Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Investigation of Nutritional Contents, Antioxidant and Immunostimulatory Activities of Aqueous Extract from Laguncularia racemosa Leaves

Author(s): Dayane Kelly Dias do Nascimento Santos, Cristiane Moutinho Lagos de Melo*, Elivânia Maria da Silva, Vanessa Silva de Almeida, Iranildo José da Cruz Filho, Gláucia Manoella de Souza Lima, Daniel Rodrigo Cavalcante de Araújo, Fabiane Rabelo da Costa Batista and Jeymesson Raphael Cardoso Vieira

Volume 11, Issue 2, 2021

Published on: 08 January, 2020

Page: [231 - 243] Pages: 13

DOI: 10.2174/2210315510666200108105217

Price: $65

Abstract

Background: One of the four most incident plant species in mangrove is the Laguncularia racemosa, widely used in popular medicine against inflammation and fever.

Objective: Here, L. racemosa was investigated in relation to their phytochemical profile, antioxidant activity, cytotoxicity, antimicrobial and immunostimulatory effect.

Methods: Aqueous extract was obtained from leaves of plant, its phytochemical profile was investigated through UPLC method, the antioxidant assays performed were TAA, DPPH, ABTS, nitrite and lipid peroxidation assay. Antimicrobial assays were made using standard strains. For all biological tests were used mice splenocytes and from these cell cultures were measured cytotoxicity, proliferation index and cytokines production.

Results: Laguncularia racemosa leaves showed the presence of ions, proteins, carbohydrates, vitamins and high concentration of phenolic compounds. Antioxidant activities were promoted by aqueous extract, especially in DPPH and NO assays. Extract in 6 μg/mL did not induce significant cell death, stimulated the cell proliferation and the IL-4 production. Moreover, decreases of proinflammatory cytokines IFN-γ, TNF-α and IL-6 were found.

Conclusion: The presence of essential nutrients, significant antioxidant activity and immune stimulation confirm the use of this plant in folk medicine against inflammation.

Keywords: L. racemosa, phenolic compounds, cytokines, anti-inflammatory, immune, antimicrobial.

Graphical Abstract
[1]
Nagelkerken, I.; Blaber, S.J.M.; Bouillon, S.; Green, P.; Haywood, M.; Kirton, L.G. The habitat function of mangroves for terrestrial and marine fauna: A Review. Aquat. Bot., 2008, 89(2), 155-185.
[http://dx.doi.org/10.1016/j.aquabot.2007.12.007]
[2]
Sebastianes, F.L.S.; Cabedo, N.; El Aouad, N.; Valente, A.M.; Lacava, P.T.; Azevedo, J.L.; Pizzirani-Kleiner, A.A.; Cortes, D. 3-Hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Curr. Microbiol., 2012, 65(5), 622-632.
[http://dx.doi.org/10.1007/s00284-012-0206-4]
[3]
Sebastianes, F.L.S.; Lacava, P.T.; Fávaro, L.C.; Rodrigues, M.B.; Araújo, W.L.; Azevedo, J.L.; Pizzirani-Kleiner, A.A. Genetic transformation of Diaporthe phaseolorum, an endophytic fungus found in mangrove forests. Agrobacterium Tumefaciens Curr. Genet., 2012, 58(1), 21-33.
[http://dx.doi.org/10.1007/s00294-011-0362-2]
[4]
Arrivabene, H.P.; Souza, I.; Có, W.L.O.; Rodella, R.A.; Wunderlin, D.A.; Milanez, C.R. Functional traits of selected mangrove species in Brazil as biological indicators of different environmental conditions. Sci. Total Environ., 2014, 476, 496-504.
[http://dx.doi.org/10.1016/j.scitotenv.2014.01.032]
[5]
Pan, K.; Wang, W-X. Trace metal contamination in estuarine and coastal environments in China. Sci. Total Environ., 2012, 421, 3-16.
[http://dx.doi.org/10.1016/j.scitotenv.2011.03.013]
[6]
Da Souza, I.; Bonomo, M.M.; Morozesk, M.; Rocha, L.D.; Duarte, I.D.; Furlan, L.M.; Arrivabene, H.P.; Monferrán, M.V.; Matsumoto, S.T.; Milanez, C.R.D.; Wunderlin, D.A.; Fernandes, M.N. Adaptive plasticity of Laguncularia racemosa in response to different environmental conditions: integrating chemical and biological data by chemometrics. Ecotoxicology, 2014, 23(3), 335-348.
[http://dx.doi.org/10.1007/s10646-014-1191-0]
[7]
Shi, C.; Xu, M.J.; Bayer, M.; Deng, Z.W.; Kubbutat, M.H.; Wätjen, W.; Proksch, P.; Lin, W.H. Phenolic compounds and their anti-oxidative properties and protein kinase inhibition from the Chinese mangrove plant Laguncularia racemosa. Phytochem., 2010, 71(4), 435-442.
[http://dx.doi.org/10.1016/j.phytochem.2009.11.008]
[8]
Mendes, R.J.A.; Filho, A.A.P.A.; Nogueira, A.J.L.; Araújo, C.R.C.; França, N.M.L.; Silva, R.I.G. Evaluation of molluscicidal activity of three mangrove species (Avicennia schaueriana schaueriana, Laguncularia racemosa and Rhizophora mangle) and their effects on the bioactivity of Biomphalaria glabrata Say, 1818 Ver. Inst. Med. Trop. Sao Paulo, 2018, 60(E7), 1-9.
[9]
Al-Harthi, M.A.; El-Deek, A.A.; Attia, Y.A.; Bovera, F.; Qota, E.M. Effect of different dietary levels of mangrove (Laguncularia racemosa) leaves and spice supplementation on productive performance, egg quality, lipid metabolism and metabolic profiles in laying hens. Br. Poult. Sci., 2009, 50(6), 700-708.
[http://dx.doi.org/10.1080/00071660903202948]
[10]
Santos, D.K.D.N.; Melo, W.H.O.; Lima, A.M.N.O.; Cruz Filho, I.J.; Lima, G.M.S.; Silva, T.D.; Moura, M.C.; Nascimento, M.S.; Maior, A.M.S.; Napoleão, T.H.; Melo, C.M.L. Conocarpus erectus L., A plant with a high content of structural sugars, ions and phenolic compounds, shows antioxidant and antimicrobial properties promoted by different organic fractions. Asian Pac. J. Trop. Biomed., 2018, 8(9), 463-470.
[http://dx.doi.org/10.4103/2221-1691.242292]
[11]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3]
[12]
Miller, G.L. Use of dinitrosalicylic and reagent for determination of reducing sugar. Anal. Chem., 1959, 31(3), 426-428.
[http://dx.doi.org/10.1021/ac60147a030]
[13]
Snehal, P.A.N.D.E.; Madhukar, K.H.E.T.M.A.L.A.S. Quantitative estimation of biochemical content of various extracts of Stevia rebaudiana leaves. Asian J. Pharm. Clin. Res., 2012, 5(1), 115-117.
[14]
Seigler, D.S.; Seilheimer, S.; Keesy, J.; Huang, H.F. Tannins from four commonacacia species of texas and northeastern Mexico. J. Sci. Food Agric., 1986, 40(2), 220-232.
[15]
Sun, S.S.M.; Hang, C. Broadening the genetic diversity of vegetable crops through molecular approach. Acta Hortic., 1998, 467, 23.
[http://dx.doi.org/10.17660/ActaHortic.1998.467.2]
[16]
da Cruz Filho, I.J.; da Silva Barros, B.R.; de Souza Aguiar, L.M.; Navarro, C.D.C.; Ruas, J.S.; de Lorena, V.M.B.; de Moraes Rocha, G.J.; Vercesi, A.E.; de Melo, C.M.L.; Maior, A.M.S. Lignins isolated from Prickly pear cladodes of the species Opuntia fícus-indica (Linnaeus) Miller and Opuntia cochenillifera (Linnaeus) Miller induces mice splenocytes activation, proliferation and cytokines production. Int. J. Biol. Macromol., 2019, 123, 1331-1339.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.120]
[17]
Barapatre, A.; Meena, A.S.; Mekala, S.; Das, A.; Jha, H. In vitro evaluation of antioxidant and cytotoxic activities of lignin fractions extracted from Acacia nilotica. Int. J. Biol. Macromol., 2016, 86, 443-453.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.109]
[18]
Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem., 2001, 73(3), 285-290.
[http://dx.doi.org/10.1016/S0308-8146(00)00298-3]
[19]
Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol., 2007, 117(1), 112-119.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2007.03.003]
[20]
CLSI (Clinical and Laboratory Standards Institute). 2017. Available from: http://www.facm.ucl.ac.be/intranet/CLSI/CLSI-2017-M100-S27.pdf
[21]
De Melo, C.M.L.; Melo, H.; Correia, M.T.S.; Coelho, L.C.B.B.; da Silva, M.B.; Pereira, V.R.A. Mitogenic response and cytokine production induced by cramoll 1,4 lectin in splenocytes of inoculated mice. Scand. J. Immunol., 2011, 73(2), 112-121.
[http://dx.doi.org/10.1111/j.1365-3083.2010.02490.x]
[22]
Ding, A.H.; Nathan, C.F.; Stuehr, D.J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol., 1988, 141(7), 2407-2412.
[23]
Bourre, J.M. Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 1: micronutrients. J. Nutr. Health Aging, 2006, 10(5), 377-385.
[24]
Padovan, R.M.; Amaya-Farfán, J.; Colugna, F.A.B.; Domene, S.M.A. Dietary reference intakes: application of tables in nutritional studies. Rev. Nutr., 2006, 19(6), 741-760.
[http://dx.doi.org/10.1590/S1415-52732006000600010]
[25]
Spinas, E.; Saggini, A.; Kritas, S.K.; Cerulli, G.; Caraffa, A.; Antinolfi, P.; Pantalone, A.; Frydas, A.; Tei, M.; Speziali, A.; Saggini, R.; Pandolfi, F.; Conti, P. Crosstalk between vitamin b and immunity. J. Biol. Regul. Homeost. Agents, 2015, 29(2), 283-288.
[26]
Saghiri, M.A.; Ershadifar, A.A.S.; Moghadam, M.M.; Sheibani, N. Vitamins and regulation of angiogenesis. [A, B1, B2, B3, B6, B9, B12, C, D, E, K] J. Funct. Foods, 2017, 38, 180-196.
[http://dx.doi.org/10.1016/j.jff.2017.09.005]
[27]
Yang, H.; Lan, D.; Wang, M.; Li, X.; Gao, Z.; Li, L. Effect and mechanism of high-dose Vitamin B3 on granulopoiesis in normal rat Zhonghua Xue Ye Xue Za Zhi, 2014, 35(10), 931-935.
[28]
Ueland, P.M.; McCann, A.; Midttun, Ø.; Ulvik, A. Inflammation, vitamin B6 and related pathways. Mol. Aspects Med., 2017, 53, 10-27.
[http://dx.doi.org/10.1016/j.mam.2016.08.001]
[29]
Amaya-Farfan, J.; Álvares, S.M.; Padovani, R.M. Recommendations for dietary antioxidants. Rev. Nutr., 2001, 14(1), 71-78.
[http://dx.doi.org/10.1590/S1415-52732001000100010]
[30]
Zhang, L.L.; Lin, Y.M.; Zhou, H.C.; Wei, S.D.; Chen, J.H. Condensed tannins from mangrove species Kandelia candel and Rhizophora mangle and their antioxidant activity. Molecules, 2010, 15(1), 420-431.
[http://dx.doi.org/10.3390/molecules15010420]
[31]
Lincy, M.P.; Paulpriya, V.R. In vitro antioxidant activity of Avicennia marina (Forssk) Vierh pneumatophore (Avicenniaceae). Sci. Res. Report., 2013, 3(2), 106-114.
[32]
Ríos, J.L.; Giner, R.M.; Marín, M.; Recio, M.C. A pharmacological update of ellagic acid. Planta Med., 2018, 84(15), 1068-1093.
[http://dx.doi.org/10.1055/a-0633-9492]
[33]
Ratnam, D.V.; Ankola, D.D.; Bhardwaj, V.; Sahana, D.K.; Kumar, M.N. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J. Control. Release, 2006, 113(3), 189-207.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.015]
[34]
Priyadarsini, K.I.; Khopde, S.M.; Kumar, S.S.; Mohan, H. Free radical studies of ellagic acid, a natural phenolic antioxidant. J. Agric. Food Chem., 2002, 50(7), 2200-2206.
[http://dx.doi.org/10.1021/jf011275g]
[35]
Mishra, S.; Vinayak, M. Ellagic acid inhibits PKC signaling by improving antioxidant defense system in murine T cell lymphoma. Mol. Biol. Rep., 2014, 41(7), 4187-4197.
[http://dx.doi.org/10.1007/s11033-014-3289-0]
[36]
Deschner, E.E.; Ruperto, J.; Wong, G.; Newmark, H.L. Quercetin and rutin as inhibitors of azoxymethanol-induced colonic neoplasia. Carcinogenesis, 1991, 12(7), 1193-1196.
[http://dx.doi.org/10.1093/carcin/12.7.1193]
[37]
Ahmed, O.M.; Moneim, A.A.; Yazid, I.A.; Mahmoud, A.M. Antihyperglycemic, antihyperlipidemic and antioxidant effects and the probable mechanisms of action of Ruta graveolens infusion and rutin in nicotinamide- Streptozotocin-induced diabetic rats. Diabetol. Croat., 2010, 39(1), 15-35.
[38]
Alam, P.; Alajmi, M.F.; Arbab, A.H.; Parvez, M.K.; Siddiqui, N.A.; Alqasoumi, S.I.; Al-Rehaily, A.J.; Al-Dosari, M.S.; Basudan, O.A. Comparative study of antioxidant activity and validated RP-HPTLC analysis of rutin in the leaves of different Acacia species grown in Saudi Arabia. Saudi Pharm. J., 2017, 25(5), 715-723.
[http://dx.doi.org/10.1016/j.jsps.2016.10.010]
[39]
Estevam, C.S.; Cavalcanti, A.M.; Cambui, E.V.F.; Neto, V.A.; Leopoldo, P.T.G.; Araujo, B.S.; Porfírio, Z.; Sant’Ana, A.R.G. Phytochemistry and microbiological assay of the bark extracts of Maytenus rigida Mart. (Celastraceae). Rev. Bras. Farmacogn., 2009, 19(1B), 299-303.
[http://dx.doi.org/10.1590/S0102-695X2009000200020]
[40]
Vieitez, I.; Maceiras, L.; Jachmanián, I.; Alborés, S. Antioxidant and antibacterial activity of different extracts from herbs obtained by maceration or supercritical technology. J. Supercrit. Fluids, 2018, 133, 58-64.
[http://dx.doi.org/10.1016/j.supflu.2017.09.025]
[41]
Santos, D.K.D.D.N.; de Almeida, V.S.; de Araujo, D.R.C.; Harand, W.; Soares, A.K.A.; Moreira, L.R.; de Lorena, V.M.B.; Magalhães, L.P.M.; Ximenes, R.M.; de Sena, K.X.D.F.R.; de Melo, C.M.L.; Napoleão, T.H.; Lima, C.S.A.; Yara, R.; Vieira, J.R.C. Evaluation of cytotoxic, immunomodulatory and antibacterial activities of aqueous extract from leaves of Conocarpus erectus Linnaeus (Combretaceae). J. Pharm. Pharmacol., 2018, 70(8), 1092-1101.
[http://dx.doi.org/10.1111/jphp.12930]
[42]
Kapoor, D.; Trikha, D.; Vijayvergiya, R.; Parashar, K.K.; Kaul, D.; Dhawan, V. Short-term adjuvant therapy with Terminalia arjuna attenuates ongoing inflammation and immune imbalance in patients with stable coronary artery disease: in vitro and in vivo evidence. J. Cardiovasc. Transl. Res., 2015, 8(3), 173-186.
[http://dx.doi.org/10.1007/s12265-015-9620-x]
[43]
Gupta, M.; Kaur, G. Aqueous extract from the Withania somnifera leaves as a potential anti-neuroinflammatory agent: a mechanistic study. J. Neuroinflammation, 2016, 13(1), 193.
[http://dx.doi.org/10.1186/s12974-016-0650-3]
[44]
Ke, L.; Guo, W.; Xu, J.; Zhang, G.; Wang, W.; Huang, W. Ginsenoside Rb1 attenuates activated microglia-induced neuronal damage. Neural Regen. Res., 2014, 9(3), 252-259.
[http://dx.doi.org/10.4103/1673-5374.128217]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy