Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Design, Synthesis and Antitubercular Evaluation of New Benzimidazole Scaffolds

Author(s): Smriti Yadav, Bharath Kumar Inturi, Shrinidhi B.R, Pooja H.J, Neenu Ganesh and Gurubasavaraj V. Pujar*

Volume 18, Issue 4, 2020

Page: [375 - 383] Pages: 9

DOI: 10.2174/2211352518666200108091454

Price: $65

Abstract

Background: To overcome one of the resistance mechanisms of Isoniazid (INH), there is a need for an antitubercular agent that can inhibit InhA enzyme by circumventing the formation of INH-NAD+ adduct.

Objective: The objective of the study is the development of novel antitubercular agents that target Mycobacterium tuberculosis InhA (Enoyl Acyl Carrier Protein Reductase).

Methods: A small-molecule chemical library was used for the identification of the novel InhA inhibitors using primary screening and molecular docking studies followed by the scaffold hopping approach. The designed molecules, 2-(2-(hydroxymethyl)-1H- benzo[d] imidazole-1-yl)- N- substituted acetamides were synthesized by reacting (1H- benzo[d]imidazole -2-yl)methanol with appropriate 2-chloro-N-substituted acetamides / dialkylamino carbonyl chlorides respectively in good yields (42-65%). The antitubercular activity of synthesized compounds was determined by Microplate Alamar Blue Assay (MABA) against Mycobacterium tuberculosis H37Rv strain. The selected compounds were screened for cytotoxicity on normal cell lines.

Results: The antitubercular activity data revealed that the 4-chlorophenyl substituted derivative (3b) showed good MIC value at 6.25 μg/mL and, dimethylacetamide substituted derivative (3i) showed MIC at 25 μg/mL among the tested compounds. The substitution of dimethylacetamide (3i) group on the 1st position of benzimidazole has good antitubercular activity (25μg/mL) in comparison to the diethyl acetamide group (3j, 100μg/mL).

Conclusion: The antitubercular activity data indicated that the tested compounds exhibited well to moderate inhibition of the H37Rv strains. The compounds (3b) with electronegative substitution on the phenyl moiety exhibited better antitubercular activity than that of the other substitutions. The active compounds have displayed a good safety profile on normal cell lines.

Keywords: Antitubercular, Mycobacterium tuberculosis, InhA, benzimidazole, MABA, isoniazid.

Graphical Abstract
[2]
de Souza, M.V.N.; Ferreira, M. de L.; Pinheiro, A.C.; Saraiva, M.F.; de Almeida, M.V.; Valle, M.S. Synthesis and biological aspects of mycolic acids: an important target against Mycobacterium tuberculosis. ScientificWorldJournal, 2008, 8, 720-751.
[http://dx.doi.org/10.1100/tsw.2008.99] [PMID: 18677428]
[3]
Shanthi, V.; Ramanathan, K. Identification of Potential Inhibitor Targeting Enoyl-Acyl Carrier Protein Reductase (InhA) in Mycobacterium Tuberculosis: A Computational Approach. 3 Biotech,, 2014, 4(3), 253-261.http://dx.doi.org/https://doi.org/10.1007/s13205-013-0146-0
[4]
Marrakchi, H.; Lanéelle, G.; Quémard, A.K. InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II. Microbiology, 2000, 146(Pt 2), 289-296.
[http://dx.doi.org/10.1099/00221287-146-2-289] [PMID: 10708367]
[5]
Blanco, D.; Perez-Herran, E.; Cacho, M.; Ballell, L.; Castro, J.; González Del Río, R.; Lavandera, J.L.; Remuiñán, M.J.; Richards, C.; Rullas, J.; Vázquez-Muñiz, M.J.; Woldu, E.; Zapatero-González, M.C.; Angulo-Barturen, I.; Mendoza, A.; Barros, D. Mycobacterium tuberculosis gyrase inhibitors as a new class of antitubercular drugs. Antimicrob. Agents Chemother., 2015, 59(4), 1868-1875.
[http://dx.doi.org/10.1128/AAC.03913-14] [PMID: 25583730]
[6]
Nguta, J.M.; Appiah-Opong, R.; Nyarko, A.K.; Yeboah-Manu, D.; Addo, P.G.A. Current perspectives in drug discovery against tuberculosis from natural products. Int. J. Mycobacteriol., 2015, 4(3), 165-183.
[http://dx.doi.org/10.1016/j.ijmyco.2015.05.004] [PMID: 27649863]
[7]
Mdluli, K.; Spigelman, M. Novel targets for tuberculosis drug discovery. Curr. Opin. Pharmacol., 2006, 6(5), 459-467.
[http://dx.doi.org/10.1016/j.coph.2006.06.004] [PMID: 16904376]
[8]
Stigliani, J-L.; Arnaud, P.; Delaine, T.; Bernardes-Génisson, V.; Meunier, B.; Bernadou, J. Binding of the tautomeric forms of isoniazid-NAD adducts to the active site of the Mycobacterium tuberculosis enoyl-ACP reductase (InhA): a theoretical approach. J. Mol. Graph. Model., 2008, 27(4), 536-545.
[http://dx.doi.org/10.1016/j.jmgm.2008.09.006] [PMID: 18955002]
[9]
Pauli, I.; dos Santos, R.N.; Rostirolla, D.C.; Martinelli, L.K.; Ducati, R.G.; Timmers, L.F.S.M.; Basso, L.A.; Santos, D.S.; Guido, R.V.C.; Andricopulo, A.D.; Norberto de Souza, O. Discovery of new inhibitors of Mycobacterium tuberculosis InhA enzyme using virtual screening and a 3D-pharmacophore-based approach. J. Chem. Inf. Model., 2013, 53(9), 2390-2401.
[http://dx.doi.org/10.1021/ci400202t] [PMID: 23889525]
[10]
Meng, X-Y.; Zhang, H-X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des, 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[11]
Tripathi, A.; Bankaitis, V.A. Molecular Docking: From Lock and Key to Combination Lock. J Mol Med Clin Appl, 2017, 2(1), 1-9.
[http://dx.doi.org/10.16966/2575-0305.106] [PMID: 29333532]
[12]
Algul, O.; Kaessler, A.; Apcin, Y.; Yilmaz, A.; Jose, J. Comparative studies on conventional and microwave synthesis of some benzimidazole, benzothiazole and indole derivatives and testing on inhibition of hyaluronidase. Molecules, 2008, 13(4), 736-748.
[http://dx.doi.org/10.3390/molecules13040736] [PMID: 18463575]
[13]
Gao, C.; Ye, T-H.; Wang, N-Y.; Zeng, X-X.; Zhang, L-D.; Xiong, Y.; You, X-Y.; Xia, Y.; Xu, Y.; Peng, C-T.; Zuo, W.Q.; Wei, Y.; Yu, L.T. Synthesis and structure-activity relationships evaluation of benzothiazinone derivatives as potential anti-tubercular agents. Bioorg. Med. Chem. Lett., 2013, 23(17), 4919-4922.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.069] [PMID: 23886691]
[14]
Ryan, C.; Nguyen, B.T.; Sullivan, S.J. Rapid assay for mycobacterial growth and antibiotic susceptibility using gel microdrop encapsulation. J. Clin. Microbiol., 1995, 33(7), 1720-1726.
[PMID: 7665635]
[15]
Leonard, B.; Coronel, J.; Siedner, M.; Grandjean, L.; Caviedes, L.; Navarro, P.; Gilman, R.H.; Moore, D.A.J. Inter- and intra-assay reproducibility of microplate Alamar blue assay results for isoniazid, rifampicin, ethambutol, streptomycin, ciprofloxacin, and capreomycin drug susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol., 2008, 46(10), 3526-3529.
[http://dx.doi.org/10.1128/JCM.02083-07] [PMID: 18701659]
[16]
Mohan Krishna, K.; Inturi, B.; Pujar, G.V.; Purohit, M.N.; Vijaykumar, G.S. Design, synthesis and 3D-QSAR studies of new diphenylamine containing 1,2,4-triazoles as potential antitubercular agents. Eur. J. Med. Chem., 2014, 84, 516-529.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.051] [PMID: 25055342]
[17]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[18]
Alley, M.C.; Scudiero, D.A.; Monks, A.; Hursey, M.L.; Czerwinski, M.J.; Fine, D.L.; Abbott, B.J.; Mayo, J.G.; Shoemaker, R.H.; Boyd, M.R. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res., 1988, 48(3), 589-601.
[PMID: 3335022]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy