Role of Dietary Antioxidants in Neurodegenerative Diseases: Where are We Standing?

Author(s): Sena Bakir, Gizem Catalkaya, Fatma D. Ceylan, Haroon Khan*, Burcu Guldiken, Esra Capanoglu, Mohammad A. Kamal

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 7 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

This review presents the potential effects of dietary antioxidants on neurodegenerative diseases. The relationship between autoimmunity and antioxidants, and their preventive effect on neurodegenerative diseases are evaluated. The driven factors of neurodegeneration and the potential effects of natural antioxidants are summarized for Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, spongiform encephalopathy, Huntington’s disease, and amyotrophic lateral sclerosis. The effect of oxidative stress on neurodegenerative diseases and regulative effect of antioxidants on oxidative balance is discussed. This review provides beneficial information for the possible cure of neurodegenerative diseases with dietary intake of antioxidants.

Keywords: Neurodegenerative diseases, dietary components, antioxidants, immune system, encephalopathy, amyotrophic lateral sclerosis.

[1]
Emerit J, Edeas M, Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 2004; 58(1): 39-46.
[http://dx.doi.org/10.1016/j.biopha.2003.11.004] [PMID: 14739060]
[2]
Drachman DB, Frank K, Dykes-Hoberg M, et al. Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann Neurol 2002; 52(6): 771-8.
[http://dx.doi.org/10.1002/ana.10374] [PMID: 12447931]
[3]
Zhao B. Natural antioxidants for neurodegenerative diseases. Mol Neurobiol 2005; 31(1-3): 283-93.
[http://dx.doi.org/10.1385/MN:31:1-3:283] [PMID: 15953828]
[4]
Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol 2001; 54(3): 176-86.
[http://dx.doi.org/10.1136/jcp.54.3.176] [PMID: 11253127]
[5]
Brambilla D, Mancuso C, Scuderi MR, et al. The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: a point of view for an assessment of the risk/benefit profile. Nutr J 2008; 7: 29.
[http://dx.doi.org/10.1186/1475-2891-7-29] [PMID: 18826565]
[6]
Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci 2008; 4(2): 89-96.
[PMID: 23675073]
[7]
Barber SC, Mead RJ, Shaw PJ. Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta 2006; 1762(11-12): 1051-67.
[http://dx.doi.org/10.1016/j.bbadis.2006.03.008] [PMID: 16713195]
[8]
Dong TG, Dong S, Catalano C, Moore R, Liang X, Mekalanos JJ. Generation of reactive oxygen species by lethal attacks from competing microbes. Proc Natl Acad Sci USA 2015; 112(7): 2181-6.
[http://dx.doi.org/10.1073/pnas.1425007112] [PMID: 25646446]
[9]
Fernandez AM, Torres-Alemán I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 2012; 13(4): 225-39.
[http://dx.doi.org/10.1038/nrn3209] [PMID: 22430016]
[10]
Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 2009; 41(1): 40-59.
[http://dx.doi.org/10.1016/j.biocel.2008.06.010] [PMID: 18662800]
[11]
Moretti M, Fraga DB, Rodrigues ALS. Preventive and therapeutic potential of ascorbic acid in neurodegenerative diseases. CNS Neurosci Ther 2017; 23(12): 921-9.
[http://dx.doi.org/10.1111/cns.12767] [PMID: 28980404]
[12]
Smith DG, Cappai R, Barnham KJ. The redox chemistry of the Alzheimer’s disease amyloid β peptide. Biochimica et Biophysica Acta (BBA)-. Biomembranes 2007; 1768: 1976-90.
[http://dx.doi.org/10.1016/j.bbamem.2007.02.002]
[13]
Albarracin SL, Stab B, Casas Z, et al. Effects of natural antioxidants in neurodegenerative disease. Nutr Neurosci 2012; 15(1): 1-9.
[http://dx.doi.org/10.1179/1476830511Y.0000000028] [PMID: 22305647]
[14]
Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11(3): 298-300.
[http://dx.doi.org/10.1093/geronj/11.3.298] [PMID: 13332224]
[15]
Cunnane S, Nugent S, Roy M, et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 2011; 27(1): 3-20.
[http://dx.doi.org/10.1016/j.nut.2010.07.021] [PMID: 21035308]
[16]
Kanthasamy A, Jin H, Charli A, Vellareddy A, Kanthasamy A. Environmental neurotoxicant-induced dopaminergic neurodegeneration: a potential link to impaired neuroinflammatory mechanisms. Pharmacol Ther 2019; 197: 61-82.
[http://dx.doi.org/10.1016/j.pharmthera.2019.01.001] [PMID: 30677475]
[17]
Dexter DT, Jenner P. Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med 2013; 62: 132-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.01.018] [PMID: 23380027]
[18]
Kemppainen S, Lindholm P, Galli E, et al. Cerebral dopamine neurotrophic factor improves long-term memory in APP/PS1 transgenic mice modeling Alzheimer’s disease as well as in wild-type mice. Behav Brain Res 2015; 291: 1-11.
[http://dx.doi.org/10.1016/j.bbr.2015.05.002] [PMID: 25975173]
[19]
Chan JYH, Chan SHH. Activation of endogenous antioxidants as a common therapeutic strategy against cancer, neurodegeneration and cardiovascular diseases: a lesson learnt from DJ-1. Pharmacol Ther 2015; 156: 69-74.
[http://dx.doi.org/10.1016/j.pharmthera.2015.09.005] [PMID: 26432617]
[20]
Mazumder MK, Choudhury S, Borah A. An in silico investigation on the inhibitory potential of the constituents of Pomegranate juice on antioxidant defense mechanism: relevance to neurodegenerative diseases. IBRO Rep 2019; 6: 153-9.
[http://dx.doi.org/10.1016/j.ibror.2019.05.003] [PMID: 31193374]
[21]
Assoc A. Alzheimer’s Association Report 2015 Alzheimer’s disease facts and figures. Alzheimers Dement 2015; 11: 332-84.
[http://dx.doi.org/10.1016/j.jalz.2015.02.003]
[22]
Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol 2011; 7(3): 137-52.
[http://dx.doi.org/10.1038/nrneurol.2011.2] [PMID: 21304480]
[23]
Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N Engl J Med 1997; 336(17): 1216-22.
[http://dx.doi.org/10.1056/NEJM199704243361704] [PMID: 9110909]
[24]
Praticò D. Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy: lights and shadows. Ann N Y Acad Sci 2008; 1147: 70-8.
[http://dx.doi.org/10.1196/annals.1427.010] [PMID: 19076432]
[25]
Sardi F, Fassina L, Venturini L, et al. Alzheimer’s disease, autoimmunity and inflammation. The good, the bad and the ugly. Autoimmun Rev 2011; 11(2): 149-53.
[http://dx.doi.org/10.1016/j.autrev.2011.09.005] [PMID: 21996556]
[26]
Li JT, Zhang Y. TREM2 regulates innate immunity in Alzheimer’s disease. J Neuroinflammation 2018; 15(1): 107.
[http://dx.doi.org/10.1186/s12974-018-1148-y] [PMID: 29655369]
[27]
Yokoyama JS, Wang YP, Schork AJ, et al. Initi AsDN. Association between genetic traits for immune-mediated diseases and Alzheimer Disease. JAMA Neurol 2016; 73: 691-7.
[http://dx.doi.org/10.1001/jamaneurol.2016.0150] [PMID: 27088644]
[28]
Shi Y, Holtzman DM. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 2018; 18(12): 759-72.
[http://dx.doi.org/10.1038/s41577-018-0051-1] [PMID: 30140051]
[29]
Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 2015; 16(6): 358-72.
[http://dx.doi.org/10.1038/nrn3880] [PMID: 25991443]
[30]
Patterson C. World Alzheimer Report 2018 - The state of the art of dementia research: New frontiers Alzheimer’s Disease International. London, UK: ADI 2018.
[31]
Guzior N, Wieckowska A, Panek D, Malawska B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr Med Chem 2015; 22(3): 373-404.
[http://dx.doi.org/10.2174/0929867321666141106122628] [PMID: 25386820]
[32]
Engelhart MJ, Geerlings MI, Ruitenberg A, et al. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 2002; 287(24): 3223-9.
[http://dx.doi.org/10.1001/jama.287.24.3223] [PMID: 12076218]
[33]
Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009; 7(1): 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[34]
Behl C, Moosmann B. Serial review: causes and consequences of oxidative stress in Alzheimer’s disease. Free Radic Biol Med 2002; 33: 182-91.
[http://dx.doi.org/10.1016/S0891-5849(02)00883-3] [PMID: 12106814]
[35]
Williams RJ, Spencer JPE. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 2012; 52(1): 35-45.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.09.010] [PMID: 21982844]
[36]
Onozuka H, Nakajima A, Matsuzaki K, et al. Nobiletin, a citrus flavonoid, improves memory impairment and abeta pathology in a transgenic mouse model of Alzheimer’s disease. J Pharmacol Exp Ther 2008; 326(3): 739-44.
[http://dx.doi.org/10.1124/jpet.108.140293] [PMID: 18544674]
[37]
Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 2015; 93: 134-45.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.027] [PMID: 25666032]
[38]
McNamara RK, Kalt W, Shidler MD, et al. Cognitive response to fish oil, blueberry, and combined supplementation in older adults with subjective cognitive impairment. Neurobiol Aging 2018; 64: 147-56.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.12.003] [PMID: 29458842]
[39]
Basambombo LL, Carmichael P-H, Côté S, Laurin D. Use of vitamin E and C supplements for the prevention of cognitive decline. Ann Pharmacother 2017; 51(2): 118-24.
[http://dx.doi.org/10.1177/1060028016673072] [PMID: 27708183]
[40]
Boccardi V, Arosio B, Cari L, et al. Beta-carotene, telomerase activity and Alzheimer’s disease in old age subjects. Eur J Nutr 2019; 59(1): 119-26.
[http://dx.doi.org/10.1007/s00394-019-01892-y] [PMID: 30649596]
[41]
Martini F, Rosa SG, Klann IP, et al. A multifunctional compound ebselen reverses memory impairment, apoptosis and oxidative stress in a mouse model of sporadic Alzheimer’s disease. J Psychiatr Res 2019; 109: 107-17.
[http://dx.doi.org/10.1016/j.jpsychires.2018.11.021] [PMID: 30521994]
[42]
Lee J, Cho E, Kwon H, et al. The fruit of Crataegus pinnatifida ameliorates memory deficits in β-amyloid protein-induced Alzheimer’s disease mouse model. J Ethnopharmacol 2019; 243 112107
[http://dx.doi.org/10.1016/j.jep.2019.112107] [PMID: 31349027]
[43]
Rubio-Perez JM, Albaladejo MD, Zafrilla P, Vidal-Guevara ML, Morillas-Ruiz JM. Effects of an antioxidant beverage on biomarkers of oxidative stress in Alzheimer’s patients. Eur J Nutr 2016; 55(6): 2105-16.
[http://dx.doi.org/10.1007/s00394-015-1024-9] [PMID: 26298312]
[44]
Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers 2017; 3: 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[45]
Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson’s disease. Front Neuroanat 2015; 9: 91.
[http://dx.doi.org/10.3389/fnana.2015.00091] [PMID: 26217195]
[46]
Sharma N. Biographies of disease Parkinson’s disease 2008 Greenwood, Santa Barbara..
[47]
Lang AE, Lozano AM. Parkinson’s disease. Second of two parts. N Engl J Med 1998; 339(16): 1130-43.
[http://dx.doi.org/10.1056/NEJM199810153391607] [PMID: 9770561]
[48]
Wood-Kaczmar A, Gandhi S, Wood NW. Understanding the molecular causes of Parkinson’s disease. Trends Mol Med 2006; 12(11): 521-8.
[http://dx.doi.org/10.1016/j.molmed.2006.09.007] [PMID: 17027339]
[49]
Monahan AJ, Warren M, Carvey PM. Neuroinflammation and peripheral immune infiltration in Parkinson’s disease: an autoimmune hypothesis. Cell Transplant 2008; 17(4): 363-72.
[http://dx.doi.org/10.3727/096368908784423328] [PMID: 18522239]
[50]
Papachroni KK, Ninkina N, Papapanagiotou A, et al. Autoantibodies to alpha-synuclein in inherited Parkinson’s disease. J Neurochem 2007; 101(3): 749-56.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04365.x] [PMID: 17448146]
[51]
Hirsch EC, Vyas S, Hunot S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 2012; 18(Suppl. 1): S210-2.
[http://dx.doi.org/10.1016/S1353-8020(11)70065-7] [PMID: 22166438]
[52]
Theodore S, Cao S, McLean PJ, Standaert DG. Targeted overexpression of human α-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J Neuropathol Exp Neurol 2008; 67(12): 1149-58.
[http://dx.doi.org/10.1097/NEN.0b013e31818e5e99] [PMID: 19018246]
[53]
De Virgilio A, Greco A, Fabbrini G, et al. Parkinson’s disease: autoimmunity and neuroinflammation. Autoimmun Rev 2016; 15: 1005-11.
[http://dx.doi.org/10.1016/j.autrev.2016.09.027] [PMID: 27725149]
[54]
Savitt JM, Dawson VL, Dawson TM. Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest 2006; 116(7): 1744-54.
[http://dx.doi.org/10.1172/JCI29178] [PMID: 16823471]
[55]
Olanow CW, Stern MB, Sethi K. The scientific and clinical basis for the treatment of Parkinson disease. Neurology 2009; 72(21)(Suppl. 4): S1-S136.
[http://dx.doi.org/10.1212/WNL.0b013e3181a1d44c] [PMID: 19470958]
[56]
Yang F, Wolk A, Håkansson N, Pedersen NL, Wirdefeldt K. Dietary antioxidants and risk of Parkinson’s disease in two population-based cohorts. Mov Disord 2017; 32(11): 1631-6.
[http://dx.doi.org/10.1002/mds.27120] [PMID: 28881039]
[57]
Carroll LM, Volpe D, Morris ME, Saunders J, Clifford AM. Aquatic exercise therapy for people with Parkinson Disease: a randomized controlled trial. Arch Phys Med Rehabil 2017; 98(4): 631-8.
[http://dx.doi.org/10.1016/j.apmr.2016.12.006] [PMID: 28088380]
[58]
Videnovic A, Klerman EB, Wang W, Marconi A, Kuhta T, Zee PC. Timed light therapy for sleep and daytime sleepiness associated with Parkinson Disease: a randomized clinical trial. JAMA Neurol 2017; 74(4): 411-8.
[http://dx.doi.org/10.1001/jamaneurol.2016.5192] [PMID: 28241159]
[59]
Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 2015; 207: 18-30.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033] [PMID: 25836593]
[60]
Ji C, Xue G-F, Lijun C, et al. A novel dual GLP-1 and GIP receptor agonist is neuroprotective in the MPTP mouse model of Parkinson’s disease by increasing expression of BNDF. Brain Res 2016; 1634: 1-11.
[http://dx.doi.org/10.1016/j.brainres.2015.09.035] [PMID: 26453833]
[61]
Pinto M, Nissanka N, Peralta S, Brambilla R, Diaz F, Moraes CT. Pioglitazone ameliorates the phenotype of a novel Parkinson’s disease mouse model by reducing neuroinflammation. Mol Neurodegener 2016; 11: 25.
[http://dx.doi.org/10.1186/s13024-016-0090-7] [PMID: 27038906]
[62]
Hawkins T, Berman BD. Pimavanserin: a novel therapeutic option for Parkinson disease psychosis. Neurol Clin Pract 2017; 7(4): 282.
[http://dx.doi.org/10.1212/CPJ.0000000000000342]
[63]
Sarrafchi A, Bahmani M, Shirzad H, Rafieian-Kopaei M. Oxidative stress and Parkinson’s disease: new hopes in treatment with herbal antioxidants. Curr Pharm Des 2016; 22(2): 238-46.
[http://dx.doi.org/10.2174/1381612822666151112151653] [PMID: 26561062]
[64]
Reglodi D, Renaud J, Tamas A, et al. Novel tactics for neuroprotection in Parkinson’s disease: role of antibiotics, polyphenols and neuropeptides. Prog Neurobiol 2017; 155: 120-48.
[http://dx.doi.org/10.1016/j.pneurobio.2015.10.004] [PMID: 26542398]
[65]
Vegh C, Pupulin S, Okaj I, et al. Water-soluble coenzyme q10 and ashwagandha root extract as a combinatorial therapy for Parkinson's Disease. Planta Medica International Open 2018; 5(S 01): S6.
[http://dx.doi.org/10.1055/s-0038-1644922]
[66]
Wu Z, Wu A, Dong J, Sigears A, Lu B. Grape skin extract improves muscle function and extends lifespan of a Drosophila model of Parkinson’s disease through activation of mitophagy. Exp Gerontol 2018; 113: 10-7.
[http://dx.doi.org/10.1016/j.exger.2018.09.014] [PMID: 30248358]
[67]
Hartmann A, Müllner J, Meier N, et al. Bee venom for the treatment of Parkinson disease-a randomized controlled clinical trial. PLoS One 2016; 11(7) e0158235
[http://dx.doi.org/10.1371/journal.pone.0158235] [PMID: 27403743]
[68]
Bielekova B, Martin R. Development of biomarkers in multiple sclerosis. Brain 2004; 127(Pt 7): 1463-78.
[http://dx.doi.org/10.1093/brain/awh176] [PMID: 15180926]
[69]
Ahmad SI. Neurodegenerative diseases. Springer Science & Business Media 2012; 724.
[http://dx.doi.org/10.1007/978-1-4614-0653-2]
[70]
Frischer JM, Bramow S, Dal-Bianco A, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 2009; 132(Pt 5): 1175-89.
[http://dx.doi.org/10.1093/brain/awp070] [PMID: 19339255]
[71]
Ansari MA, Roberts KN, Scheff SW. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic Biol Med 2008; 45(4): 443-52.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.04.038] [PMID: 18501200]
[72]
Negre-Salvayre A, Coatrieux C, Ingueneau C, Salvayre R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol 2008; 153(1): 6-20.
[http://dx.doi.org/10.1038/sj.bjp.0707395] [PMID: 17643134]
[73]
Ferretti G, Bacchetti T. Peroxidation of lipoproteins in multiple sclerosis. J Neurol Sci 2011; 311(1-2): 92-7.
[http://dx.doi.org/10.1016/j.jns.2011.09.004] [PMID: 21967834]
[74]
Arlt S, Finckh B, Beisiegel U, Kontush A. Time-course of oxidation of lipids in human cerebrospinal fluid in vitro. Free Radic Res 2000; 32(2): 103-14.
[http://dx.doi.org/10.1080/10715760000300111] [PMID: 10653481]
[75]
Aviram M. Interaction of oxidized low density lipoprotein with macrophages in atherosclerosis, and the antiatherogenicity of antioxidants. Eur J Clin Chem Clin Biochem 1996; 34(8): 599-608.
[PMID: 8877334]
[76]
Thorburne SK, Juurlink BH. Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem 1996; 67(3): 1014-22.
[http://dx.doi.org/10.1046/j.1471-4159.1996.67031014.x] [PMID: 8752107]
[77]
Ferretti G, Bacchetti T, Principi F, et al. Increased levels of lipid hydroperoxides in plasma of patients with multiple sclerosis: a relationship with paraoxonase activity. Mult Scler 2005; 11(6): 677-82.
[http://dx.doi.org/10.1191/1352458505ms1240oa] [PMID: 16320727]
[78]
Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 2004; 251(3): 261-8.
[http://dx.doi.org/10.1007/s00415-004-0348-9] [PMID: 15015004]
[79]
Jensen GE, Gissel-Nielsen G, Clausen J. Leucocyte glutathione peroxidase activity and selenium level in multiple sclerosis. J Neurol Sci 1980; 48(1): 61-7.
[http://dx.doi.org/10.1016/0022-510X(80)90150-1] [PMID: 7420126]
[80]
Besler HT, Comoğlu S, Okçu Z. Serum levels of antioxidant vitamins and lipid peroxidation in multiple sclerosis. Nutr Neurosci 2002; 5(3): 215-20.
[http://dx.doi.org/10.1080/10284150290029205] [PMID: 12041878]
[81]
Karg E, Klivényi P, Németh I, Bencsik K, Pintér S, Vécsei L. Nonenzymatic antioxidants of blood in multiple sclerosis. J Neurol 1999; 246(7): 533-9.
[http://dx.doi.org/10.1007/s004150050399] [PMID: 10463352]
[82]
Calabrese V, Raffaele R, Cosentino E, Rizza V. Changes in cerebrospinal fluid levels of malondialdehyde and glutathione reductase activity in multiple sclerosis. Int J Clin Pharmacol Res 1994; 14(4): 119-23.
[PMID: 7607784]
[83]
Sayre LM, Perry G, Smith MA. Oxidative stress and neurotoxicity. Chem Res Toxicol 2008; 21(1): 172-88.
[http://dx.doi.org/10.1021/tx700210j] [PMID: 18052107]
[84]
Oliveira SR, Kallaur AP, Simão ANC, et al. Oxidative stress in multiple sclerosis patients in clinical remission: association with the expanded disability status scale. J Neurol Sci 2012; 321(1-2): 49-53.
[http://dx.doi.org/10.1016/j.jns.2012.07.045] [PMID: 22883481]
[85]
Choi I-Y, Lee SP, Denney DR, Lynch SG. Lower levels of glutathione in the brains of secondary progressive multiple sclerosis patients measured by 1H magnetic resonance chemical shift imaging at 3 T. Mult Scler 2011; 17(3): 289-96.
[http://dx.doi.org/10.1177/1352458510384010] [PMID: 20921235]
[86]
Jofre-Monseny L, Minihane AM, Rimbach G. Impact of apoE genotype on oxidative stress, inflammation and disease risk. Mol Nutr Food Res 2008; 52(1): 131-45.
[http://dx.doi.org/10.1002/mnfr.200700322] [PMID: 18203129]
[87]
Zhang B, Pu S, Li B, Ying J, Song XW, Gao C. Comparison of serum apolipoprotein A-I between Chinese multiple sclerosis and other related autoimmune disease. Lipids Health Dis 2010; 9: 34.
[http://dx.doi.org/10.1186/1476-511X-9-34] [PMID: 20350318]
[88]
van Meeteren ME, Teunissen CE, Dijkstra CD, van Tol EA. Antioxidants and polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nutr 2005; 59(12): 1347-61.
[http://dx.doi.org/10.1038/sj.ejcn.1602255] [PMID: 16118655]
[89]
Arosio P, Levi S. Ferritin, iron homeostasis, and oxidative damage. Free Radic Biol Med 2002; 33(4): 457-63.
[http://dx.doi.org/10.1016/S0891-5849(02)00842-0] [PMID: 12160928]
[90]
Zandman-Goddard G, Shoenfeld Y. Ferritin in autoimmune diseases. Autoimmun Rev 2007; 6(7): 457-63.
[http://dx.doi.org/10.1016/j.autrev.2007.01.016] [PMID: 17643933]
[91]
Oliveira SR, Kallaur AP, Reiche EMV, et al. Albumin and protein oxidation are predictors that differentiate relapsing-remitting from progressive clinical forms of multiple sclerosis. Mol Neurobiol 2017; 54(4): 2961-8.
[http://dx.doi.org/10.1007/s12035-016-9860-z] [PMID: 27026183]
[92]
Haider L, Simeonidou C, Steinberger G, et al. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. J Neurol Neurosurg Psychiatry 2014; 85(12): 1386-95.
[http://dx.doi.org/10.1136/jnnp-2014-307712] [PMID: 24899728]
[93]
Witherick J, Wilkins A, Scolding N, Kemp K. Mechanisms of oxidative damage in multiple sclerosis and a cell therapy approach to treatment 2011; 2011 164608
[http://dx.doi.org/10.4061/2011/164608]
[94]
Bizzozero OA, DeJesus G, Callahan K, Pastuszyn A. Elevated protein carbonylation in the brain white matter and gray matter of patients with multiple sclerosis. J Neurosci Res 2005; 81(5): 687-95.
[http://dx.doi.org/10.1002/jnr.20587] [PMID: 16007681]
[95]
Zheng J, Bizzozero OA. Accumulation of protein carbonyls within cerebellar astrocytes in murine experimental autoimmune encephalomyelitis. J Neurosci Res 2010; 88(15): 3376-85.
[http://dx.doi.org/10.1002/jnr.22488] [PMID: 20857508]
[96]
Miller E, Mrowicka M, Saluk-Juszczak J, Ireneusz M. The level of isoprostanes as a non-invasive marker for in vivo lipid peroxidation in secondary progressive multiple sclerosis. Neurochem Res 2011; 36(6): 1012-6.
[http://dx.doi.org/10.1007/s11064-011-0442-1] [PMID: 21399906]
[97]
Miller E, Walczak A, Saluk J, Ponczek MB, Majsterek I. Oxidative modification of patient’s plasma proteins and its role in pathogenesis of multiple sclerosis. Clin Biochem 2012; 45(1-2): 26-30.
[http://dx.doi.org/10.1016/j.clinbiochem.2011.09.021] [PMID: 22019955]
[98]
Delgado-Roche L, Riera-Romo M, Mesta F, et al. Medical ozone promotes Nrf2 phosphorylation reducing oxidative stress and pro-inflammatory cytokines in multiple sclerosis patients. Eur J Pharmacol 2017; 811: 148-54.
[http://dx.doi.org/10.1016/j.ejphar.2017.06.017] [PMID: 28623000]
[99]
Emamgholipour S, Hossein-Nezhad A, Sahraian MA, Askarisadr F, Ansari M. Evidence for possible role of melatonin in reducing oxidative stress in multiple sclerosis through its effect on SIRT1 and antioxidant enzymes. Life Sci 2016; 145: 34-41.
[http://dx.doi.org/10.1016/j.lfs.2015.12.014] [PMID: 26679105]
[100]
Miller E, Walczak A, Majsterek I, Kędziora J. Melatonin reduces oxidative stress in the erythrocytes of multiple sclerosis patients with secondary progressive clinical course. J Neuroimmunol 2013; 257(1-2): 97-101.
[http://dx.doi.org/10.1016/j.jneuroim.2013.02.012] [PMID: 23517928]
[101]
Mao P, Manczak M, Shirendeb UP, Reddy PH. MitoQ, a mitochondria-targeted antioxidant, delays disease progression and alleviates pathogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Biochim Biophys Acta 2013; 1832(12): 2322-31.
[http://dx.doi.org/10.1016/j.bbadis.2013.09.005] [PMID: 24055980]
[102]
Peng F, Deng X, Yu Y, et al. Serum bilirubin concentrations and multiple sclerosis. J Clin Neurosci 2011; 18(10): 1355-9.
[http://dx.doi.org/10.1016/j.jocn.2011.02.023] [PMID: 21782448]
[103]
Afraei S, D’Aniello A, Sedaghat R, et al. Therapeutic effects of D-aspartate in a mouse model of multiple sclerosis. J food drug anal 2017; 25: 699-708.
[104]
Adamczyk-Sowa M, Sowa P, Pierzchala K, Polaniak R, Labuz-Roszak B. Antioxidative enzymes activity and malondialdehyde concentration during mitoxantrone therapy in multiple sclerosis patients. J Physiol Pharmacol 2012; 63(6): 683-90.
[PMID: 23388485]
[105]
Socha K, Kochanowicz J, Karpińska E, et al. Dietary habits and selenium, glutathione peroxidase and total antioxidant status in the serum of patients with relapsing-remitting multiple sclerosis. Nutr J 2014; 13: 62.
[http://dx.doi.org/10.1186/1475-2891-13-62] [PMID: 24943732]
[106]
Jackson MJ, Papa S, Bolaños J, et al. Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function. Mol Aspects Med 2002; 23(1-3): 209-85.
[http://dx.doi.org/10.1016/S0098-2997(02)00018-3] [PMID: 12079772]
[107]
Ghaiad HR, Nooh MM, El-Sawalhi MM, Shaheen AA. Resveratrol promotes remyelination in cuprizone model of multiple sclerosis: biochemical and histological study. Mol Neurobiol 2017; 54(5): 3219-29.
[http://dx.doi.org/10.1007/s12035-016-9891-5] [PMID: 27067589]
[108]
Binyamin O, Larush L, Frid K, et al. Treatment of a multiple sclerosis animal model by a novel nanodrop formulation of a natural antioxidant. Int J Nanomedicine 2015; 10: 7165-74.
[PMID: 26648720]
[109]
Khalili M, Soltani M, Moghadam SA, Dehghan P, Azimi A, Abbaszadeh O. Effect of alpha-lipoic acid on asymmetric dimethylarginine and disability in multiple sclerosis patients: a randomized clinical trial. Electron Physician 2017; 9(7): 4899-905.
[http://dx.doi.org/10.19082/4899] [PMID: 28894553]
[110]
Collinge J. Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 2001; 24: 519-50.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.519] [PMID: 11283320]
[111]
Bastian FO, Sanders DE, Forbes WA, et al. Spiroplasma spp. from transmissible spongiform encephalopathy brains or ticks induce spongiform encephalopathy in ruminants. J Med Microbiol 2007; 56(Pt 9): 1235-42.
[http://dx.doi.org/10.1099/jmm.0.47159-0] [PMID: 17761489]
[112]
Aguzzi A, Calella AM. Prions: protein aggregation and infectious diseases. Physiol Rev 2009; 89(4): 1105-52.
[http://dx.doi.org/10.1152/physrev.00006.2009] [PMID: 19789378]
[113]
Muñoz-Najar U, Sedivy JM. Epigenetic control of aging. Antioxid Redox Signal 2011; 14(2): 241-59.
[http://dx.doi.org/10.1089/ars.2010.3250] [PMID: 20518699]
[114]
Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. Biochim Biophys Acta 1998; 1366(1-2): 211-23.
[http://dx.doi.org/10.1016/S0005-2728(98)00114-5] [PMID: 9714810]
[115]
Douglas RM, Ryu J, Kanaan A, et al. Neuronal death during combined intermittent hypoxia/hypercapnia is due to mitochondrial dysfunction. Am J Physiol Cell Physiol 2010; 298(6): C1594-602.
[http://dx.doi.org/10.1152/ajpcell.00298.2009] [PMID: 20357179]
[116]
Mustafa AG, Singh IN, Wang J, Carrico KM, Hall ED. Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals. J Neurochem 2010; 114(1): 271-80.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06749.x] [PMID: 20403083]
[117]
Wong LJC. Mitochondrial syndromes with leukoencephalopathies. Semin Neurol 2012; 32(1): 55-61.
[http://dx.doi.org/10.1055/s-0032-1306387] [PMID: 22422207]
[118]
Rahman S, Blok RB, Dahl HHM, et al. Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol 1996; 39(3): 343-51.
[http://dx.doi.org/10.1002/ana.410390311] [PMID: 8602753]
[119]
Drisko JA. The use of antioxidants in transmissible spongiform encephalopathies: a case report. J Am Coll Nutr 2002; 21(1): 22-5.
[http://dx.doi.org/10.1080/07315724.2002.10719189] [PMID: 11838883]
[120]
Melov S, Schneider JA, Day BJ, et al. A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nat Genet 1998; 18(2): 159-63.
[http://dx.doi.org/10.1038/ng0298-159] [PMID: 9462746]
[121]
Melov S, Coskun PE, Wallace DC. Mouse models of mitochondrial disease, oxidative stress, and senescence. Mutat Res 1999; 434(3): 233-42.
[http://dx.doi.org/10.1016/S0921-8777(99)00031-2] [PMID: 10486594]
[122]
Melov S, Doctrow SR, Schneider JA, et al. Lifespan extension and rescue of spongiform encephalopathy in superoxide dismutase 2 nullizygous mice treated with superoxide dismutase-catalase mimetics. J Neurosci 2001; 21(21): 8348-53.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08348.2001] [PMID: 11606622]
[123]
Gerards M, Kamps R, van Oevelen J, et al. Exome sequencing reveals a novel Moroccan founder mutation in SLC19A3 as a new cause of early-childhood fatal Leigh syndrome. Brain 2013; 136(Pt 3): 882-90.
[http://dx.doi.org/10.1093/brain/awt013] [PMID: 23423671]
[124]
Wallace DC, Fan W, Procaccio V. Mitochondrial energetics and therapeutics. Annu Rev Pathol 2010; 5: 297-348.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092314] [PMID: ]20078222]
[125]
Pastore A, Petrillo S, Tozzi G, et al. Glutathione: a redox signature in monitoring EPI-743 therapy in children with mitochondrial encephalomyopathies. Mol Genet Metab 2013; 109(2): 208-14.
[http://dx.doi.org/10.1016/j.ymgme.2013.03.011] [PMID: 23583222]
[126]
Izuo N, Nojiri H, Uchiyama S, et al. Brain-specific superoxide dismutase 2 deficiency causes perinatal death with spongiform encephalopathy in mice. Oxid Med Cell Longev 2015; 2015 238914
[http://dx.doi.org/10.1155/2015/238914] [PMID: 26301039]
[127]
Enns GM. Treatment of mitochondrial disorders: antioxidants and beyond. J Child Neurol 2014; 29(9): 1235-40.
[http://dx.doi.org/10.1177/0883073814538509] [PMID: 24985754]
[128]
Zhao WH, Chi CF, Zhao YQ, Wang B. Preparation, physicochemical and antioxidant properties of acid- and pepsin-soluble collagens from the swim bladders of miiuy croaker (Miichthys miiuy). Mar Drugs 2018; 16(5): 16.
[http://dx.doi.org/10.3390/md16050161] [PMID: 29757239]
[129]
Pirompanich P, Chankrachang S. Intravenous heroin-associated delayed spongiform leukoencephalopathy: case report and reviews of the literature. J Med Assoc Thai 2015; 98(7): 703-8.
[PMID: 26267994]
[130]
Kriegstein AR, Shungu DC, Millar WS, et al. Leukoencephalopathy and raised brain lactate from heroin vapor inhalation (“chasing the dragon”). Neurology 1999; 53(8): 1765-73.
[http://dx.doi.org/10.1212/WNL.53.8.1765] [PMID: 10563626]
[131]
Gacouin A, Lavoue S, Signouret T, et al. Reversible spongiform leucoencephalopathy after inhalation of heated heroin. Intensive Care Med 2003; 29(6): 1012-5.
[http://dx.doi.org/10.1007/s00134-003-1691-5] [PMID: 12637976]
[132]
Al-Chalabi A, Hardiman O, Kiernan MC, Chiò A, Rix-Brooks B, van den Berg LH. Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurol 2016; 15(11): 1182-94.
[http://dx.doi.org/10.1016/S1474-4422(16)30199-5] [PMID: 27647646]
[133]
Ingre C, Roos PM, Piehl F, Kamel F, Fang F. Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol 2015; 7: 181-93.
[PMID: 25709501]
[134]
Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med 2017; 377(2): 162-72.
[http://dx.doi.org/10.1056/NEJMra1603471] [PMID: 28700839]
[135]
Hardiman O, Al-Chalabi A, Chio A, et al. Amyotrophic lateral sclerosis. Nat Rev Dis Primers 2017; 3: 17071.
[http://dx.doi.org/10.1038/nrdp.2017.71] [PMID: 28980624]
[136]
van Es MA, Hardiman O, Chio A, et al. Amyotrophic lateral sclerosis. Lancet 2017; 390(10107): 2084-98.
[http://dx.doi.org/10.1016/S0140-6736(17)31287-4] [PMID: 28552366]
[137]
Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med 2001; 344(22): 1688-700.
[http://dx.doi.org/10.1056/NEJM200105313442207] [PMID: 11386269]
[138]
Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010; 2(12): 1231-46.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[139]
Zhang X, Hong YL, Xu DS, et al. A review of experimental research on herbal compounds in amyotrophic lateral sclerosis. Phytother Res 2014; 28(1): 9-21.
[http://dx.doi.org/10.1002/ptr.4960] [PMID: 23519768]
[140]
Esposito E, Rossi C, Amodio R, et al. Lyophilized red wine administration prolongs survival in an animal model of amyotrophic lateral sclerosis. Ann Neurol 2000; 48(4): 686-7.
[http://dx.doi.org/10.1002/1531-8249(200010)48:4<686:AID-ANA21>3.0.CO;2-H] [PMID: 11026458]
[141]
Wang J, Zhang Y, Tang L, Zhang N, Fan D. Protective effects of resveratrol through the up-regulation of SIRT1 expression in the mutant hSOD1-G93A-bearing motor neuron-like cell culture model of amyotrophic lateral sclerosis. Neurosci Lett 2011; 503(3): 250-5.
[http://dx.doi.org/10.1016/j.neulet.2011.08.047] [PMID: 21896316]
[142]
Song L, Chen L, Zhang X, Li J, Le W. Resveratrol ameliorates motor neuron degeneration and improves survival in SOD1G93A mouse model of amyotrophic lateral sclerosis. BioMed Res Int 2014; 2014 483501
[143]
Mancuso R, del Valle J, Modol L, et al. Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics 2014; 11(2): 419-32.
[PMID: 24414863]
[144]
Markert CD, Kim E, Gifondorwa DJ, Childers MK, Milligan CE. A single-dose resveratrol treatment in a mouse model of amyotrophic lateral sclerosis. J Med Food 2010; 13(5): 1081-5.
[http://dx.doi.org/10.1089/jmf.2009.0243] [PMID: 20626250]
[145]
Eng QY, Thanikachalam PV, Ramamurthy S. Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J Ethnopharmacol 2018; 210: 296-310.
[http://dx.doi.org/10.1016/j.jep.2017.08.035] [PMID: 28864169]
[146]
Legeay S, Rodier M, Fillon L, Faure S, Clere N. Epigallocatechin gallate: a review of its beneficial properties to prevent metabolic syndrome. Nutrients 2015; 7(7): 5443-68.
[http://dx.doi.org/10.3390/nu7075230] [PMID: 26198245]
[147]
Koh S-H, Lee SM, Kim HY, et al. The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci Lett 2006; 395(2): 103-7.
[http://dx.doi.org/10.1016/j.neulet.2005.10.056] [PMID: 16356650]
[148]
Xu Z, Chen S, Li X, Luo G, Li L, Le W. Neuroprotective effects of (-)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem Res 2006; 31(10): 1263-9.
[http://dx.doi.org/10.1007/s11064-006-9166-z] [PMID: 17021948]
[149]
Aaron C, Beaudry G, Parker JA, Therrien M. Maple syrup decreases TDP-43 proteotoxicity in a Caenorhabditis elegans model of amyotrophic lateral sclerosis (ALS). J Agric Food Chem 2016; 64(17): 3338-44.
