A Review on the Synergetic Effect of Plant Extracts on Nanomaterials for the Removal of Metals in Industrial Effluents

Author(s): Dhanya Vishnu, Balaji Dhandapani*

Journal Name: Current Analytical Chemistry

Volume 17 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Aim: The review paper aims to explore the effect of plant extracts on nanomaterial adsorbent for the removal of toxic metals present in industrial effluents.

Background: Water plays a major role in the sustainability of human life and its existence. Rapid industrialization and urbanization lead to an increase in the pollution and accumulation of hazardous substances which causes the degradation of the aquatic ecosystem. Heavy metals are considered to be a major threat to the environment. Among various metals, the International Union of Pure applied chemistry (IUPAC) has characterized heavy metals based on their intensity of toxicity and hazardous effects. Nanoparticles, due to their unique properties of particle size, exist in the range between 1- 100nm, which represents the possibility to introduce modified chemical groups on their surface functioning as capping agents. Nanoparticles with the increased surface area have specified functional groups which induce the capability of the catalytic reduction reaction and their optical characteristics impact the industrial, agricultural and environmental sectors.

Objective: Magnetic nanoparticles incorporated with the enzymes and metallic sites have been widely used in both the synthesis of bio valuable products as well as in the degradation of many hazardous substances like dyes, phenolic compounds, etc. Also, they are used in the removal of metal ions present in wastewater.

Methods: Superparamagnetic support nanomaterials (SPIONs) are prepared using the compounds of Fe, Cu, Ni, Mn and Mg for the distinct and unique characteristics of reusability. These metallic nanomaterials are coated with distinct materials like mesoporous and amorphous silica, polyvinyl alcohol and pyrrolidine, polyethylene glycol, polystyrene, chitosan, dextran, starch, gelatin, polystyrene, polyacrylic acid, and polymethyl methacrylate to enhance the stability of the nanomaterials.

Results: In comparison to the different nanomaterials, metal oxide NPs possess increased stability, magnetic inertness, optical and electrical properties. Nanomaterials that are used in the medical applications are also used as the adsorbents to remove heavy metals from the industrial wastewater. The presence of polyphenolic compounds and flavonoids makes the plant extracts effective antimicrobial agents that impact pathogens. Moreover, these plant extracts, coupled with other nanomaterials, play a significant role in the removal of toxic pollutants from the environment.

Conclusion: Polyphenolic compounds present in plant extract function as natural reducing agents; hence, integrating plant extract with metal/metal oxide nanoparticles proves to be efficient in comparison with the catalysts synthesized by using other chemical methods. These surface modified nanocatalysts tend to possess enhanced stability and specific reactivity in the system and are used in the elimination of organic and inorganic pollutants in the industrial wastewater.

Keywords: Bioremediation, green synthesis, kinetics, nanoparticles, plant extracts, polyphenols.

[1]
Muthukrishnan, S.B.S.; Muthukumar, M.S.M.; Rao, M.V. Catalytic degradation of organic dyes using synthesized silver nanoparticles: A green approach. J. Bioremediat. Biodegrad., 2015, 6, 5.
[http://dx.doi.org/10.4172/2155-6199.1000312]
[2]
Al-Shannag, M.; Al-Qodah, Z.; Bani-Melhem, K.; Qtaishat, M.R.; Alkasrawi, M. Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chem. Eng. J., 2015, 260, 749-756.
[http://dx.doi.org/10.1016/j.cej.2014.09.035]
[3]
Bharath, G.; Rambabu, K.; Banat, F.; Hai, A.; Arangadi, A.F.; Ponpandian, N. Enhanced electrochemical performances of peanut shell derived activated carbon and its Fe3O4 nanocomposites for capacitive deionization of Cr(VI) ions. Sci. Total Environ., 2019, 691, 713-726.
[http://dx.doi.org/10.1016/j.scitotenv.2019.07.069] [PMID: 31325869]
[4]
Watamura, T.; Iwatsubo, F.; Sugiyama, K.; Yamamoto, K.; Yotsumoto, Y.; Shiono, T. Bubble cascade in Guinness beer is caused by gravity current instability. Sci. Rep., 2019, 9(1), 5718.
[http://dx.doi.org/10.1038/s41598-019-42094-0] [PMID: 30952967]
[5]
Guo, Y.; Guo, H.; Wang, Y.; Liu, L.; Chen, W. Designed HIERARCHICAL MnO2 microspheres assembled from nanofilms for removal of heavy metal ions. RSC Advances, 2014, 4(27), 14048-14054.
[http://dx.doi.org/10.1039/C4RA01044B]
[6]
Shroff, K.A.; Vaidya, V.K. Effect of Pre-Treatments on the biosorption of chromium (VI) ions by the dead biomass of rhizopus arrhizus. J. Chem. Technol. Biotechnol., 2012, 87(2), 294-304.
[http://dx.doi.org/10.1002/jctb.2715]
[7]
Vishnu, D.; Neeraj, G.; Swaroopini, R.; Shobana, R.; Kumar, V.V.; Cabana, H. Synergetic integration of laccase and versatile peroxidase with magnetic silica microspheres towards remediation of biorefinery wastewater. Environ. Sci. Pollut. Res. Int., 2017, 24(22), 17993-18009.
[http://dx.doi.org/10.1007/s11356-017-9318-5] [PMID: 28624938]
[8]
Bharath, G.; Alhseinat, E.; Ponpandian, N.; Khan, M.A.; Siddiqui, M.R.; Ahmed, F.; Alsharaeh, E.H. Development of adsorption and electrosorption techniques for removal of organic and inorganic pollutants from wastewater using novel magnetite/porous graphene-based nanocomposites. Separ. Purif. Tech., 2017, 188, 206-218.
[http://dx.doi.org/10.1016/j.seppur.2017.07.024]
[9]
Bharath, G.; Ponpandian, N. Hydroxyapatite nanoparticles on dendritic α-Fe2O3 hierarchical architectures for a heterogeneous photocatalyst and adsorption of Pb(II) ions from industrial wastewater. RSC Advances, 2015, 5(103), 84685-84693.
[http://dx.doi.org/10.1039/C5RA15703J]
[10]
Bharath, G.; Jagadeesh Kumar, A.; Karthick, K.; Mangalaraj, D.; Viswanathan, C.; Ponpandian, N. Shape evolution and size controlled synthesis of mesoporous hydroxyapatite nanostructures and their morphology dependent Pb(II) removal from waste water. RSC Advances, 2014, 4(70), 37446-37457.
[http://dx.doi.org/10.1039/C4RA06929C]
[11]
Zhang, X.; Lai, F.; Chen, Z.; He, X.; Li, Q.; Wang, H. Metallic Sb nanoparticles embedded in carbon nanosheets as anode material for lithium ion batteries with superior rate capability and long cycling stability. Electrochim. Acta, 2018, 283, 1689-1694.
[http://dx.doi.org/10.1016/j.electacta.2018.07.116]
[12]
Sardar, R.; Heap, T.B.; Shumaker-Parry, J.S. Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach. J. Am. Chem. Soc., 2007, 129(17), 5356-5357.
[http://dx.doi.org/10.1021/ja070933w] [PMID: 17425320]
[13]
Kumar, V.V.; Sivanesan, S.; Cabana, H. Magnetic cross-linked laccase aggregates-bioremediation tool for decolorization of distinct classes of recalcitrant dyes. Sci. Total Environ., 2014, 487(1), 830-839.
[http://dx.doi.org/10.1016/j.scitotenv.2014.04.009] [PMID: 24785303]
[14]
Ji, S.; Miao, C.; Liu, H.; Feng, L.; Yang, X.; Guo, H. A Hydrothermal synthesis of Fe3O4@C hybrid nanoparticle and magnetic adsorptive performance to remove heavy metal ions in aqueous solution. Nanoscale Res. Lett., 2018, 13(1), 178.
[http://dx.doi.org/10.1186/s11671-018-2580-8] [PMID: 29900488]
[15]
Arasu, M.V.; Arokiyaraj, S.; Viayaraghavan, P.; Kumar, T.S.J.; Duraipandiyan, V.; Al-Dhabi, N.A.; Kaviyarasu, K. One step green synthesis of larvicidal, and azo dye degrading antibacterial nanoparticles by response surface methodology. J. Photochem. Photobiol. B, 2019, 190(190), 154-162.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.020 PMID: 30572187]
[16]
Joerger, R. Biologically produced silver ± carbon. Adv. Mater., 2000, 1, 407-409.
[http://dx.doi.org/10.1002/(SICI)1521-4095(200003)12:6<407:AID-ADMA407>3.0.CO;2-O]
[17]
Gan, P.P.; Ng, S.H.; Huang, Y.; Li, S.F.Y. Green synthesis of gold nanoparticles using palm oil mill effluent (POME): A low-cost and eco-friendly viable approach. Bioresour. Technol., 2012, 113, 132-135.
[http://dx.doi.org/10.1016/j.biortech.2012.01.015] [PMID: 22297042]
[18]
Oliveira, M.M.; Ugarte, D.; Zanchet, D.; Zarbin, A.J.G. Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J. Colloid Interface Sci., 2005, 292(2), 429-435.
[http://dx.doi.org/10.1016/j.jcis.2005.05.068] [PMID: 16055140]
[19]
Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm. J., 2016, 24(4), 473-484.
[http://dx.doi.org/10.1016/j.jsps.2014.11.013] [PMID: 27330378]
[20]
Zimmer, A.; Kreuter, J. Microspheres and nanoparticles used in ocular delivery systems. Adv. Drug Deliv. Rev., 1995, 16(1), 61-73.
[http://dx.doi.org/10.1016/0169-409X(95)00017-2]
[21]
Zambaux, M.F.; Bonneaux, F.; Gref, R.; Maincent, P.; Dellacherie, E.; Alonso, M.J.; Labrude, P.; Vigneron, C. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J. Control. Release, 1998, 50(1-3), 31-40.
[http://dx.doi.org/10.1016/S0168-3659(97)00106-5] [PMID: 9685870]
[22]
Puglisi, G.; Fresta, M.; Giammona, G.; Ventura, C.A. Influence of the preparation conditions on Poly (Ethylcyanoacrylate) nanocapsule formation. Int. J. Pharm., 1995, 125, 283-287.
[http://dx.doi.org/10.1016/0378-5173(95)00142-6]
[23]
Calvo, P.; Remuñán-López, C.; Vila-Jato, J.L.; Alonso, M.J. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci., 1997, 63(1), 125-132.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19970103)63:1<125:AID-APP13>3.0.CO;2-4]
[24]
Lima, E.; Costa, L.; Sampaio, G.; Oliveira, E.; Silva, E.; Nascimento, H.; Nascimento, R.; Moura, K.; Bastos-Neto, M.; Loiola, A. Zinc ferrite nanoparticles via coprecipitation modified method: glycerol as structure directing and stabilizing agent. J. Braz. Chem. Soc., 2018, 30(4), 882-891.
[http://dx.doi.org/10.21577/0103-5053.20180225]
[25]
Sun, Y.P.; Meziani, M.J.; Pathak, P.; Qu, L. Polymeric nanoparticles from rapid expansion of supercritical fluid solution. Chemistry, 2005, 11(5), 1366-1373.
[http://dx.doi.org/10.1002/chem.200400422] [PMID: 15390139]
[26]
Rajeshkumar, S.; Bharath, L.V.; Geetha, R. Broad spectrum antibacterial silver nanoparticle green synthesis: Characterization, and mechanism of action. Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier Inc., 2019, pp. 429-444.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00018-6]
[27]
Anwaar, S.; Maqbool, Q.; Jabeen, N.; Nazar, M.; Abbas, F.; Nawaz, B.; Hussain, T.; Hussain, S.Z. The Effect of green synthesized CuO nanoparticles on callogenesis and regeneration of oryza sativa L. Front. Plant Sci., 2016, 7, 1330.
[http://dx.doi.org/10.3389/fpls.2016.01330] [PMID: 27630655]
[28]
Sowndarya, P.; Ramkumar, G.; Shivakumar, M.S.; Shivakumar, M.S. Green synthesis of selenium nanoparticles conjugated Clausena dentata plant leaf extract and their insecticidal potential against mosquito vectors. Artif. Cells Nanomed. Biotechnol., 2017, 45(8), 1490-1495.
[http://dx.doi.org/10.1080/21691401.2016.1252383 PMID: 27832715]
[29]
Waghmode, M.S.; Gunjal, A.B.; Mulla, J.A.; Patil, N.N.; Nawani, N.N. Studies on the titanium dioxide nanoparticles : biosynthesis, applications and remediation. SN Appl. Sci., 2019, 1(4), 1-9.
[http://dx.doi.org/10.1007/s42452-019-0337-3]
[30]
Sobana, N.; Muruganadham, M.; Swaminathan, M. Nano-Ag Particles Doped TiO2 for Efficient photodegradation of direct azo dyes. J. Mol. Catal. Chem., 2006, 258(1-2), 124-132.
[http://dx.doi.org/10.1016/j.molcata.2006.05.013]
[31]
El-Kassas, H.Y.; Aly-Eldeen, M.A.; Gharib, S.M. Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: characterization and application for lead bioremediation. Acta Oceanol. Sin., 2016, 35(8), 89-98.
[http://dx.doi.org/10.1007/s13131-016-0880-3]
[32]
Lingamdinne, L.P.; Chang, Y.Y.; Yang, J.K.; Singh, J.; Choi, E.H.; Shiratani, M.; Koduru, J.R.; Attri, P. Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem. Eng. J., 2017, 307, 74-84.
[http://dx.doi.org/10.1016/j.cej.2016.08.067]
[33]
Singh, C.; Sharma, V.; Naik, P.K.R.; Singh, H. A green biogenic approach for synthesis of gold and silver. Dig. J. Nanomater. Biostruct., 2011, 6(2), 535-542.
[34]
Varadavenkatesan, T.; Selvaraj, R.; Vinayagam, R. Phyto-Synthesis of silver nanoparticles from mussaenda erythrophylla leaf extract and their application in catalytic degradation of methyl orange dye. J. Mol. Liq., 2016, 221, 1063-1070.
[http://dx.doi.org/10.1016/j.molliq.2016.06.064]
[35]
Varshney, R.; Bhadauria, S.; Gaur, M.S. Biogenic synthesis of silver nanocubes and nanorods using sundried stevia rebaudiana leaves. Adv. Mater. Lett., 2010, 1(3), 232-237.
[http://dx.doi.org/10.5185/amlett.2010.9155]
[36]
W., R.; R., L.; S., K.; D., M.; B., K. Phytosynthesis of silver nanoparticle using gliricidia sepium (Jacq.). Curr. Nanosci., 2009, 5(1), 117-122.
[http://dx.doi.org/10.2174/157341309787314674]
[37]
Khan, N.A.; Niaz, A.; Zaman, M.I.; Khan, F.A.; Nisar-ul-haq, M.; Tariq, M. Sensitive and selective colorimetric detection of pb2+ by silver nanoparticles synthesized from aconitum violaceum plant leaf extract. Mater. Res. Bull., 2010, 2018(102), 330-336.
[http://dx.doi.org/10.1016/j.materresbull.2018.02.050]
[38]
Vastrad, J.V.; Goudar, G. Green synthesis and characterization of silver nanoparticles using leaf extract of tridax procumbens. Orient. J. Chem., 2016, 32(3), 1525-1530.
[http://dx.doi.org/10.13005/ojc/320327]
[39]
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13(10), 2638-2650.
[http://dx.doi.org/10.1039/c1gc15386b]
[40]
Ankamwar, B.; Chaudhary, M.; Sastry, M. Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth. React. Inorganic, Met. Nano-Metal Chem., 2005, 35(1), 19-26.
[http://dx.doi.org/10.1081/SIM-200047527]
[41]
Ankamwar, B.; Damle, C.; Ahmad, A.; Sastry, M. Biosynthesis of gold and silver nanoparticles using Emblica Officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J. Nanosci. Nanotechnol., 2005, 5(10), 1665-1671.
[http://dx.doi.org/10.1166/jnn.2005.184] [PMID: 16245525]
[42]
Yilmaz, M.; Turkdemir, H.; Kilic, M.A.; Bayram, E.; Cicek, A.; Mete, A.; Ulug, B. Biosynthesis of silver nanoparticles using leaves of stevia rebaudiana. Mater. Chem. Phys., 2011, 130(3), 1195-1202.
[http://dx.doi.org/10.1016/j.matchemphys.2011.08.068]
[43]
Njagi, E.C.; Huang, H.; Stafford, L.; Genuino, H.; Galindo, H.M.; Collins, J.B.; Hoag, G.E.; Suib, S.L. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 2011, 27(1), 264-271.
[http://dx.doi.org/10.1021/la103190n] [PMID: 21133391]
[44]
Syafiuddin, A. Salmiati; Salim, M. R.; Beng Hong Kueh, A.; Hadibarata, T.; Nur, H. A Review of silver nanoparticles: Research trends, global consumption, synthesis, properties, and future challenges. J. Chin. Chem. Soc. (Taipei), 2017, 64(7), 732-756.
[http://dx.doi.org/10.1002/jccs.201700067]
[45]
Machado, S.; Pinto, S.L.; Grosso, J.P.; Nouws, H.P.A.; Albergaria, J.T.; Delerue-Matos, C. Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci. Total Environ., 2013, 445-446, 1-8.
[http://dx.doi.org/10.1016/j.scitotenv.2012.12.033] [PMID: 23298788]
[46]
Muthukumar, H.; Matheswaran, M. Amaranthus spinosus leaf extract mediated FeO nanoparticles: Physicochemical traits, photocatalytic and antioxidant activity. ACS Sustain. Chem.& Eng., 2015, 3(12), 3149-3156.
[http://dx.doi.org/10.1021/acssuschemeng.5b00722]
[47]
Makarov, V.V.; Makarova, S.S.; Love, A.J.; Sinitsyna, O.V.; Dudnik, A.O.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir, 2014, 30(20), 5982-5988.
[http://dx.doi.org/10.1021/la5011924] [PMID: 24784347]
[48]
Wang, Z.; Fang, C.; Megharaj, M. Characterization of iron-polyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of Azo Dye. ACS Sustain. Chem. Eng., 2014, 2(4), 1022-1025.
[http://dx.doi.org/10.1021/sc500021n]
[49]
Sharma, J.K.; Srivastava, P.; Akhtar, M.S.; Singh, G.; Ameen, S. α-Fe2O3 hexagonal cones synthesized from the leaf extract of azadirachta indica and its thermal catalytic activity. New J. Chem., 2015, 39(9), 7105-7111.
[http://dx.doi.org/10.1039/C5NJ01344E]
[50]
Smuleac, V.; Varma, R.; Sikdar, S.; Bhattacharyya, D. Green Synthesis of Fe and Fe/Pd Bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J. Membr. Sci., 2011, 379(1-2), 131-137.
[http://dx.doi.org/10.1016/j.memsci.2011.05.054] [PMID: 22228920]
[51]
Huang, L.; Weng, X.; Chen, Z.; Megharaj, M.; Naidu, R. Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 117, 801-804.
[http://dx.doi.org/10.1016/j.saa.2013.09.054] [PMID: 24094918]
[52]
Bishnoi, S.; Kumar, A.; Selvaraj, R. Facile synthesis of magnetic iron oxide nanoparticles using inedible cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye. Mater. Res. Bull., 2018, 97, 121-127.
[http://dx.doi.org/10.1016/j.materresbull.2017.08.040]
[53]
Owens, G.; Chen, Z.; Ma, L.; Weng, X.; Wu, J. Impact of synthesis conditions on Pb(II) removal efficiency from aqueous solution by green tea extract reduced graphene oxide. Chem. Eng. J., 2018, 2018(359), 976-981.
[http://dx.doi.org/10.1016/j.cej.2018.11.089]
[54]
Vinod, V.T.P.; Saravanan, P.; Sreedhar, B.; Devi, D.K.; Sashidhar, R.B. A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids Surf. B Biointerfaces, 2011, 83(2), 291-298.
[http://dx.doi.org/10.1016/j.colsurfb.2010.11.035] [PMID: 21185161]
[55]
Herizchi, R.; Abbasi, E.; Milani, M.; Akbarzadeh, A. Current methods for synthesis of gold nanoparticles. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 596-602.
[http://dx.doi.org/10.3109/21691401.2014.971807] [PMID: 25365243]
[56]
Goulet, P.J.G.; Lennox, R.B. New insights into Brust-Schiffrin metal nanoparticle synthesis. J. Am. Chem. Soc., 2010, 132(28), 9582-9584.
[http://dx.doi.org/10.1021/ja104011b] [PMID: 20568767]
[57]
Thekkae Padil, V.V.; Černík, M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomedicine, 2013, 8, 889-898.
[http://dx.doi.org/10.2147/IJN.S40599] [PMID: 23467397]
[58]
Elia, P.; Zach, R.; Hazan, S.; Kolusheva, S.; Porat, Z.; Zeiri, Y. Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int. J. Nanomedicine, 2014, 9(1), 4007-4021.
[http://dx.doi.org/10.2147/IJN.S57343] [PMID: 25187704]
[59]
Gonnelli, C.; Cacioppo, F.; Giordano, C.; Capozzoli, L.; Salvatici, M.C.; Colzi, I.; del Bubba, M.; Ancillotti, C.; Ristori, S. Cucurbita Pepo l. Extracts as a versatile hydrotropic source for the synthesis of gold nanoparticles with different shapes. Green Chem. Lett. Rev., 2015, 8(1), 39-47.
[http://dx.doi.org/10.1080/17518253.2015.1027288]
[60]
Shayegan Mehr, E.; Sorbiun, M.; Ramazani, A.; Taghavi Fardood, S. Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using ferulago angulata (schlecht) boiss extract and comparison of their photocatalytic degradation of rhodamine B (RhB) under visible light irradiation. J. Mater. Sci. Mater. Electron., 2018, 29(2), 1333-1340.
[http://dx.doi.org/10.1007/s10854-017-8039-3]
[61]
Angel Ezhilarasi, A.; Judith Vijaya, J.; Kaviyarasu, K.; John Kennedy, L.; Ramalingam, R.J.; Al-Lohedan, H.A. Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J. Photochem. Photobiol. B, 2018, 180, 39-50.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.01.023 PMID: 29413700]
[62]
Raja, A.; Ashokkumar, S.; Pavithra Marthandam, R.; Jayachandiran, J.; Khatiwada, C.P.; Kaviyarasu, K.; Ganapathi Raman, R.; Swaminathan, M. Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J. Photochem. Photobiol. B, 2018, 181(181), 53-58.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.02.011 PMID: 29501725]
[63]
Devaraji, P.; Jo, W.K. Natural leaf-assisted dual-phase two-dimensional leaf TiO2 and Cu(OH)2 Co-Catalyst for photocatalytic conversion of benzene to phenol. Mater. Res. Bull., 2018, 2019(110), 67-75.
[http://dx.doi.org/10.1016/j.materresbull.2018.10.017]
[64]
Sangeetha, G.; Rajeshwari, S.; Venckatesh, R. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Mater. Res. Bull., 2011, 46(12), 2560-2566.
[http://dx.doi.org/10.1016/j.materresbull.2011.07.046]
[65]
Gonnelli, C.; Giordano, C.; Fontani, U.; Salvatici, M.C.; Ristori, S. Green synthesis of gold nanoparticles from extracts of Cucurbita pepo L. Leaves: Insights on the role of plant ageing. Adv. Bionanomat., 2018, 1, 155-164.
[66]
Song, J.Y.; Kwon, E.Y.; Kim, B.S. Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst. Eng., 2010, 33(1), 159-164.
[http://dx.doi.org/10.1007/s00449-009-0373-2] [PMID: 19701776]
[67]
Hoai Vu, N.S.; Hien, P.V.; Mathesh, M.; Hanh Thu, V.T.; Nam, N.D. Improved corrosion resistance of steel in ethanol fuel blend by titania nanoparticles and Aganonerion polymorphum Leaf Extract. ACS Omega, 2019, 4(1), 146-158.
[http://dx.doi.org/10.1021/acsomega.8b02084] [PMID: 31459320]
[68]
Gnanasekaran, R.; Dhandapani, B.; Saravanan, A. Biosorption of methylene blue dye by chemically modified aspergillus japonicus MG183814: Kinetics, thermodynamic and equilibrium studies. Desalination Water Treat., 2018, 122, 132-145.
[http://dx.doi.org/10.5004/dwt.2018.22711]
[69]
Verma, A.; Kumar, S.; Kumar, S. Biosorption of lead ions from the aqueous solution by sargassum filipendula: Equilibrium and kinetic studies. J. Environ. Chem. Eng., 2016, 4(4), 4587-4599.
[http://dx.doi.org/10.1016/j.jece.2016.10.026]
[70]
Hochella, M.F.; Spencer, M.G.; Jones, K.L. Nanotechnology: Nature’s Gift or Scientists’ Brainchild? Environmental Science: Nano; Royal Society of Chemistry, 2015, pp. 114-119.
[71]
Xu, J.J.; Cheng, Y.F.; Xu, L.Z.; Liu, Y.Y.; Zhu, B.Q.; Fan, N.S.; Huang, B.C.; Jin, R.C. The revolution of performance, sludge characteristics and microbial community of anammox biogranules under long-term NiO NPs exposure. Sci. Total Environ., 2019, 649, 440-447.
[http://dx.doi.org/10.1016/j.scitotenv.2018.08.386] [PMID: 30176457]
[72]
Varga, M.; Horvatić, J.; Barišić, L.; Lončarić, Z.; Dutour Sikirić, M.; Erceg, I.; Kočić, A.; Štolfa Čamagajevac, I. Physiological and biochemical effect of silver on the aquatic plant Lemna gibba L.: Evaluation of commercially available product containing colloidal silver. Aquat. Toxicol., 2019, 207, 52-62.
[http://dx.doi.org/10.1016/j.aquatox.2018.11.018] [PMID: 30521985]
[73]
Sharma, V.K.; Sayes, C.M.; Guo, B.; Pillai, S.; Parsons, J.G.; Wang, C.; Yan, B.; Ma, X. Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: A review. Sci. Total Environ., 2019, 653, 1042-1051.
[http://dx.doi.org/10.1016/j.scitotenv.2018.10.411] [PMID: 30759545]
[74]
Yazdanbakhsh, A.R.; Rafiee, M.; Daraei, H.; Amoozegar, M.A. Responses of flocculated activated sludge to bimetallic Ag-Fe nanoparticles toxicity: Performance, activity enzymatic, and bacterial community shift. J. Hazard. Mater., 2019, 366(366), 114-123.
[http://dx.doi.org/10.1016/j.jhazmat.2018.11.098] [PMID: 30504079]
[75]
Pulit-Prociak, J.; Banach, M. Silver nanoparticles - A material of the future.? Open Chem., 2016, 14(1), 76-91.
[http://dx.doi.org/10.1515/chem-2016-0005]
[76]
Nwanya, A.C.; Razanamahandry, L.C.; Bashir, A.K.H.; Ikpo, C.O.; Nwanya, S.C.; Botha, S.; Ntwampe, S.K.O.; Ezema, F.I.; Iwuoha, E.I.; Maaza, M. Industrial textile effluent treatment and antibacterial effectiveness of Zea mays L. Dry husk mediated bio-synthesized copper oxide nanoparticles. J. Hazard. Mater., 2019, 375(April), 281-289.
[http://dx.doi.org/10.1016/j.jhazmat.2019.05.004] [PMID: 31078988]
[77]
Agarwal, H.; Venkat Kumar, S.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles - An eco-friendly Approach. Resour. Technol., 2017, 3(4), 406-413.
[http://dx.doi.org/10.1016/j.reffit.2017.03.002]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 2
Year: 2021
Published on: 09 January, 2020
Page: [260 - 271]
Pages: 12
DOI: 10.2174/1573411016666200110090607
Price: $65

Article Metrics

PDF: 21
HTML: 1