.; Tsai, C.P.; Kuang-Wu Lee, J.; Wu, M.T.; Tzu-Chi Lee, C. Angiotensin-converting enzyme inhibitors and amyotrophic lateral sclerosis risk: a total population-based case-control study. JAMA Neurol., 2015, 72(1), 40-48.
[http://dx.doi.org/10.1001/jamaneurol.2014.3367] [PMID: 25383557]
[74]
Villapol, S.; Saavedra, J.M. Neuroprotective effects of angiotensin receptor blockers. Am. J. Hypertens., 2015, 28(3), 289-299.
[http://dx.doi.org/10.1093/ajh/hpu197] [PMID: 25362113]
[75]
Kalra, J.; Prakash, A.; Kumar, P.; Majeed, A.B.A. Cerebroprotective effects of RAS inhibitors: Beyond their cardio-renal actions. J. Renin Angiotensin Aldosterone Syst., 2015, 16(3), 459-468.
[http://dx.doi.org/10.1177/1470320315583582] [PMID: 25944853]
[76]
Reiner, A.; Albin, R.L.; Anderson, K.D.; D’Amato, C.J.; Penney, J.B.; Young, A.B. Differential loss of striatal projection neurons in Huntington disease. Proc. Natl. Acad. Sci. USA, 1988, 85(15), 5733-5737.
[http://dx.doi.org/10.1073/pnas.85.15.5733] [PMID: 2456581]
[77]
Deng, Y.P.; Albin, R.L.; Penney, J.B.; Young, A.B.; Anderson, K.D.; Reiner, A. Differential loss of striatal projection systems in Huntington’s disease: a quantitative immunohistochemical study. J. Chem. Neuroanat., 2004, 27(3), 143-164.
[http://dx.doi.org/10.1016/j.jchemneu.2004.02.005] [PMID: 15183201]
[78]
Butterworth, J. Changes in nine enzyme markers for neurons, glia, and endothelial cells in agonal state and Huntington’s disease caudate nucleus. J. Neurochem., 1986, 47(2), 583-587.
[http://dx.doi.org/10.1111/j.1471-4159.1986.tb04539.x] [PMID: 2874190]
[79]
Panegyres, P.K.; Beilby, J.; Bulsara, M.; Toufexis, K.; Wong, C. A study of potential interactive genetic factors in Huntington’s disease. Eur. Neurol., 2006, 55(4), 189-192.
[http://dx.doi.org/10.1159/000093867] [PMID: 16772714]
[80]
Túnez, I.; Tasset, I.; Pérez-De La Cruz, V.; Santamaría, A. 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington’s disease: past, present and future. Molecules, 2010, 15(2), 878-916.
[http://dx.doi.org/10.3390/molecules15020878] [PMID: 20335954]
[81]
Hariharan, A.; Shetty, S.; Shirole, T.; Jagtap, A.G. Potential of protease inhibitor in 3-nitropropionic acid induced Huntington’s disease like symptoms: mitochondrial dysfunction and neurodegeneration. Neurotoxicology, 2014, 45, 139-148.
[http://dx.doi.org/10.1016/j.neuro.2014.10.004] [PMID: 25445565]
[82]
Lee, D.H.; Heidecke, H.; Schröder, A.; Paul, F.; Wachter, R.; Hoffmann, R.; Ellrichmann, G.; Dragun, D.; Waschbisch, A.; Stegbauer, J.; Klotz, P.; Gold, R.; Dechend, R.; Müller, D.N.; Saft, C.; Linker, R.A. Increase of angiotensin II type 1 receptor auto-antibodies in Huntington’s disease. Mol. Neurodegener., 2014, 9(1), 49.
[http://dx.doi.org/10.1186/1750-1326-9-49] [PMID: 25398321]
[83]
Imamura, T.; Fujita, K.; Tagawa, K.; Ikura, T.; Chen, X.; Homma, H.; Tamura, T.; Mao, Y.; Taniguchi, J.B.; Motoki, K.; Nakabayashi, M.; Ito, N.; Yamada, K.; Tomii, K.; Okano, H.; Kaye, J.; Finkbeiner, S.; Okazawa, H. Identification of hepta-histidine as a candidate drug for Huntington’s disease by in silico-in vitro-in vivo-integrated screens of chemical libraries. Sci. Rep., 2016, 6(1), 33861.
[http://dx.doi.org/10.1038/srep33861] [PMID: 27653664]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 6
Year: 2020
Published on: 09 June, 2020
Page: [456 - 462]
Pages: 7
DOI: 10.2174/0929866527666200110154523
Price: $65

Article Metrics

PDF: 14
HTML: 1