In vitro Cytotoxic Effect, Hemolytic, and Antioxidant Activities of the Algerian Species Nonea vesicaria Rchb.

Author(s): Soumia Mouffouk, Chaima Mouffouk, Chawki Bensouici, Hamada Haba*

Journal Name: Current Bioactive Compounds

Volume 16 , Issue 8 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Objective: The aim of this study is the estimation of total phenolic and flavonoid contents and the evaluation of cytotoxic, hemolytic and antioxidant activities of the methanolic extract obtained from the species Nonea vesicaria (L.) Rchb.

Methods: The total phenolic and flavonoid contents were quantified by Folin-Ciocalteu and trichloroaluminum methods, respectively. The cytotoxic effect was tested by Brine shrimp lethality assay and the hemolytic activity was assessed by spectrophotometric test on human erythrocytes. Moreover, the antioxidant activity was determined by seven different techniques.

Results: The phytochemical screening revealed the presence of many classes of secondary metabolites, a moderate level of polyphenols, and a low content of flavonoids. The methanolic extract showed a significant cytotoxic effect with a value of LC50 at 35.7±0.5 μg/mL and induced hemolysis in a dosedependent manner with a value of EC50 at 175.6±0.08 μg/mL. The results of antioxidant activities indicated an important effect on nonpolar systems especially in ferric thiocyanate test and β-carotene bleaching inhibition assay.

Conclusion: The methanolic extract of N. vesicaria could constitute an important source of antioxidant and cytotoxic compounds but prudent use is recommended in order to reduce the adverse effects related to the possible hemolysis.

Keywords: Nonea vesicaria, extract, cytotoxic effect, antioxidant, phytochemical screening, hemolytic activity.

[1]
Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol., 2015, 4, 180-183.
[http://dx.doi.org/10.1016/j.redox.2015.01.002] [PMID: 25588755]
[2]
Thanan, R.; Oikawa, S.; Hiraku, Y.; Ohnishi, S.; Ma, N.; Pinlaor, S.; Yongvanit, P.; Kawanishi, S.; Murata, M. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci., 2014, 16(1), 193-217.
[http://dx.doi.org/10.3390/ijms16010193] [PMID: 25547488]
[3]
Kintzel, P.E.; Dorr, R.T. Anticancer drug renal toxicity and elimination: dosing guidelines for altered renal function. Cancer Treat. Rev., 1995, 21(1), 33-64.
[http://dx.doi.org/10.1016/0305-7372(95)90010-1] [PMID: 7859226]
[4]
Choucha Snouber, L.; Bunescu, A.; Naudot, M.; Legallais, C.; Brochot, C.; Dumas, M.E.; Elena-Herrmann, B.; Leclerc, E. Metabolomics-on-a-chip of hepatotoxicity induced by anticancer drug flutamide and Its active metabolite hydroxyflutamide using HepG2/C3a microfluidic biochips. Toxicol. Sci., 2013, 132(1), 8-20.
[http://dx.doi.org/10.1093/toxsci/kfs230] [PMID: 22843567]
[5]
Kalaivani, T.; Rajasekaran, C.; Suthindhiran, K.; Mathew, L. Free radical scavenging, cytotoxic and hemolytic activities from leaves of Acacia nilotica (L.) Wild. ex. Delile subsp. indica (Benth.). Brenan. J. Food Sci., 2011, 76(6), T144-T149.
[6]
Selvi, F.; Bigazzi, M.; Hilger, H.H.; Papini, A. Molecular phylogeny, morphology and taxonomic re-circumscription of the generic complex Nonea/Elizaldia/Pulmonaria/Paraskevia (Boraginaceae-Boragineae). Taxon, 2006, 55, 907-918.
[http://dx.doi.org/10.2307/25065685]
[7]
Quezel, P.; Santa, S. Nouvelle flore de l’Algérie et des régions désertiques méridionales, Paris; In, C.N.R.S., Ed.; Paris, France, 1963.
[8]
Gubaev, A.G.; Ortenberg, E.A.; Rusakova, O.A.; Chiriat’ev, E.A. The pharmacological properties of a direct-action anticoagulant from the herb Nonea poulla (L.) D. C Eksp. Klin. Farmakol., 1996, 59(1), 40-42.
[PMID: 8704632]
[9]
Myagmar, B.E.; Aniya, Y. Free radical scavenging action of medicinal herbs from Mongolia. Phytomedicine, 2000, 7(3), 221-229.
[http://dx.doi.org/10.1016/S0944-7113(00)80007-0] [PMID: 11185733]
[10]
Alali, F.Q.; Tawaha, K.; El-Elimat, T.; Syouf, M.; El-Fayad, M.; Abulaila, K.; Nielsen, S.J.; Wheaton, W.D.; Falkinham, J.O., III; Oberlies, N.H. Antioxidant activity and total phenolic content of aqueous and methanolic extracts of Jordanian plants: an ICBG project. Nat. Prod. Res., 2007, 21(12), 1121-1131.
[http://dx.doi.org/10.1080/14786410701590285] [PMID: 17852749]
[11]
Khalil, A.; Dababneh, B.F.; Al-Gabbiesh, A.H. Antimicrobial activity against pathogenic microorganisms by extracts from herbal Jordanian plants. J. Food Agric. Environ., 2009, 7, 103-106.
[12]
Kruglov, D.; Evstropov, A.; Tonkonogov, E. Research of Nonea rossica bioactive compounds and estimation of an antibacterial activity of extracts made from it. Planta Med., 2010, 76, 440.
[http://dx.doi.org/10.1055/s-0030-1264738]
[13]
Gharib, A.; Godarzee, M. Determination of secondary metabolites and antioxidant activity of some boraginaceae species growing in Iran. Trop. J. Pharm. Res., 2016, 15, 2459-2465.
[http://dx.doi.org/10.4314/tjpr.v15i11.22]
[14]
Rehman, S.U.; Faisal, R.; Shinwari, Z.K.; Ahmad, N.; Ahmad, I.J.A.Z. Phytochemical screening and biological activities of Trigonella incisa and Nonea edgeworthii. Pak. J. Bot., 2017, 49, 1161-1165.
[15]
Imran, M.; Ullah, F.; Ayaz, M.; Sadiq, A.; Shah, M.R.; Jan, M.S.; Ullah, F. Anticholinesterase and antioxidant potentials of Nonea micrantha Bioss. & Reut along with GC-MS analysis. BMC Complement. Altern. Med., 2017, 17(1), 499.
[http://dx.doi.org/10.1186/s12906-017-2004-9] [PMID: 29169349]
[16]
Babakhani, B.; Janbaz, F.; Ebrahimzadeh, M.A. Influence of different extraction methods on antioxidant and antibacterial activities of Nonnea lutea. Majallah-i Danishgah-i Ulum-i Pizishki-i Mazandaran, 2018, 27, 129-145.
[17]
Mouffouk, C.; Mouffouk, S.; Dekkiche, S.; Hambaba, L.; Mouffouk, S. Antioxidant and antibacterial activities of the species Silene inflata Sm. PSM Biol. Res., 2019, 4, 74-86.
[18]
Kumari, P.; Kumari, C.; Singh, P.S. Phytochemical screening of selected medicinal plants for secondary metabolites. Int. J. Life. Sci. Res., 2017, 3, 1151-1157.
[19]
Jagessar, R.C.; Allen, R. Phytochemical screening and atomic absorption spectroscopic studies of solvent type extract from leaves of Terminalia catappa, (almond). Acad. Res. Int., 2012, 3, 17.
[20]
Le, K.; Chiu, F.; Ng, K. Identification and quantification of antioxidants in Fructus lycii. Food Chem., 2007, 105, 353-563.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.063]
[21]
Turkoglu, A.; Duru, M.E.; Mercan, N.; Kivrak, I.; Gezer, K. Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.). Murrill. Food Chem., 2007, 101, 267-273.
[http://dx.doi.org/10.1016/j.foodchem.2006.01.025]
[22]
Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181, 1199-1200.
[http://dx.doi.org/10.1038/1811199a0]
[23]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[24]
Apak, R.; Güçlü, K.; Ozyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem., 2004, 52(26), 7970-7981.
[http://dx.doi.org/10.1021/jf048741x] [PMID: 15612784]
[25]
Marco, G.J. A rapid method for evaluation of antioxidants. J. Am. Oil Chem. Soc., 1968, 45, 594-598.
[http://dx.doi.org/10.1007/BF02668958]
[26]
Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem., 1999, 269(2), 337-341.
[http://dx.doi.org/10.1006/abio.1999.4019] [PMID: 10222007]
[27]
Oyaizu, M. Studies on products of browning reaction: Antioxidative activity of products of browning reaction. Jpn. J. Nutr. Diet., 1986, 44, 307-315.
[http://dx.doi.org/10.5264/eiyogakuzashi.44.307]
[28]
Takao, T.; Kitatani, F.; Watanabe, N.; Yagi, A.; Sakata, K. A simple screening method for antioxidants and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Biosci. Biotechnol. Biochem., 1994, 58, 1780-1783.
[http://dx.doi.org/10.1271/bbb.58.1780]
[29]
Mouffouk, C.; Hambaba, L.; Haba, H.; Mouffouk, S.; Bensouici, C. Evaluation of cytotoxic effect, anti-cholinesterase, hemolytic and antibacterial activities of the species Scabiosa stellata L. Curr. Bioact. Compd., 2019, 16(1), 72-79.
[http://dx.doi.org/10.2174/1573407214666180730102338]
[30]
Kumar, G.; Karthik, L.; Rao, K.V.B. Hemolytic activity of Indian medicinal plants towards human erythrocytes: An in vitro study. Elixir. Appl. Botany., 2011, 40, 5534-5537.
[31]
Curini, M.; Epifano, F.; Genovese, S.; Menghini, A.; Altinier, G.; Tubaro, A.; Menghini, L. Fatty acids profile and antiinflammatory activity of Nonea setosa R. et S. Phytother. Res., 2006, 20(5), 422-423.
[http://dx.doi.org/10.1002/ptr.1886] [PMID: 16619373]
[32]
Guil-Guerrero, J.L.; López-Martínez, J.C.; Gómez-Mercado, F.; Campra-Madrid, P. Gamma-linolenic and stearidonic acids from Moroccan Boraginaceae. Eur. J. Lipid Sci. Technol., 2006, 108, 43-47.
[http://dx.doi.org/10.1002/ejlt.200500251]
[33]
Horrobin, D.F. Nutritional and medical importance of gamma-linolenic acid. Prog. Lipid Res., 1992, 31(2), 163-194.
[http://dx.doi.org/10.1016/0163-7827(92)90008-7] [PMID: 1334266]
[34]
Kim, K.B.; Nam, Y.A.; Kim, H.S.; Hayes, A.W.; Lee, B.M. α-Linolenic acid: Nutraceutical, pharmacological and toxicological evaluation. Food Chem. Toxicol., 2014, 70, 163-178.
[http://dx.doi.org/10.1016/j.fct.2014.05.009] [PMID: 24859185]
[35]
Mansour, M.; van Ginkel, S.; Dennis, J.C.; Mason, B.; Elhussin, I.; Abbott, K.; Pondugula, S.R.; Samuel, T.; Morrison, E. The combination of Omega-3 stearidonic acid and docetaxel enhances cell death over docetaxel alone in human prostate cancer cells. J. Cancer, 2018, 9(23), 4536-4546.
[http://dx.doi.org/10.7150/jca.26681] [PMID: 30519360]
[36]
Velasco, L.; Goffman, F.D. Chemotaxonomic significance of fatty acids and tocopherols in Boraginaceae. Phytochemistry, 1999, 52, 423-426.
[http://dx.doi.org/10.1016/S0031-9422(99)00203-4]
[37]
Sahreen, S.; Khan, M.R.; Khan, R.A. Evaluation of antioxidant activities of various solvent extracts of Carissa opaca fruits. Food Chem., 2010, 122, 1205-1211.
[http://dx.doi.org/10.1016/j.foodchem.2010.03.120]
[38]
Khatoon, M.; Islam, E.; Islam, R.; Rahman, A.A.; Alam, A.H.; Khondkar, P.; Rashid, M.; Parvin, S. Estimation of total phenol and in vitro antioxidant activity of Albizia procera leaves. BMC Res. Notes, 2013, 6, 121.
[http://dx.doi.org/10.1186/1756-0500-6-121]
[39]
Mouffouk, C.; Hambaba, L.; Haba, H.; Mouffouk, S.; Bensouici, C.; Hachemi, M.; Khadraoui, H. Acute toxicity and in vivo anti-inflammatory effects and in vitro antioxidant and anti-arthritic potential of Scabiosa stellata. OPEM, 2018, 18, 335-348.
[http://dx.doi.org/10.1007/s13596-018-0320-3]
[40]
Suleria, H.A.R.; Iqbal, M.J. The antioxidant potential of black cumin (Nigella sativa L.) extracts through different extraction methods. Curr. Bioact. Compd., 2019, 15(6), 623-630.
[http://dx.doi.org/10.2174/15734072]
[41]
Moshi, M.J.; Innocent, E.; Magadula, J.J.; Otieno, D.F.; Weisheit, A.; Mbabazi, P.K.; Nondo, R.S.O. Brine shrimp toxicity of some plants used as traditional medicines in Kagera Region, north western Tanzania. Tanzan. J. Health Res., 2010, 12(1), 63-67.
[http://dx.doi.org/10.4314/thrb.v12i1.56287] [PMID: 20737830]
[42]
Elumba, Z.S.; Teves, F.G.; Madamba, M.R.S.B. DNA-binding and cytotoxicity of supercritical-CO2 extracts of Ganoderma lucidum collected from the wild plant of Bukidnon province, Philippines. Int. Res. J. Biol. Sci., 2013, 2, 62-68.
[43]
Magdalene, M.; Del, S.; Clifford, P.B.; Charity, M.L.D. Cytotoxic effect of Betel vine. piperbettlelinn. Leaf extracts using Artemia salina leach (brine shrimp lethality assay). J. Mitidiscip. Stud, 2014, 3, 100-111.
[44]
Gali, L.; Begjou, F. Antibacterial and cytotoxic effects of the cultivated Ruta chalepensis. Curr. Bioact. Compd., 2020, 16(5), 654-660.
[http://dx.doi.org/10.2174/1573407215666190207125643]
[45]
Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Subhan, F.; Khan, M.A.; Ahmad, W.; Ali, G.; Imran, M.; Ahmad, S. Molecularly characterized solvent extracts and saponins from Polygonum hydropiper L. show high anti-angiogenic, anti-tumor, brine shrimp, and fibroblast NIH/3T3 cell line cytotoxicity. Front. Pharmacol., 2016, 7, 74.
[http://dx.doi.org/10.3389/fphar.2016.00074] [PMID: 27065865]
[46]
Vo, N.N.Q.; Fukushima, E.O.; Muranaka, T. Structure and hemolytic activity relationships of triterpenoid saponins and sapogenins. J. Nat. Med., 2017, 71(1), 50-58.
[http://dx.doi.org/10.1007/s11418-016-1026-9] [PMID: 27491744]
[47]
Bukowska, B.; Kowalska, S. Phenol and catechol induce prehemolytic and hemolytic changes in human erythrocytes. Toxicol. Lett., 2004, 152(1), 73-84.
[http://dx.doi.org/10.1016/j.toxlet.2004.03.025] [PMID: 15294349]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 8
Year: 2020
Published on: 10 November, 2020
Page: [1197 - 1204]
Pages: 8
DOI: 10.2174/1573407216666200109120431
Price: $65

Article Metrics

PDF: 8
HTML: 2