[http://dx.doi.org/10.1021/acs.jafc.5b05432] [PMID: 27071850]
[150]
Sahu PK, Sahu PK, Sahu PL, Agarwal DD. Structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives. Bioorg Med Chem Lett 2016; 26(4): 1342-7.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.013] [PMID: 26810315]
[151]
Dong H, Xu L, Wu L, et al. Curcumin abolishes mutant TDP-43 induced excitability in a motoneuron-like cellular model of ALS. Neuroscience 2014; 272: 141-53.
[http://dx.doi.org/10.1016/j.neuroscience.2014.04.032] [PMID: 24785678]
[152]
Lu J, Duan W, Guo Y, et al. Mitochondrial dysfunction in human TDP-43 transfected NSC34 cell lines and the protective effect of dimethoxy curcumin. Brain Res Bull 2012; 89(5-6): 185-90.
[http://dx.doi.org/10.1016/j.brainresbull.2012.09.005] [PMID: 22986236]
[153]
Christen Y. Use of Ginkgo biloba extracts for preparing a medicine for treating amyotrophic lateral sclerosis US patent US6524629B1. 2003.
[154]
Ferrante RJ, Klein AM, Dedeoglu A, Beal MF. Therapeutic efficacy of EGb761 (Gingko biloba extract) in a transgenic mouse model of amyotrophic lateral sclerosis. J Mol Neurosci 2001; 17(1): 89-96.
[http://dx.doi.org/10.1385/JMN:17:1:89] [PMID: 11665866]
[155]
Ryan MJ, Dudash HJ, Docherty M, et al. Vitamin E and C supplementation reduces oxidative stress, improves antioxidant enzymes and positive muscle work in chronically loaded muscles of aged rats. Exp Gerontol 2010; 45(11): 882-95.
[http://dx.doi.org/10.1016/j.exger.2010.08.002] [PMID: 20705127]
[156]
Ascherio A, Weisskopf MG, O’reilly EJ, et al. Vitamin E intake and risk of amyotrophic lateral sclerosis. Ann Neurol 2005; 57(1): 104-10.
[http://dx.doi.org/10.1002/ana.20316] [PMID: 15529299]
[157]
Veldink JH, Kalmijn S, Groeneveld GJ, et al. Intake of polyunsaturated fatty acids and vitamin E reduces the risk of developing amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2007; 78(4): 367-71.
[http://dx.doi.org/10.1136/jnnp.2005.083378] [PMID: 16648143]
[158]
Walker FO. Huntington’s disease. Lancet 2007; 369(9557): 218-28.
[http://dx.doi.org/10.1016/S0140-6736(07)60111-1] [PMID: 17240289]
[159]
Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 2011; 10(1): 83-98.
[http://dx.doi.org/10.1016/S1474-4422(10)70245-3] [PMID: 21163446]
[160]
Wild EJ, Tabrizi SJ. Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol 2017; 16(10): 837-47.
[http://dx.doi.org/10.1016/S1474-4422(17)30280-6] [PMID: 28920889]
[161]
Wang J, Pfleger CM, Friedman L, et al. Potential application of grape derived polyphenols in Huntington’s disease. Transl Neurosci 2010; 1(2): 95-100.
[http://dx.doi.org/10.2478/v10134-010-0022-y] [PMID: 21331299]
[162]
Parker JA, Arango M, Abderrahmane S, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 2005; 37(4): 349-50.
[http://dx.doi.org/10.1038/ng1534] [PMID: 15793589]
[163]
Maher P, Dargusch R, Bodai L, Gerard PE, Purcell JM, Marsh JL. ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington’s disease. Hum Mol Genet 2011; 20(2): 261-70.
[http://dx.doi.org/10.1093/hmg/ddq460] [PMID: 20952447]
[164]
Hickey MA, Zhu C, Medvedeva V, et al. Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington’s disease. Mol Neurodegener 2012; 7: 12.
[http://dx.doi.org/10.1186/1750-1326-7-12] [PMID: 22475209]
[165]
Ehrnhoefer DE, Duennwald M, Markovic P, et al. Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum Mol Genet 2006; 15(18): 2743-51.
[http://dx.doi.org/10.1093/hmg/ddl210] [PMID: 16893904]
[166]
Casamenti F, Stefani M. Olive polyphenols: new promising agents to combat aging-associated neurodegeneration. Expert Rev Neurother 2017; 17(4): 345-58.
[http://dx.doi.org/10.1080/14737175.2017.1245617] [PMID: 27762153]
[167]
Tasset I, Pontes AJ, Hinojosa AJ, de la Torre R, Túnez I. Olive oil reduces oxidative damage in a 3-nitropropionic acid-induced Huntington’s disease-like rat model. Nutr Neurosci 2011; 14(3): 106-11.
[http://dx.doi.org/10.1179/1476830511Y.0000000005] [PMID: 21756531]
[168]
Tomas M, Sagdic O, Catalkaya G, Kahveci D, Capanoglu E. Effect of dietary fibre addition in tomato sauce on the in vitro bioaccessibility of carotenoids. Qual Assur Saf Crops Foods 2018; 10: 277-83.
[http://dx.doi.org/10.3920/QAS2018.1264]
[169]
Sandhir R, Mehrotra A, Kamboj SS. Lycopene prevents 3-nitropropionic acid-induced mitochondrial oxidative stress and dysfunctions in nervous system. Neurochem Int 2010; 57(5): 579-87.
[http://dx.doi.org/10.1016/j.neuint.2010.07.005] [PMID: 20643176]
[170]
Jain D, Gangshettiwar A. Combination of lycopene, quercetin and poloxamer 188 alleviates anxiety and depression in 3-nitropropionic acid-induced Huntington’s disease in rats. J Intercult Ethnopharmacol 2014; 3(4): 186-91.
[http://dx.doi.org/10.5455/jice.20140903012921] [PMID: 26401371]
[171]
Sandhir R, Mehrotra A. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: implications in Huntington’s disease. Biochim Biophys Acta 2013; 1832(3): 421-30.
[http://dx.doi.org/10.1016/j.bbadis.2012.11.018] [PMID: 23220257]
[172]
Sagredo O, Pazos MR, Valdeolivas S, Fernández-Ruiz J. Cannabinoids: novel medicines for the treatment of Huntington’s disease. Recent Patents CNS Drug Discov 2012; 7(1): 41-8.
[http://dx.doi.org/10.2174/157488912798842278] [PMID: 22280340]
[173]
Van Laere K, Casteels C, Dhollander I, et al. Widespread decrease of type 1 cannabinoid receptor availability in Huntington disease in vivo. J Nucl Med 2010; 51(9): 1413-7.
[http://dx.doi.org/10.2967/jnumed.110.077156] [PMID: 20720046]
[174]
Rebec GV, Barton SJ, Ennis MD. Dysregulation of ascorbate release in the striatum of behaving mice expressing the Huntington’s disease gene. J Neurosci 2002; 22(2): RC202.
[http://dx.doi.org/10.1523/JNEUROSCI.22-02-j0006.2002] [PMID: 11784814]
[175]
Rebec GV, Conroy SK, Barton SJ. Hyperactive striatal neurons in symptomatic Huntington R6/2 mice: variations with behavioral state and repeated ascorbate treatment. Neuroscience 2006; 137(1): 327-36.
[http://dx.doi.org/10.1016/j.neuroscience.2005.08.062] [PMID: 16257492]
[176]
Meireles M, Marques C, Norberto S, et al. The impact of chronic blackberry intake on the neuroinflammatory status of rats fed a standard or high-fat diet. J Nutr Biochem 2015; 26(11): 1166-73.
[http://dx.doi.org/10.1016/j.jnutbio.2015.05.008] [PMID: 26315997]
[177]
Fragua V, Lepoudère A, Leray V, et al. Effects of dietary supplementation with a mixed blueberry and grape extract on working memory in aged beagle dogs. J Nutr Sci 2017; 6 e35
[http://dx.doi.org/10.1017/jns.2017.33] [PMID: 29152239]
[178]
Sil S, Ghosh T, Gupta P, Ghosh R, Kabir SN, Roy A. Dual role of vitamin C on the neuroinflammation mediated neurodegeneration and memory impairments in colchicine induced rat model of Alzheimer disease. J Mol Neurosci 2016; 60(4): 421-35.
[http://dx.doi.org/10.1007/s12031-016-0817-5] [PMID: 27665568]
[179]
Abdulmalek S, Suliman M, Omer O. Possible neuroprotective role of pomegranate juice in aluminum chloride induced alzheimer’s like disease in mice. J Alzheimers Dis Parkinsonism 2015; 5: 2161-0460.
[180]
Liu C-B, Wang R, Yi Y-F, Gao Z, Chen Y-Z. Lycopene mitigates β-amyloid induced inflammatory response and inhibits NF-κB signaling at the choroid plexus in early stages of Alzheimer’s disease rats. J Nutr Biochem 2018; 53: 66-71.
[http://dx.doi.org/10.1016/j.jnutbio.2017.10.014] [PMID: 29195132]
[181]
Cimini A, Gentile R, D’Angelo B, et al. Cocoa powder triggers neuroprotective and preventive effects in a human Alzheimer’s disease model by modulating BDNF signaling pathway. J Cell Biochem 2013; 114(10): 2209-20.
[http://dx.doi.org/10.1002/jcb.24548] [PMID: 23554028]
[182]
Hsieh H-M, Wu W-M, Hu M-L. Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer’s disease in C57BL/6J mice treated with D-galactose. Food Chem Toxicol 2009; 47(3): 625-32.
[http://dx.doi.org/10.1016/j.fct.2008.12.026] [PMID: 19146912]
[183]
Liu X, Hao W, Qin Y, et al. Long-term treatment with Ginkgo biloba extract EGb 761 improves symptoms and pathology in a transgenic mouse model of Alzheimer’s disease. Brain Behav Immun 2015; 46: 121-31.
[http://dx.doi.org/10.1016/j.bbi.2015.01.011] [PMID: 25637484]
[184]
Liu H, Chen S, Guo C, Tang W, Liu W, Liu Y. Astragalus polysaccharide protects neurons and stabilizes mitochondrial in a mouse model of Parkinson disease. Med Sci Monit 2018; 24: 5192-9.
[http://dx.doi.org/10.12659/MSM.908021] [PMID: 30048421]
[185]
Kim D, Kwon S, Jeon H, Ryu S, Ha KT, Kim S. Proteomic change by Korean Red Ginseng in the Substantia nigra of a Parkinson’s disease mouse model. J Ginseng Res 2018; 42(4): 429-35.
[http://dx.doi.org/10.1016/j.jgr.2017.04.008] [PMID: 30337802]
[186]
Bitu Pinto N, da Silva Alexandre B, Neves KRT, Silva AH, Leal LKA, Viana GS. Neuroprotective properties of the standardized extract from Camellia sinensis (green tea) and its main bioactive components, epicatechin and epigallocatechin gallate, in the 6-OHDA model of Parkinson’s disease. Evid Based Complement Alternat Med 2015; 2015 161092
[187]
van der Merwe C, van Dyk HC, Engelbrecht L, et al. Curcumin rescues a PINK1 knock down SH-SY5Y cellular model of Parkinson’s disease from mitochondrial dysfunction and cell death. Mol Neurobiol 2017; 54(4): 2752-62.
[http://dx.doi.org/10.1007/s12035-016-9843-0] [PMID: 27003823]
[188]
Hu Q, Uversky VN, Huang M, et al. Baicalein inhibits α-synuclein oligomer formation and prevents progression of α-synuclein accumulation in a rotenone mouse model of Parkinson’s disease. Biochim Biophys Acta 2016; 1862(10): 1883-90.
[http://dx.doi.org/10.1016/j.bbadis.2016.07.008] [PMID: 27425033]
[189]
Siddique YH, Naz F, Jyoti S, Ali F. Rahul. Effect of genistein on the transgenic drosophila model of Parkinson’s disease. J Diet Suppl 2019; 16(5): 550-63.
[PMID: 29969325]
[190]
Magalingam KB, Radhakrishnan A, Ramdas P, Haleagrahara N. Quercetin glycosides induced neuroprotection by changes in the gene expression in a cellular model of Parkinson’s disease. J Mol Neurosci 2015; 55(3): 609-17.
[http://dx.doi.org/10.1007/s12031-014-0400-x] [PMID: 25129099]
[191]
Khan MM, Hoda MN, Ishrat T, et al. Amelioration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced behavioural dysfunction and oxidative stress by Pycnogenol in mouse model of Parkinson’s disease. Behav Pharmacol 2010; 21(5-6): 563-71.
[http://dx.doi.org/10.1097/FBP.0b013e32833d4186] [PMID: 20657266]
[192]
Lee Y, Park HR, Chun HJ, Lee J. Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease via mitochondrial stabilization. J Neurosci Res 2015; 93(5): 755-65.
[http://dx.doi.org/10.1002/jnr.23544] [PMID: 25677261]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 7
Year: 2020
Page: [714 - 729]
Pages: 16
DOI: 10.2174/1381612826666200107143619
Price: $65

Article Metrics

PDF: 29
HTML: 4
EPUB: 1
PRC: 1