Effect of Environmental Exposure and Pharmacogenomics on Drug Metabolism

Author(s): Basu Dev Banerjee*, Ranjeet Kumar, Krishna Latha Thamineni, Harendra Shah, Gaurav Kumar Thakur, Tusha Sharma

Journal Name: Current Drug Metabolism

Volume 20 , Issue 14 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Pesticides are major xenobiotic compounds and environmental pollutants, which are able to alter drug-metabolizing enzyme as well as pharmacokinetics of drugs. Subsequent to the release of the human genome project, genetic variations (polymorphism) become an integral part of drug development due to their influence on disease susceptibility/ progression of the disease and their impact on drug absorption, distribution, metabolism of active metabolites and finally excretion of the drug. Genetic polymorphisms crucially regulate pharmacokinetics and pharmacodynamics of drugs under the influence of physiological condition, lifestyle, as well as pathological conditions collectively.

Objective: To review all the evidence concerning the effect of environmental exposure on drug metabolism with reference to pharmacogenomics.

Methods: Scientific data search and review of basic, epidemiological, pharmacogenomics and pharmacokinetics studies were undertaken to evaluate the influence of environmental contaminants on drug metabolism.

Results: Various environmental contaminants like pesticides effectively alter drug metabolism at various levels under the influence of pharmacogenomics, which interferes with pharmacokinetics of drug metabolism. Genetic polymorphism of phase I and phase II xenobiotic-metabolizing enzymes remarkably alters disease susceptibility as well as the progression of disease under the influence of various environmental contaminants at various levels.

Conclusion: Individual specific drug response may be attributed to a large variety of factors alone or in combination ranging from genetic variations (SNP, insertion, deletion, duplication etc.) to physiological setting (gender, age, body size, and ethnicity), environmental or lifestyle factors (radiation exposure, smoking, alcohol, nutrition, exposure to toxins, etc.); and pathological conditions (obesity, diabetes, liver and renal function).

Keywords: Environmental pollutants, xenobiotics, drug metabolism, Phase I and II metabolizing genes, pharmacogenomics, pesticides.

[1]
Dugger, S.A.; Platt, A.; Goldstein, D.B. Drug development in the era of precision medicine. Nat. Rev. Drug Discov., 2018, 17(3), 183-196.
[http://dx.doi.org/10.1038/nrd.2017.226] [PMID: 29217837]
[2]
Council, N.R. Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease; National Academies Press: Washington, D.C., 2011.
[3]
Ravina, E. The evolution of drug discovery: from traditional medicines to modern drugs; John Wiley & Sons: Hoboken, 2011.
[4]
Debouck, C.; Metcalf, B. The impact of genomics on drug discovery. Annu. Rev. Pharmacol. Toxicol., 2000, 40, 193-207.
[http://dx.doi.org/10.1146/annurev.pharmtox.40.1.193] [PMID: 10836133]
[5]
Adams, M.D.; Kerlavage, A.R.; Fleischmann, R.D.; Fuldner, R.A.; Bult, C.J.; Lee, N.H.; Kirkness, E.F.; Weinstock, K.G.; Gocayne, J.D.; White, O. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature, 1995, 377(6547)(Suppl.), 3-174.
[PMID: 7566098]
[6]
Haseltine, W.A. Genomics and drug discovery. J. Am. Acad. Dermatol., 2001, 45(3), 473-475.
[http://dx.doi.org/10.1067/mjd.2001.117383] [PMID: 11511852]
[7]
Ahmed, S.; Zhou, Z.; Zhou, J.; Chen, S.Q. Pharmacogenomics of drug metabolizing enzymes and transporters: relevance to precision medicine. Genom. Proteom. Bioinform., 2016, 14(5), 298-313.
[http://dx.doi.org/10.1016/j.gpb.2016.03.008] [PMID: 27729266]
[8]
Wilkinson, G.R. Drug metabolism and variability among patients in drug response. N. Engl. J. Med., 2005, 352(21), 2211-2221.
[http://dx.doi.org/10.1056/NEJMra032424] [PMID: 15917386]
[9]
Tiseo, P.J.; Thaler, H.T.; Lapin, J.; Inturrisi, C.E.; Portenoy, R.K.; Foley, K.M. Morphine-6-glucuronide concentrations and opioid-related side effects: a survey in cancer patients. Pain, 1995, 61(1), 47-54.
[http://dx.doi.org/10.1016/0304-3959(94)00148-8] [PMID: 7644248]
[10]
Lee, V.W.; You, J.H.; Lee, K.K.; Chau, T.S.; Waye, M.M.; Cheng, G. Factors affecting the maintenance stable warfarin dosage in Hong Kong Chinese patients. J. Thromb. Thrombolysis, 2005, 20(1), 33-38.
[http://dx.doi.org/10.1007/s11239-005-3121-8] [PMID: 16133893]
[11]
Evans, W.E.; McLeod, H.L. Pharmacogenomics--drug disposition, drug targets, and side effects. N. Engl. J. Med., 2003, 348(6), 538-549.
[http://dx.doi.org/10.1056/NEJMra020526] [PMID: 12571262]
[12]
Rettie, A.E.; Tai, G. The pharmocogenomics of warfarin: closing in on personalized medicine. Mol. Interv., 2006, 6(4), 223-227.
[http://dx.doi.org/10.1124/mi.6.4.8] [PMID: 16960144]
[13]
Chasman, D.I.; Posada, D.; Subrahmanyan, L.; Cook, N.R.; Stanton, V.P., Jr; Ridker, P.M. Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA, 2004, 291(23), 2821-2827.
[http://dx.doi.org/10.1001/jama.291.23.2821] [PMID: 15199031]
[14]
Tomlinson, B.; Hu, M.; Lee, V.W.; Lui, S.S.; Chu, T.T.; Poon, E.W.; Ko, G.T.; Baum, L.; Tam, L.S.; Li, E.K. ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin. Pharmacol. Ther., 2010, 87(5), 558-562.
[http://dx.doi.org/10.1038/clpt.2009.232] [PMID: 20130569]
[15]
Ross, S.; Anand, S.S.; Joseph, P.; Paré, G. Promises and challenges of pharmacogenetics: an overview of study design, methodological and statistical issues. JRSM Cardiovasc. Dis., 2012, 1(1), 1.
[http://dx.doi.org/10.1258/cvd.2012.012001] [PMID: 24175062]
[16]
Akhondzadeh, S. Personalized medicine: a tailor made medicine. Avicenna J. Med. Biotechnol., 2014, 6(4), 191.
[PMID: 25414780]
[17]
Ma, Q.; Lu, A.Y. Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol. Rev., 2011, 63(2), 437-459.
[http://dx.doi.org/10.1124/pr.110.003533] [PMID: 21436344]
[18]
Chowbay, B.; Zhou, S.; Lee, E.J. An interethnic comparison of polymorphisms of the genes encoding drug-metabolizing enzymes and drug transporters: experience in Singapore. Drug Metab. Rev., 2005, 37(2), 327-378.
[http://dx.doi.org/10.1081/DMR-28805] [PMID: 15931768]
[19]
Sissung, T.M.; Troutman, S.M.; Campbell, T.J.; Pressler, H.M.; Sung, H.; Bates, S.E.; Figg, W.D. Transporter pharmacogenetics: transporter polymorphisms affect normal physiology, diseases, and pharmacotherapy. Discov. Med., 2012, 13(68), 19-34.
[PMID: 22284781]
[20]
Li, J.; Bluth, M.H. Pharmacogenomics of drug metabolizing enzymes and transporters: implications for cancer therapy. Pharm. Genomics Pers. Med., 2011, 4, 11-33.
[PMID: 23226051]
[21]
Pirmohamed, M. Personalized pharmacogenomics: predicting efficacy and adverse drug reactions. Annu. Rev. Genomics Hum. Genet., 2014, 15, 349-370.
[http://dx.doi.org/10.1146/annurev-genom-090413-025419] [PMID: 24898040]
[22]
Pirmohamed, M.; Park, B.K. Genetic susceptibility to adverse drug reactions. Trends Pharmacol. Sci., 2001, 22(6), 298-305.
[http://dx.doi.org/10.1016/S0165-6147(00)01717-X] [PMID: 11395158]
[23]
Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; Sever, P.S.; Pedersen, T.R. FOURIER steering committee and investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med., 2017, 376(18), 1713-1722.
[http://dx.doi.org/10.1056/NEJMoa1615664] [PMID: 28304224]
[24]
Kingsmore, S.F.; Lindquist, I.E.; Mudge, J.; Gessler, D.D.; Beavis, W.D. Genome-wide association studies: progress and potential for drug discovery and development. Nat. Rev. Drug Discov., 2008, 7(3), 221-230.
[http://dx.doi.org/10.1038/nrd2519] [PMID: 18274536]
[25]
Plenge, R.M.; Scolnick, E.M.; Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov., 2013, 12(8), 581-594.
[http://dx.doi.org/10.1038/nrd4051] [PMID: 23868113]
[26]
Frueh, F.W.; Amur, S.; Mummaneni, P.; Epstein, R.S.; Aubert, R.E.; DeLuca, T.M.; Verbrugge, R.R.; Burckart, G.J.; Lesko, L.J. Pharmacogenomic biomarker information in drug labels approved by the United States food and drug administration: prevalence of related drug use. Pharmacotherapy, 2008, 28(8), 992-998.
[http://dx.doi.org/10.1592/phco.28.8.992] [PMID: 18657016]
[27]
Wojtczak, A; Skretkowicz, J. [Clinical significance of some genetic polymorphisms of cytochrome P-450: family CYP1 and subfamilies CYP2A, CYP2B and CYP2C]. Polski merkuriusz lekarski: organ Polskiego Towarzystwa Lekarskiego, 2009, 26, 248-252.
[28]
Zhou, S.F.; Wang, B.; Yang, L.P.; Liu, J.P. Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab. Rev., 2010, 42(2), 268-354.
[http://dx.doi.org/10.3109/03602530903286476] [PMID: 19961320]
[29]
Sim, S.C.; Ingelman-Sundberg, M. The Human Cytochrome P450 (CYP) Allele Nomenclature website: a peer-reviewed database of CYP variants and their associated effects. Hum. Genomics, 2010, 4(4), 278-281.
[http://dx.doi.org/10.1186/1479-7364-4-4-278] [PMID: 20511141]
[30]
Kisselev, P.; Schunck, W.H.; Roots, I.; Schwarz, D. Association of CYP1A1 polymorphisms with differential metabolic activation of 17beta-estradiol and estrone. Cancer Res., 2005, 65(7), 2972-2978.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3543] [PMID: 15805301]
[31]
Ghotbi, R.; Christensen, M.; Roh, H.K.; Ingelman-Sundberg, M.; Aklillu, E.; Bertilsson, L. Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur. J. Clin. Pharmacol., 2007, 63(6), 537-546.
[http://dx.doi.org/10.1007/s00228-007-0288-2] [PMID: 17370067]
[32]
Zanger, U.M.; Klein, K.; Saussele, T.; Blievernicht, J.; Hofmann, M.H.; Schwab, M. Polymorphic CYP2B6: molecular mechanisms and emerging clinical significance. Pharmacogenomics, 2007, 8(7), 743-759.
[http://dx.doi.org/10.2217/14622416.8.7.743] [PMID: 17638512]
[33]
Zanger, U.M.; Klein, K. Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms, mechanisms, and clinical relevance. Front. Genet., 2013, 4, 24.
[http://dx.doi.org/10.3389/fgene.2013.00024] [PMID: 23467454]
[34]
Achour, B.; Barber, J.; Rostami-Hodjegan, A. Expression of hepatic drug-metabolizing cytochrome p450 enzymes and their intercorrelations: a meta-analysis. Drug Metab. Dispos., 2014, 42(8), 1349-1356.
[http://dx.doi.org/10.1124/dmd.114.058834] [PMID: 24879845]
[35]
Backman, J.T.; Filppula, A.M.; Niemi, M.; Neuvonen, P.J. Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol. Rev., 2016, 68(1), 168-241.
[http://dx.doi.org/10.1124/pr.115.011411] [PMID: 26721703]
[36]
Gibbons, J.A.; de Vries, M.; Krauwinkel, W.; Ohtsu, Y.; Noukens, J.; van der Walt, J.S.; Mol, R.; Mordenti, J.; Ouatas, T. Pharmacokinetic drug interaction studies with enzalutamide. Clin. Pharmacokinet., 2015, 54(10), 1057-1069.
[http://dx.doi.org/10.1007/s40262-015-0283-1] [PMID: 25929560]
[37]
Dai, D.; Zeldin, D.C.; Blaisdell, J.A.; Chanas, B.; Coulter, S.J.; Ghanayem, B.I.; Goldstein, J.A. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics, 2001, 11(7), 597-607.
[http://dx.doi.org/10.1097/00008571-200110000-00006] [PMID: 11668219]
[38]
Bahadur, N.; Leathart, J.B.; Mutch, E.; Steimel-Crespi, D.; Dunn, S.A.; Gilissen, R.; Houdt, J.V.; Hendrickx, J.; Mannens, G.; Bohets, H.; Williams, F.M.; Armstrong, M.; Crespi, C.L.; Daly, A.K. CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6alpha-hydroxylase activity in human liver microsomes. Biochem. Pharmacol., 2002, 64(11), 1579-1589.
[http://dx.doi.org/10.1016/S0006-2952(02)01354-0] [PMID: 12429347]
[39]
Parikh, S.; Ouedraogo, J.B.; Goldstein, J.A.; Rosenthal, P.J.; Kroetz, D.L. Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: implications for malaria treatment in Africa. Clin. Pharmacol. Ther., 2007, 82(2), 197-203.
[http://dx.doi.org/10.1038/sj.clpt.6100122] [PMID: 17361129]
[40]
Ingelman-Sundberg, M.; Sim, S.C.; Gomez, A.; Rodriguez-Antona, C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol. Ther., 2007, 116(3), 496-526.
[http://dx.doi.org/10.1016/j.pharmthera.2007.09.004] [PMID: 18001838]
[41]
Kirchheiner, J.; Brockmöller, J. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin. Pharmacol. Ther., 2005, 77(1), 1-16.
[http://dx.doi.org/10.1016/j.clpt.2004.08.009] [PMID: 15637526]
[42]
Schwarz, U.I. Clinical relevance of genetic polymorphisms in the human CYP2C9 gene. Eur. J. Clin. Invest., 2003, 33(Suppl. 2), 23-30.
[http://dx.doi.org/10.1046/j.1365-2362.33.s2.6.x] [PMID: 14641553]
[43]
Higashi, M.K.; Veenstra, D.L.; Kondo, L.M.; Wittkowsky, A.K.; Srinouanprachanh, S.L.; Farin, F.M.; Rettie, A.E. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA, 2002, 287(13), 1690-1698.
[http://dx.doi.org/10.1001/jama.287.13.1690] [PMID: 11926893]
[44]
Zhou, S.F.; Liu, J.P.; Chowbay, B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab. Rev., 2009, 41(2), 89-295.
[http://dx.doi.org/10.1080/03602530902843483] [PMID: 19514967]
[45]
Furuta, T.; Ohashi, K.; Kamata, T.; Takashima, M.; Kosuge, K.; Kawasaki, T.; Hanai, H.; Kubota, T.; Ishizaki, T.; Kaneko, E. Effect of genetic differences in omeprazole metabolism on cure rates for Helicobacter pylori infection and peptic ulcer. Ann. Intern. Med., 1998, 129(12), 1027-1030.
[http://dx.doi.org/10.7326/0003-4819-129-12-199812150-00006] [PMID: 9867757]
[46]
Schwab, M.; Schaeffeler, E.; Klotz, U.; Treiber, G. CYP2C19 polymorphism is a major predictor of treatment failure in white patients by use of lansoprazole-based quadruple therapy for eradication of Helicobacter pylori. Clin. Pharmacol. Ther., 2004, 76(3), 201-209.
[http://dx.doi.org/10.1016/j.clpt.2004.05.002] [PMID: 15371981]
[47]
Yang, J.C.; Lin, C.J. CYP2C19 genotypes in the pharmacokinetics/pharmacodynamics of proton pump inhibitor-based therapy of Helicobacter pylori infection. Expert Opin. Drug Metab. Toxicol., 2010, 6(1), 29-41.
[http://dx.doi.org/10.1517/17425250903386251] [PMID: 19968574]
[48]
Sofi, F.; Giusti, B.; Marcucci, R.; Gori, A.M.; Abbate, R.; Gensini, G.F. Cytochrome P450 2C19*2 polymorphism and cardiovascular recurrences in patients taking clopidogrel: a meta-analysis. Pharmacogenomics J., 2011, 11(3), 199-206.
[http://dx.doi.org/10.1038/tpj.2010.21] [PMID: 20351750]
[49]
Sim, S.C.; Risinger, C.; Dahl, M.L.; Aklillu, E.; Christensen, M.; Bertilsson, L.; Ingelman-Sundberg, M. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin. Pharmacol. Ther., 2006, 79(1), 103-113.
[http://dx.doi.org/10.1016/j.clpt.2005.10.002] [PMID: 16413245]
[50]
Orr, S.T.; Ripp, S.L.; Ballard, T.E.; Henderson, J.L.; Scott, D.O.; Obach, R.S.; Sun, H.; Kalgutkar, A.S. Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug-drug interaction risks. J. Med. Chem., 2012, 55(11), 4896-4933.
[http://dx.doi.org/10.1021/jm300065h] [PMID: 22409598]
[51]
Lamba, J.K.; Lin, Y.S.; Thummel, K.; Daly, A.; Watkins, P.B.; Strom, S.; Zhang, J.; Schuetz, E.G. Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics, 2002, 12(2), 121-132.
[http://dx.doi.org/10.1097/00008571-200203000-00006] [PMID: 11875366]
[52]
Daly, A.K. Significance of the minor cytochrome P450 3A isoforms. Clin. Pharmacokinet., 2006, 45(1), 13-31.
[http://dx.doi.org/10.2165/00003088-200645010-00002] [PMID: 16430309]
[53]
Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D.; Maurel, P.; Relling, M.; Brimer, C.; Yasuda, K.; Venkataramanan, R.; Strom, S.; Thummel, K.; Boguski, M.S.; Schuetz, E. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet., 2001, 27(4), 383-391.
[http://dx.doi.org/10.1038/86882] [PMID: 11279519]
[54]
Lamba, J.K.; Lin, Y.S.; Schuetz, E.G.; Thummel, K.E. Genetic contribution to variable human CYP3A-mediated metabolism. Adv. Drug Deliv. Rev., 2002, 54(10), 1271-1294.
[http://dx.doi.org/10.1016/S0169-409X(02)00066-2] [PMID: 12406645]
[55]
Leeder, J.S.; Gaedigk, R.; Marcucci, K.A.; Gaedigk, A.; Vyhlidal, C.A.; Schindel, B.P.; Pearce, R.E. Variability of CYP3A7 expression in human fetal liver. J. Pharmacol. Exp. Ther., 2005, 314(2), 626-635.
[http://dx.doi.org/10.1124/jpet.105.086504] [PMID: 15845858]
[56]
Burk, O.; Tegude, H.; Koch, I.; Hustert, E.; Wolbold, R.; Glaeser, H.; Klein, K.; Fromm, M.F.; Nuessler, A.K.; Neuhaus, P.; Zanger, U.M.; Eichelbaum, M.; Wojnowski, L. Molecular mechanisms of polymorphic CYP3A7 expression in adult human liver and intestine. J. Biol. Chem., 2002, 277(27), 24280-24288.
[http://dx.doi.org/10.1074/jbc.M202345200] [PMID: 11940601]
[57]
Marez, D.; Legrand, M.; Sabbagh, N.; Lo Guidice, J.M.; Spire, C.; Lafitte, J.J.; Meyer, U.A.; Broly, F. Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution. Pharmacogenetics, 1997, 7(3), 193-202.
[http://dx.doi.org/10.1097/00008571-199706000-00004] [PMID: 9241659]
[58]
Bradford, L.D. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics, 2002, 3(2), 229-243.
[http://dx.doi.org/10.1517/14622416.3.2.229] [PMID: 11972444]
[59]
Ji, L.; Pan, S.; Marti-Jaun, J.; Hänseler, E.; Rentsch, K.; Hersberger, M. Single-step assays to analyze CYP2D6 gene polymorphisms in Asians: allele frequencies and a novel *14B allele in mainland Chinese. Clin. Chem., 2002, 48(7), 983-988.
[PMID: 12089164]
[60]
Borges, S.; Desta, Z.; Li, L.; Skaar, T.C.; Ward, B.A.; Nguyen, A.; Jin, Y.; Storniolo, A.M.; Nikoloff, D.M.; Wu, L.; Hillman, G.; Hayes, D.F.; Stearns, V.; Flockhart, D.A. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin. Pharmacol. Ther., 2006, 80(1), 61-74.
[http://dx.doi.org/10.1016/j.clpt.2006.03.013] [PMID: 16815318]
[61]
Fuselli, S.; Dupanloup, I.; Frigato, E.; Cruciani, F.; Scozzari, R.; Moral, P.; Sistonen, J.; Sajantila, A.; Barbujani, G. Molecular diversity at the CYP2D6 locus in the Mediterranean region. Eur. J. Hum. Genet., 2004, 12(11), 916-924.
[http://dx.doi.org/10.1038/sj.ejhg.5201243] [PMID: 15340360]
[62]
Niewinski, P.; Orzechowska-Juzwenko, K.; Hurkacz, M.; Rzemislawska, Z.; Jaźwinska-Tarnawska, E.; Milejski, P.; Forkasiewicz, Z. CYP2D6 extensive, intermediate, and poor phenotypes and genotypes in a Polish population. Eur. J. Clin. Pharmacol., 2002, 58(8), 533-535.
[http://dx.doi.org/10.1007/s00228-002-0505-y] [PMID: 12536989]
[63]
Sistonen, J.; Sajantila, A.; Lao, O.; Corander, J.; Barbujani, G.; Fuselli, S. CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenet. Genomics, 2007, 17(2), 93-101.
[PMID: 17301689]
[64]
Wan, Y.J.; Poland, R.E.; Han, G.; Konishi, T.; Zheng, Y.P.; Berman, N.; Lin, K.M. Analysis of the CYP2D6 gene polymorphism and enzyme activity in African-Americans in southern California. Pharmacogenetics, 2001, 11(6), 489-499.
[http://dx.doi.org/10.1097/00008571-200108000-00004] [PMID: 11505219]
[65]
Weinshilboum, R. Richard Weinshilboum: Pharmacogenetics: The future is here! Mol. Interv., 2003, 3(3), 118-122.
[http://dx.doi.org/10.1124/mi.3.3.118] [PMID: 14993417]
[66]
Filipski, K.K.; Mechanic, L.E.; Long, R.; Freedman, A.N. Pharmacogenomics in oncology care. Front. Genet., 2014, 5, 73.
[http://dx.doi.org/10.3389/fgene.2014.00073] [PMID: 24782887]
[67]
Jin, Y.; Desta, Z.; Stearns, V.; Ward, B.; Ho, H.; Lee, K.H.; Skaar, T.; Storniolo, A.M.; Li, L.; Araba, A.; Blanchard, R.; Nguyen, A.; Ullmer, L.; Hayden, J.; Lemler, S.; Weinshilboum, R.M.; Rae, J.M.; Hayes, D.F.; Flockhart, D.A. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J. Natl. Cancer Inst., 2005, 97(1), 30-39.
[http://dx.doi.org/10.1093/jnci/dji005] [PMID: 15632378]
[68]
Halling, J.; Petersen, M.S.; Damkier, P.; Nielsen, F.; Grandjean, P.; Weihe, P.; Lundgren, S.; Lundblad, M.S.; Brøsen, K. Polymorphism of CYP2D6, CYP2C19, CYP2C9 and CYP2C8 in the Faroese population. Eur. J. Clin. Pharmacol., 2005, 61(7), 491-497.
[http://dx.doi.org/10.1007/s00228-005-0938-1] [PMID: 16025294]
[69]
Goetz, M.P.; Rae, J.M.; Suman, V.J.; Safgren, S.L.; Ames, M.M.; Visscher, D.W.; Reynolds, C.; Couch, F.J.; Lingle, W.L.; Flockhart, D.A.; Desta, Z.; Perez, E.A.; Ingle, J.N. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J. Clin. Oncol., 2005, 23(36), 9312-9318.
[http://dx.doi.org/10.1200/JCO.2005.03.3266] [PMID: 16361630]
[70]
Volpe, D.A.; McMahon Tobin, G.A.; Mellon, R.D.; Katki, A.G.; Parker, R.J.; Colatsky, T.; Kropp, T.J.; Verbois, S.L. Uniform assessment and ranking of opioid μ receptor binding constants for selected opioid drugs. Regul. Toxicol. Pharmacol., 2011, 59(3), 385-390.
[http://dx.doi.org/10.1016/j.yrtph.2010.12.007] [PMID: 21215785]
[71]
McLellan, R.A.; Oscarson, M.; Seidegård, J.; Evans, D.A.; Ingelman-Sundberg, M. Frequent occurrence of CYP2D6 gene duplication in Saudi Arabians. Pharmacogenetics, 1997, 7(3), 187-191.
[http://dx.doi.org/10.1097/00008571-199706000-00003] [PMID: 9241658]
[72]
Gasche, Y.; Daali, Y.; Fathi, M.; Chiappe, A.; Cottini, S.; Dayer, P.; Desmeules, J. Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N. Engl. J. Med., 2004, 351(27), 2827-2831.
[http://dx.doi.org/10.1056/NEJMoa041888] [PMID: 15625333]
[73]
Koren, G.; Cairns, J.; Chitayat, D.; Gaedigk, A.; Leeder, S.J. Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet, 2006, 368(9536), 704.
[http://dx.doi.org/10.1016/S0140-6736(06)69255-6] [PMID: 16920476]
[74]
Dalén, P.; Frengell, C.; Dahl, M.L.; Sjöqvist, F. Quick onset of severe abdominal pain after codeine in an ultrarapid metabolizer of debrisoquine. Ther. Drug Monit., 1997, 19(5), 543-544.
[http://dx.doi.org/10.1097/00007691-199710000-00011] [PMID: 9357099]
[75]
Ciszkowski, C.; Madadi, P.; Phillips, M.S.; Lauwers, A.E.; Koren, G. Codeine, ultrarapid-metabolism genotype, and postoperative death. N. Engl. J. Med., 2009, 361(8), 827-828.
[http://dx.doi.org/10.1056/NEJMc0904266] [PMID: 19692698]
[76]
Raimundo, S.; Fischer, J.; Eichelbaum, M.; Griese, E.U.; Schwab, M.; Zanger, U.M. Elucidation of the genetic basis of the common ‘intermediate metabolizer’ phenotype for drug oxidation by CYP2D6. Pharmacogenetics, 2000, 10(7), 577-581.
[http://dx.doi.org/10.1097/00008571-200010000-00001] [PMID: 11037799]
[77]
Guillemette, C. Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacogenomics J., 2003, 3(3), 136-158.
[http://dx.doi.org/10.1038/sj.tpj.6500171] [PMID: 12815363]
[78]
Nagar, S.; Remmel, R.P. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. Oncogene, 2006, 25(11), 1659-1672.
[http://dx.doi.org/10.1038/sj.onc.1209375] [PMID: 16550166]
[79]
Sim, S.C.; Ingelman-Sundberg, M. Pharmacogenomic biomarkers: new tools in current and future drug therapy. Trends Pharmacol. Sci., 2011, 32(2), 72-81.
[http://dx.doi.org/10.1016/j.tips.2010.11.008] [PMID: 21185092]
[80]
Strassburg, C.P. Hyperbilirubinemia syndromes (Gilbert-Meulengracht, Crigler-Najjar, Dubin-Johnson, and Rotor syndrome). Best Pract. Res. Clin. Gastroenterol., 2010, 24(5), 555-571.
[http://dx.doi.org/10.1016/j.bpg.2010.07.007] [PMID: 20955959]
[81]
Lo, H.W.; Ali-Osman, F. Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance. Curr. Opin. Pharmacol., 2007, 7(4), 367-374.
[http://dx.doi.org/10.1016/j.coph.2007.06.009] [PMID: 17681492]
[82]
McIlwain, C.C.; Townsend, D.M.; Tew, K.D. Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene, 2006, 25(11), 1639-1648.
[http://dx.doi.org/10.1038/sj.onc.1209373] [PMID: 16550164]
[83]
Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 51-88.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095857] [PMID: 15822171]
[84]
White, D.L.; Li, D.; Nurgalieva, Z.; El-Serag, H.B. Genetic variants of glutathione S-transferase as possible risk factors for hepatocellular carcinoma: a HuGE systematic review and meta-analysis. Am. J. Epidemiol., 2008, 167(4), 377-389.
[http://dx.doi.org/10.1093/aje/kwm315] [PMID: 18065725]
[85]
Economopoulos, K.P.; Sergentanis, T.N. GSTM1, GSTT1, GSTP1, GSTA1 and colorectal cancer risk: a comprehensive meta-analysis. Eur. J. Cancer, 2010, 46(9), 1617-1631.
[http://dx.doi.org/10.1016/j.ejca.2010.02.009] [PMID: 20207535]
[86]
Escobar-García, D.M.; Del Razo, L.M.; Sanchez-Peña, L.C.; Mandeville, P.B.; Lopez-Campos, C.; Escudero-Lourdes, C. Association of glutathione S-transferase Ω 1-1 polymorphisms (A140D and E208K) with the expression of interleukin-8 (IL-8), transforming growth factor beta (TGF-β), and apoptotic protease-activating factor 1 (Apaf-1) in humans chronically exposed to arsenic in drinking water. Arch. Toxicol., 2012, 86(6), 857-868.
[http://dx.doi.org/10.1007/s00204-012-0802-x] [PMID: 22293942]
[87]
Cartwright, R.A.; Glashan, R.W.; Rogers, H.J.; Ahmad, R.A.; Barham-Hall, D.; Higgins, E.; Kahn, M.A. Role of N-acetyltransferase phenotypes in bladder carcinogenesis: a pharmacogenetic epidemiological approach to bladder cancer. Lancet, 1982, 2(8303), 842-845.
[http://dx.doi.org/10.1016/S0140-6736(82)90810-8] [PMID: 6126711]
[88]
García-Closas, M.; Malats, N.; Silverman, D.; Dosemeci, M.; Kogevinas, M.; Hein, D.W.; Tardón, A.; Serra, C.; Carrato, A.; García-Closas, R.; Lloreta, J.; Castaño-Vinyals, G.; Yeager, M.; Welch, R.; Chanock, S.; Chatterjee, N.; Wacholder, S.; Samanic, C.; Torà, M.; Fernández, F.; Real, F.X.; Rothman, N. NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet, 2005, 366(9486), 649-659.
[http://dx.doi.org/10.1016/S0140-6736(05)67137-1] [PMID: 16112301]
[89]
Glatt, H.; Meinl, W. Pharmacogenetics of soluble sulfotransferases (SULTs). Naunyn Schmiedebergs Arch. Pharmacol., 2004, 369(1), 55-68.
[http://dx.doi.org/10.1007/s00210-003-0826-0] [PMID: 14600802]
[90]
Nowell, S.; Falany, C.N. Pharmacogenetics of human cytosolic sulfotransferases. Oncogene, 2006, 25(11), 1673-1678.
[http://dx.doi.org/10.1038/sj.onc.1209376] [PMID: 16550167]
[91]
Relling, M.V.; Gardner, E.E.; Sandborn, W.J.; Schmiegelow, K.; Pui, C.H.; Yee, S.W.; Stein, C.M.; Carrillo, M.; Evans, W.E.; Klein, T.E. Clinical pharmacogenetics implementation consortium. clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin. Pharmacol. Ther., 2011, 89(3), 387-391.
[http://dx.doi.org/10.1038/clpt.2010.320] [PMID: 21270794]
[92]
Eichelbaum, M.; Ingelman-Sundberg, M.; Evans, W.E. Pharmacogenomics and individualized drug therapy. Annu. Rev. Med., 2006, 57, 119-137.
[http://dx.doi.org/10.1146/annurev.med.56.082103.104724] [PMID: 16409140]
[93]
Backman, J.T.; Kivistö, K.T.; Olkkola, K.T.; Neuvonen, P.J. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur. J. Clin. Pharmacol., 1998, 54(1), 53-58.
[http://dx.doi.org/10.1007/s002280050420] [PMID: 9591931]
[94]
Conney, A.H. Pharmacological implications of microsomal enzyme induction. Pharmacol. Rev., 1967, 19(3), 317-366.
[PMID: 4383307]
[95]
Conney, A.H.; Welch, R.M.; Kuntzman, R.; Burns, J.J. Effects of pesticides on drug and steroid metabolism. Clin. Pharmacol. Ther., 1967, 8(1), 2-10.
[http://dx.doi.org/10.1002/cpt196781part12] [PMID: 6016284]
[96]
Remmer, H.; Estabrook, R.W.; Schenkman, J.; Greim, H. Reaction of drugs with microsomal liver hydroxylase: its influence on drug action. Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmakol., 1968, 259(2), 98-116.
[http://dx.doi.org/10.1007/BF00537741] [PMID: 4173846]
[97]
Hart, L.G.; Shultice, R.W.; Fouts, J.R. Stimulatory effects of chlordane on hepatic microsomal drug metabolism in the rat. Toxicol. Appl. Pharmacol., 1963, 5, 371-386.
[http://dx.doi.org/10.1016/0041-008X(63)90096-6] [PMID: 13953039]
[98]
Hart, L.G.; Fouts, J.R. Effects of acute and chronic DDT administration on hepatic microsomal drug metabolism in the rat. Proc. Soc. Exp. Biol. Med., 1963, 114, 388-392.
[http://dx.doi.org/10.3181/00379727-114-28686] [PMID: 14101199]
[99]
Hart, L.G.; Fouts, J.R. Further studies on the stimulation of hepatic microsomal drug metabolizing enzymes by ddt and its analogs. Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmakol., 1965, 249, 486-500.
[http://dx.doi.org/10.1007/BF00246555] [PMID: 14293545]
[100]
Hammer, W.; Sjöqvist, F. Plasma levels of monomethylated tricyclic antidepressants during treatment with imipramine-like compounds. Life Sci., 1967, 6(17), 1895-1903.
[http://dx.doi.org/10.1016/0024-3205(67)90218-4] [PMID: 6052684]
[101]
Curry, S.H.; Marshall, J.H. Plasma levels of chlorpromazine and some of its relatively non-polar metabolites in psychiatric patients. Life Sci., 1968, 7(1), 9-17.
[http://dx.doi.org/10.1016/0024-3205(68)90356-1] [PMID: 5636632]
[102]
Levi, A.J.; Sherlock, S.; Walker, D. Phenylbutazone and isoniazid metabolism in patients with liver disease in relation to previous drug therapy. Lancet, 1968, 1(7555), 1275-1279.
[http://dx.doi.org/10.1016/S0140-6736(68)92292-7] [PMID: 4172137]
[103]
Vesell, E.S.; Page, J.G. Genetic control of drug levels in man: phenylbutazone. Science, 1968, 159(3822), 1479-1480.
[http://dx.doi.org/10.1126/science.159.3822.1479] [PMID: 5753556]
[104]
Vesell, E.S.; Page, J.G. Genetic control of drug levels in man: antipyrine. Science, 1968, 161(3836), 72-73.
[http://dx.doi.org/10.1126/science.161.3836.72] [PMID: 5690279]
[105]
Kolmodin, B.; Azarnoff, D.L.; Sjöqvist, F. Effect of environmental factors on drug metabolism: decreased plasma half-life of antipyrine in workers exposed to chlorinated hydrocarbon insecticides. Clin. Pharmacol. Ther., 1969, 10(5), 638-642.
[http://dx.doi.org/10.1002/cpt1969105638] [PMID: 5808460]
[106]
Subramaniam, K.; Solomon, J. Organochlorine pesticides BHC and DDE in human blood in and around Madurai, India. Indian J. Clin. Biochem., 2006, 21(2), 169-172.
[http://dx.doi.org/10.1007/BF02912936] [PMID: 23105638]
[107]
Singh, N.D.; Sharma, A.K.; Dwivedi, P.; Patil, R.D.; Kumar, M. Citrinin and endosulfan induced teratogenic effects in Wistar rats. J. Appl. Toxicol., 2007, 27(2), 143-151.
[http://dx.doi.org/10.1002/jat.1185] [PMID: 17186572]
[108]
Bano, M.; Bhatt, D.K. Ameliorative effect of a combination of vitamin E, vitamin C, alpha-lipoic acid and stilbene resveratrol on lindane induced toxicity in mice olfactory lobe and cerebrum. Indian J. Exp. Biol., 2010, 48(2), 150-158.
[PMID: 20455324]
[109]
Vijaya Padma, V.; Sowmya, P.; Arun Felix, T.; Baskaran, R.; Poornima, P. Protective effect of gallic acid against lindane induced toxicity in experimental rats. Food Chem. Toxicol., 2011, 49(4), 991-998.
[http://dx.doi.org/10.1016/j.fct.2011.01.005] [PMID: 21219962]
[110]
Mangoni, A.A.; Jackson, S.H. Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br. J. Clin. Pharmacol., 2004, 57(1), 6-14.
[http://dx.doi.org/10.1046/j.1365-2125.2003.02007.x] [PMID: 14678335]
[111]
Wynne, H. Drug metabolism and ageing. J. Br. Menopause Soc., 2005, 11(2), 51-56.
[http://dx.doi.org/10.1258/136218005775544589] [PMID: 15970015]
[112]
Greenblatt, D.J.; Shader, R.I.; Harmatz, J.S. Implications of altered drug disposition in the elderly: studies of benzodiazepines. J. Clin. Pharmacol., 1989, 29(10), 866-872.
[http://dx.doi.org/10.1002/j.1552-4604.1989.tb03246.x] [PMID: 2574189]
[113]
Vestal, R.E.; Norris, A.H.; Tobin, J.D.; Cohen, B.H.; Shock, N.W.; Andres, R. Antipyrine metabolism in man: influence of age, alcohol, caffeine, and smoking. Clin. Pharmacol. Ther., 1975, 18(4), 425-432.
[http://dx.doi.org/10.1002/cpt1975184425] [PMID: 1164824]
[114]
Woodhouse, K.W.; Wynne, H.A. Age-related changes in liver size and hepatic blood flow. The influence on drug metabolism in the elderly. Clin. Pharmacokinet., 1988, 15(5), 287-294.
[http://dx.doi.org/10.2165/00003088-198815050-00002] [PMID: 3203484]
[115]
Kimura, S.; Umeno, M.; Skoda, R.C.; Meyer, U.A.; Gonzalez, F.J. The human debrisoquine 4-hydroxylase (CYP2D) locus: sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene. Am. J. Hum. Genet., 1989, 45(6), 889-904.
[PMID: 2574001]
[116]
Berger, B.; Bachmann, F.; Duthaler, U.; Krähenbühl, S.; Haschke, M. Cytochrome P450 enzymes involved in metoprolol metabolism and use of metoprolol as a CYP2D6 phenotyping probe drug. Front. Pharmacol., 2018, 9, 774.
[http://dx.doi.org/10.3389/fphar.2018.00774] [PMID: 30087611]
[117]
Hii, J.T.; Duff, H.J.; Burgess, E.D. Clinical pharmacokinetics of propafenone. Clin. Pharmacokinet., 1991, 21(1), 1-10.
[http://dx.doi.org/10.2165/00003088-199121010-00001] [PMID: 1914339]
[118]
Haefeli, W.E.; Bargetzi, M.J.; Follath, F.; Meyer, U.A. Potent inhibition of cytochrome P450IID6 (debrisoquin 4-hydroxylase) by flecainide in vitro and in vivo. J. Cardiovasc. Pharmacol., 1990, 15(5), 776-779.
[http://dx.doi.org/10.1097/00005344-199005000-00013] [PMID: 1692938]
[119]
Okey, A.B.; Roberts, E.A.; Harper, P.A.; Denison, M.S. Induction of drug-metabolizing enzymes: mechanisms and consequences. Clin. Biochem., 1986, 19(2), 132-141.
[http://dx.doi.org/10.1016/S0009-9120(86)80060-1] [PMID: 3518989]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 14
Year: 2019
Page: [1103 - 1113]
Pages: 11
DOI: 10.2174/1389200221666200110153304
Price: $65

Article Metrics

PDF: 31
HTML: 3