Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

General Research Article

Effect of Aglycon and Glycoside Flavonoid-Enriched Extracts Obtained from Buxus sempervirens L. on Glucose and Lipid Metabolism in Diabetic Rats

Author(s): Mohammed Ajebli and Mohamed Eddouks*

Volume 18, Issue 1, 2020

Page: [55 - 69] Pages: 15

DOI: 10.2174/1871525718666200109102241

Price: $65

Abstract

Background: Buxus sempervirens L. is a medicinal plant with several beneficial effects on health and is widely used in Moroccan folklore as an antidiabetic plant.

Objective: The aim of this study was to evaluate the antidiabetic effect of both aglycone and glycoside flavonoid enriched extracts of this plant in the experimental diabetic state.

Methods: In the current work, the effect of aglycone and glycoside flavonoid-enriched extracts from the leaves of Buxus sempervirens L. (AFBS and GFBS) (10 mg/kg) on blood glucose levels has been evaluated in normal and streptozotocin (STZ) diabetic rats. Moreover, the histopathological changes in the liver and pancreas have been assessed in STZ diabetic rats. The ability of AFBS and GFBS to improve glucose tolerance in normal rats was also evaluated.

Results: In normal rats, both a single and repeated administration of AFBS and GFBS (10 mg/kg) showed no significant effects on blood glucose levels. However, both single and repeated oral administration of the two fractions showed a significant blood glucose lowering effect (p<0.0001) in STZ rats. In addition, histopathological analysis has demonstrated the beneficial impact of AFBS and GFBS on the pancreas and liver. Whereas, the oral glucose tolerance test demonstrated no significant ability of these extracts to improve the increase in blood glucose levels in normal and diabetic treated rats. In the current study, no significant changes in body weight in normal and STZ rats have been shown. In addition, the antioxidant activity of both AFBS and GFBS revealed the antioxidant effect of both extracts. Furthermore, both flavonoid-enriched fractions had no significant effect on blood lipid levels.

Conclusion: In conclusion, AFBS and GFBS exhibited an interesting antidiabetic effect on streptozotocin rats and GFBS which seems to be more effective than AFBS.

Keywords: Antihyperglycemic, antioxidant, Buxus sempervirens L., flavonoid-enriched extracts, histopathology, lipid profile.

Graphical Abstract
[1]
Eddouks, M.; Ajebli, M.; Hebi, M. Ethnopharmacological survey of medicinal plants used in Daraa-Tafilalet region (Province of Errachidia), Morocco. J. Ethnopharmacol., 2017, 198, 516-530.
[http://dx.doi.org/10.1016/j.jep.2016.12.017] [PMID: 28003130]
[2]
Neves, J.M.; Matos, C.; Moutinho, C.; Queiroz, G.; Gomes, L.R. Ethnopharmacological notes about ancient uses of medicinal plants in Trás-os-Montes (northern of Portugal). J. Ethnopharmacol., 2009, 124(2), 270-283.
[http://dx.doi.org/10.1016/j.jep.2009.04.041] [PMID: 19409473]
[3]
Mamedov, N.; Gardner, Z.; Cracker, L.E. Medicinal plants used in Russia and central Asia for the treatment of selected skin conditions. J. Herbs Spices Med. Plants, 2009, 11, 191-222.
[http://dx.doi.org/10.1300/J044v11n01_07]
[4]
Orhan, I.E.; Erdem, S.A.; Senol, F.S.; Kartal, M.; Sener, B. Exploration of cholinesterase and tyrosinase inhibitory, antiprotozoal and antioxidant effects of Buxus sempervirens L. (boxwood). Ind. Crops Prod., 2012, 40, 116-121.
[http://dx.doi.org/10.1016/j.indcrop.2012.03.004]
[5]
Ata, A.; Naz, S.; Choudhary, M.I.; Sener, B.; Turkoz, S. New Triter penoidal alkaloids from Buxus sempervirens. Z. Naturforsch, 2002, 57c, 21-28.
[http://dx.doi.org/10.1515/znc-2002-1-204]
[6]
Ajebli, M.; Eddouks, M. Buxus sempervirens L. improves streptozotocin-induced diabetes mellitus in rats. Cardiovasc. Hematol. Disord. Drug Targets, 2017, 17(2), 142-152.
[http://dx.doi.org/10.2174/1871529X17666170918140817] [PMID: 28925906]
[7]
Ajebli, M.; Eddouks, M. Buxus sempervirens L. improves lipid profile in diabetic rats. Cardiovasc. Hematol. Disord. Drug Targets, 2018, 18(3), 239-246.
[http://dx.doi.org/10.2174/1871529X18666180419100823] [PMID: 29669507]
[8]
Erdman, J.W. Jr.; Balentine, D.; Arab, L.; Beecher, G.; Dwyer, J.T.; Folts, J.; Harnly, J.; Hollman, P.; Keen, C.L.; Mazza, G.; Messina, M.; Scalbert, A.; Vita, J.; Williamson, G.; Burrowes, J. Flavonoids and heart health: Proceedings of the ILSI North America Flavonoids Workshop. J. Nutr., 2007, 137(3)(Suppl. 1), 718S-737S.
[http://dx.doi.org/10.1093/jn/137.3.718S] [PMID: 17311968]
[9]
Wall, J. Antioxidants in prevention of reperfusion damage vascular endothelium. Trin. Stu. Med. J., 2000, 1, 67-71.
[10]
Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat. Res., 2005, 579(1-2), 200-213.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.03.023] [PMID: 16126236]
[11]
Hanasaki, Y.; Ogawa, S.; Fukui, S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic. Biol. Med., 1994, 16(6), 845-850.
[http://dx.doi.org/10.1016/0891-5849(94)90202-X] [PMID: 8070690]
[12]
Cos, P.; Ying, L.; Calomme, M.; Hu, J.P.; Cimanga, K.; Van Poel, B.; Pieters, L.; Vlietinck, A.J.; Vanden Berghe, D. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J. Nat. Prod., 1998, 61(1), 71-76.
[http://dx.doi.org/10.1021/np970237h] [PMID: 9461655]
[13]
Morel, I.; Lescoat, G.; Cogrel, P.; Sergent, O.; Pasdeloup, N.; Brissot, P.; Cillard, P.; Cillard, J. Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem. Pharmacol., 1993, 45(1), 13-19.
[http://dx.doi.org/10.1016/0006-2952(93)90371-3] [PMID: 8424806]
[14]
Hirano, R.; Sasamoto, W.; Matsumoto, A.; Itakura, H.; Igarashi, O.; Kondo, K. Antioxidant ability of various flavonoids against DPPH radicals and LDL oxidation. J. Nutr. Sci. Vitaminol. (Tokyo), 2001, 47(5), 357-362.
[http://dx.doi.org/10.3177/jnsv.47.357] [PMID: 11814152]
[15]
Ajebli, M.; El Ouady, F.; Eddouks, M. Study of antihyperglycemic, antihyperlipidemic and antioxidant activities of tannins extracted from Warionia saharae Benth. & Coss. Endocr. Metab. Immune Disord. Drug Targets, 2018, 19(2), 189-198.
[http://dx.doi.org/10.2174/1871530318666181029160539] [PMID: 30370866]
[16]
Ajebli, M.; Eddouks, M. Pharmacological and phytochemical study of Mentha suaveolens ehrh in normal and streptozotocin-induced diabetic rats. Nat. Prod. J., 2018, 8(3), 213-227.
[http://dx.doi.org/10.2174/2210315508666180327120434]
[17]
Ajebli, M.; Eddouks, M. Flavonoid-enriched extract from desert plant Warionia saharae improves glucose and cholesterol levels in diabetic rats. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(1), 28-39.
[http://dx.doi.org/10.2174/1871525717666190121143934] [PMID: 30666919]
[18]
Petchi, R.R.; Vijaya, C.; Parasuraman, S. Antidiabetic activity of polyherbal formulation in streptozotocin - nicotinamide induced diabetic wistar rats. J. Tradit. Complement. Med., 2014, 4(2), 108-117.
[http://dx.doi.org/10.4103/2225-4110.126174] [PMID: 24860734]
[19]
Nur-E-Alam, M.; Yousaf, M.; Parveen, I.; Hafizur, R.M.; Ghani, U.; Ahmed, S.; Hameed, A.; Threadgill, M.D.; Al-Rehaily, A.J. New flavonoids from the Saudi Arabian plant Retama raetam which stimulates secretion of insulin and inhibits α-glucosidase. Org. Biomol. Chem., 2019, 17(5), 1266-1276.
[http://dx.doi.org/10.1039/C8OB02755B] [PMID: 30663749]
[20]
Zhu, J.; Chen, C.; Zhang, B.; Huang, Q. The inhibitory effects of flavonoids on α-amylase and α-glucosidase. Crit. Rev. Food Sci. Nutr., 2020, 60(4), 695-708.
[http://dx.doi.org/10.1080/10408398.2018.1548428] [PMID: 30638035]
[21]
Kouhestani, S.; Zare, S.; Babaei, P. Flavonoids fraction of Mespilus germanica alleviates insulin resistance in metabolic syndrome model of ovariectomized rats via reduction in tumor necrosis factor-α. J. Menopausal Med., 2018, 24(3), 169-175.
[http://dx.doi.org/10.6118/jmm.2018.24.3.169] [PMID: 30671409]
[22]
Ren, N.; Kim, E.; Li, B.; Pan, H.; Tong, T.; Yang, C.S.; Tu, Y. Flavonoids alleviating insulin resistance through inhibition of inflammatory signaling. J. Agric. Food Chem., 2019, 67(19), 5361-5373.
[http://dx.doi.org/10.1021/acs.jafc.8b05348] [PMID: 30612424]
[23]
Alam, M.A.; Subhan, N.; Rahman, M.M.; Uddin, S.J.; Reza, H.M.; Sarker, S.D. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv. Nutr., 2014, 5(4), 404-417.
[http://dx.doi.org/10.3945/an.113.005603]
[24]
Zang, Y.; Sato, H.; Igarashi, K. Anti-diabetic effects of a kaempferol glycoside-rich fraction from unripe soybean (Edamame, Glycine max L. Merrill. ‘Jindai’) leaves on KK-A(y) mice. Biosci. Biotechnol. Biochem., 2011, 75(9), 1677-1684.
[http://dx.doi.org/10.1271/bbb.110168] [PMID: 21897048]
[25]
L’hadj, I.; Azzi, R.; Lahfa, F.; Koceir, E.A.; Omari, N. The nutraceutical potential of Lepidium sativum L. seed flavonoid-rich extract in managing metabolic syndrome components. J. Food Biochem., 2019, 43(3), e12725
[http://dx.doi.org/10.1111/jfbc.12725] [PMID: 31353542]
[26]
Evans, J.L.; Goldfine, I.D.; Maddux, B.A.; Grodsky, G.M. Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes, 2003, 52(1), 1-8.
[http://dx.doi.org/10.2337/diabetes.52.1.1] [PMID: 12502486]
[27]
Kregel, K.C.; Zhang, H.J. An integrated view of oxidative stress in aging: Basic mechanisms, functional effects, and pathological considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 292(1), R18-R36.
[http://dx.doi.org/10.1152/ajpregu.00327.2006] [PMID: 16917020]
[28]
Ferreira, J.F.S.; Luthria, D.L.; Sasaki, T.; Heyerick, A. Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules, 2010, 15(5), 3135-3170.
[http://dx.doi.org/10.3390/molecules15053135] [PMID: 20657468]
[29]
Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 2011, 82(4), 513-523.
[http://dx.doi.org/10.1016/j.fitote.2011.01.018] [PMID: 21277359]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy