The Effects of Probiotics and Prebiotics on Mental Disorders: A Review on Depression, Anxiety, Alzheimer, and Autism Spectrum Disorders

Author(s): Fereshteh Ansari, Hadi Pourjafar*, Aydin Tabrizi, Aziz Homayouni*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 7 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Probiotics and their nutrient sources (prebiotics) have been shown to have positive effects on different organs of the host. The idea of their potential benefits on Central Nervous Systems (CNS) and the incidence of Anxiety, Schizophrenia, Alzheimer, Depression, Autism, and other mental disorders has proposed a new category of medicines called “psychobiotic” which is hoped to be of low-side effect anti-inflammatory, antidepressant, and anti-anxiety constitutes.

Objective: In the current review, we present valuable insights into the complicated interactions between the GI microbiota (especially in the colon), brain, immune and central nervous systems and provide a summary of the main findings of the effects of pro- and prebiotics on important mental disorders from the potential mechanisms of action to their application in clinical practice.

Methods: Google Scholar, Pub Med, Scopus, and Science Direct databases were searched using following key words: “probiotics”, “prebiotics”, “mental disorders”, “psychological disorders”, “depression”, “anxiety”, “stress”, “Alzheimer” and “autism spectrum”. The full text of potentially eligible studies was retrieved and assessed in detail by the reviewers. Data were extracted and then summarized from the selected papers.

Results: The results of the provided evidence suggest that probiotic and prebiotics might improve mental function via several mechanisms. The beneficial effects of their application in Depression, Anxiety, Alzheimer and autism spectrum diseases have also been supported in clinical studies.

Conclusion: Pro and prebiotics can improve mental health and psychological function and can be offered as new medicines for common mental disorders, however, more clinical studies are necessary to conduct regarding the clinical significance of the effects and their bioequivalence or superiority against current treatments.

Keywords: Probiotic, prebiotic, mental disorder, depression, anxiety, Alzheimer, autism.

[1]
WHO. Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria Food and Agriculture Organization of the United Nations and World Health Organization Expert Consultation Report, 2001, 1-34.
[2]
Pourjafar, H.; Noori, N.; Gandomi, H.; Basti, A.A.; Ansari, F. Stability and efficiency of double-coated beads containing Lactobacillus acidophilus obtained from the calcium alginate-chitosan and Eudragit S100 nanoparticles microencapsulation. Int. J. Probiotics Prebiotics, 2018, 13(2/3), 77-84.
[3]
Granato, D.; Branco, G.F.; Cruz, A.G.; Faria, J.A.F.; Shah, N.P. Probiotic dairy products as functional foods. Compr. Rev. Food Sci. Food Saf., 2010, 9(5), 455-470.
[http://dx.doi.org/10.1111/j.1541-4337.2010.00120.x]
[4]
da Silva, B.V.; Barreira, J.C.; Oliveira, M.B.P. Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends Food Sci. Technol., 2016, 50, 144-158.
[http://dx.doi.org/10.1016/j.tifs.2015.12.007]
[5]
Abdolhosseinzadeh, E.; Dehnad, A.R.; Pourjafar, H.; Homayouni, A.; Ansari, F. The production of probiotic Scallion Yogurt: Viability of Lactobacillus acidoplilus freely and microencapsulated in the product. Carpath. J. Food Sci. Technol., 2018, 10(3), 72-80.
[6]
Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr., 1995, 125(6), 1401-1412.
[http://dx.doi.org/10.1093/jn/125.6.1401] [PMID: 7782892]
[7]
Gibson, G.R.; Scott, K.P.; Rastall, R.A.; Tuohy, K.M.; Hotchkiss, A.; Dubert-Ferrandon, A.; Gareau, M.; Murphy, E.F.; Saulnier, D.; Loh, G. Dietary prebiotics: Current status and new definition. Food Sci. Technol. Bull. Funct. Foods, 2010, 7(1), 1-19.
[http://dx.doi.org/10.1616/1476-2137.15880]
[8]
Valcheva, R.; Dieleman, L.A. Prebiotics: Definition and protective mechanisms. Best Pract. Res. Clin. Gastroenterol., 2016, 30(1), 27-37.
[http://dx.doi.org/10.1016/j.bpg.2016.02.008] [PMID: 27048894]
[9]
Charalampopoulos, D.; Rastall, R.A. Prebiotics in foods. Curr. Opin. Biotechnol., 2012, 23(2), 187-191.
[http://dx.doi.org/10.1016/j.copbio.2011.12.028] [PMID: 22244693]
[10]
Bindels, L.B.; Delzenne, N.M.; Cani, P.D.; Walter, J. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol., 2015, 12(5), 303-310.
[http://dx.doi.org/10.1038/nrgastro.2015.47] [PMID: 25824997]
[11]
Hutkins, R.W.; Krumbeck, J.A.; Bindels, L.B.; Cani, P.D.; Fahey, G., Jr; Goh, Y.J.; Hamaker, B.; Martens, E.C.; Mills, D.A.; Rastal, R.A.; Vaughan, E.; Sanders, M.E. Prebiotics: why definitions matter. Curr. Opin. Biotechnol., 2016, 37, 1-7.
[http://dx.doi.org/10.1016/j.copbio.2015.09.001] [PMID: 26431716]
[12]
Pourjafar, H.; Noori, N.; Gandomi, H.; Basti, A.A. Study of protective role of double coated beads of calcium alginate-chitosan-eudragit S100 nanoparticles achieved from microencapsulation of Lactobacillus acidophilus as a predominant flora of human and animals gut. J. Vet. Res. (Pulawy), 2016, 71(3), 311-320.
[13]
Pandey, K.R.; Naik, S.R.; Vakil, B.V. Probiotics, prebiotics and synbiotics- a review. J. Food Sci. Technol., 2015, 52(12), 7577-7587.
[http://dx.doi.org/10.1007/s13197-015-1921-1] [PMID: 26604335]
[14]
Ghasemnezhad, R.; Razavilar, V.; Pourjafar, H.; Khosravi-Darani, K.; Ala, K. The viability of free and encapsulated Lactobacillus casei and Bifidobacterium animalis in chocolate milk, and evaluation of its pH changes and sensory properties during storage Ann. Res. Rev. Biol., 2017, 1-8.
[15]
Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 2017, 9(9), 1021.
[http://dx.doi.org/10.3390/nu9091021] [PMID: 28914794]
[16]
Frei, R.; Akdis, M.; O’Mahony, L. Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence. Curr. Opin. Gastroenterol., 2015, 31(2), 153-158.
[http://dx.doi.org/10.1097/MOG.0000000000000151] [PMID: 25594887]
[17]
Scholz-Ahrens, K.E.; Adolphi, B.; Rochat, F.; Barclay, D.V.; de Vrese, M.; Açil, Y.; Schrezenmeir, J. Effects of probiotics, prebiotics, and synbiotics on mineral metabolism in ovariectomized rats—impact of bacterial mass, intestinal absorptive area and reduction of bone turn-over. NFS J., 2016, 3, 41-50.
[http://dx.doi.org/10.1016/j.nfs.2016.03.001]
[18]
Mirzaei, H.; Pourjafar, H.; Homayouni, A. The effect of microencapsulation with calcium alginate and resistant starch on the Lactobacillus acidophilus (La5) survival rate in simulated gastrointestinal juice conditions. J. Vet. Res. (Pulawy), 2011, 66(4), 337-377.
[19]
Savignac, H.M.; Couch, Y.; Stratford, M.; Bannerman, D.M.; Tzortzis, G.; Anthony, D.C.; Burnet, P.W.J. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice. Brain Behav. Immun., 2016, 52, 120-131.
[http://dx.doi.org/10.1016/j.bbi.2015.10.007] [PMID: 26476141]
[20]
Slavin, J. Fiber and prebiotics: mechanisms and health benefits. Nutrients, 2013, 5(4), 1417-1435.
[http://dx.doi.org/10.3390/nu5041417] [PMID: 23609775]
[21]
Bercik, P.; Park, A.J.; Sinclair, D.; Khoshdel, A.; Lu, J.; Huang, X.; Deng, Y.; Blennerhassett, P.A.; Fahnestock, M.; Moine, D.; Berger, B.; Huizinga, J.D.; Kunze, W.; McLean, P.G.; Bergonzelli, G.E.; Collins, S.M.; Verdu, E.F. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil., 2011, 23(12), 1132-1139.
[http://dx.doi.org/10.1111/j.1365-2982.2011.01796.x] [PMID: 21988661]
[22]
Katiraei, P.; Bultron, G. Need for a comprehensive medical approach to the neuro-immuno-gastroenterology of irritable bowel syndrome. World J. Gastroenterol., 2011, 17(23), 2791-2800.
[PMID: 21734786]
[23]
Deans, E. Microbiome and mental health in the modern environment. J. Physiol. Anthropol., 2016, 36(1), 1.
[http://dx.doi.org/10.1186/s40101-016-0101-y] [PMID: 27405349]
[24]
Kennedy, P.J.; Murphy, A.B.; Cryan, J.F.; Ross, P.R.; Dinan, T.G.; Stanton, C. Microbiome in brain function and mental health. Trends Food Sci. Technol., 2016, 57, 289-301.
[http://dx.doi.org/10.1016/j.tifs.2016.05.001]
[25]
Wallace, C.J.K.; Milev, R. The effects of probiotics on depressive symptoms in humans: a systematic review. Ann. Gen. Psychiatry, 2017, 16(1), 14.
[http://dx.doi.org/10.1186/s12991-017-0138-2] [PMID: 28239408]
[26]
Nimgampalle, M.; Kuna, Y. Anti-Alzheimer properties of probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer’s disease induced albino rats. J. Clin. Diagn. Res., 2017, 11(8), KC01-KC05.
[http://dx.doi.org/10.7860/JCDR/2017/26106.10428] [PMID: 28969160]
[27]
Ulvestad, E. Psychoneuroimmunology: The experiential dimension. Psychoneuroimmunology; Springer, 2012, pp. 21-37.
[http://dx.doi.org/10.1007/978-1-62703-071-7_2]
[28]
Madison, A.; Kiecolt-Glaser, J.K. Stress, depression, diet, and the gut microbiota: Human-bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr. Opin. Behav. Sci., 2019, 28, 105-110.
[http://dx.doi.org/10.1016/j.cobeha.2019.01.011]
[29]
Navarro, F.; Liu, Y.; Rhoads, J.M. Can probiotics benefit children with autism spectrum disorders? World J. Gastroenterol., 2016, 22(46), 10093-10102.
[http://dx.doi.org/10.3748/wjg.v22.i46.10093] [PMID: 28028357]
[30]
Wang, H.; Lee, I-S.; Braun, C.; Enck, P. Effect of probiotics on central nervous system functions in animals and humans: A systematic review. J. Neurogastroenterol. Motil., 2016, 22(4), 589-605.
[http://dx.doi.org/10.5056/jnm16018] [PMID: 27413138]
[31]
Rieder, R.; Wisniewski, P.J.; Alderman, B.L.; Campbell, S.C. Microbes and mental health: A review. Brain Behav. Immun., 2017, 66, 9-17.
[http://dx.doi.org/10.1016/j.bbi.2017.01.016] [PMID: 28131791]
[32]
Dinan, T.G.; Cryan, J.F. The microbiome-gut-brain axis in health and disease. Gastroenterol. Clin. North Am., 2017, 46(1), 77-89.
[http://dx.doi.org/10.1016/j.gtc.2016.09.007] [PMID: 28164854]
[33]
Sherwin, E.; Sandhu, K.V.; Dinan, T.G.; Cryan, J.F. May the force be with you: The light and dark sides of the microbiota-gut-brain axis in neuropsychiatry. CNS Drugs, 2016, 30(11), 1019-1041.
[http://dx.doi.org/10.1007/s40263-016-0370-3] [PMID: 27417321]
[34]
Clapp, M.; Aurora, N.; Herrera, L.; Bhatia, M.; Wilen, E.; Wakefield, S. Gut microbiota’s effect on mental health: The gut-brain axis. Clin. Pract., 2017, 7(4), 987.
[http://dx.doi.org/10.4081/cp.2017.987] [PMID: 29071061]
[35]
Pirbaglou, M.; Katz, J.; de Souza, R.J.; Stearns, J.C.; Motamed, M.; Ritvo, P. Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials. Nutr. Res., 2016, 36(9), 889-898.
[http://dx.doi.org/10.1016/j.nutres.2016.06.009] [PMID: 27632908]
[36]
Slyepchenko, A.; Carvalho, A.F.; Cha, D.S.; Kasper, S.; McIntyre, R.S. Gut emotions - mechanisms of action of probiotics as novel therapeutic targets for depression and anxiety disorders. CNS Neurol. Disord. Drug Targets, 2014, 13(10), 1770-1786.
[http://dx.doi.org/10.2174/1871527313666141130205242] [PMID: 25470391]
[37]
Messaoudi, M.; Lalonde, R.; Violle, N.; Javelot, H.; Desor, D.; Nejdi, A.; Bisson, J-F.; Rougeot, C.; Pichelin, M.; Cazaubiel, M.; Cazaubiel, J.M. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr., 2011, 105(5), 755-764.
[http://dx.doi.org/10.1017/S0007114510004319] [PMID: 20974015]
[38]
Tarr, A.J.; Galley, J.D.; Fisher, S.E.; Chichlowski, M.; Berg, B.M.; Bailey, M.T. The prebiotics 3‘Sialyllactose and 6’Sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations: Evidence for effects on the gut-brain axis. Brain Behav. Immun., 2015, 50, 166-177.
[http://dx.doi.org/10.1016/j.bbi.2015.06.025] [PMID: 26144888]
[39]
Burokas, A.; Arboleya, S.; Moloney, R.D.; Peterson, V.L.; Murphy, K.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Targeting the microbiota-gut-brain axis: Prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol. Psychiatry, 2017, 82(7), 472-487.
[http://dx.doi.org/10.1016/j.biopsych.2016.12.031] [PMID: 28242013]
[40]
Bonnema, A.L.; Kolberg, L.W.; Thomas, W.; Slavin, J.L. Gastrointestinal tolerance of chicory inulin products. J. Am. Diet. Assoc., 2010, 110(6), 865-868.
[http://dx.doi.org/10.1016/j.jada.2010.03.025]
[41]
FAO. Compilation of legal limits for hazardous substances in fish and fishery products In: FAO Fishery Circular, Inland Water Resources and Aquaculture Service; Rome, Italy, 1983; 464, pp. 5-100
[42]
Brunton, L.L.; Chabner, B.; Knollmann, B.C. Goodman and Gilman’s the pharmacological basis of therapeutics, 12th ed; McGraw-Hill New York, 2011, Vol. 1549, .
[43]
Bandelow, B.; Sher, L.; Bunevicius, R.; Hollander, E.; Kasper, S.; Zohar, J.; Möller, H-J.; Care, W.T.F.M.D.P. WFSBP Task Force on Mental Disorders in Primary Care; WFSBP Task Force on Anxiety Disorders, OCD and PTSD. Guidelines for the pharmacological treatment of anxiety disorders, obsessive-compulsive disorder and posttraumatic stress disorder in primary care. Int. J. Psychiatry Clin. Pract., 2012, 16(2), 77-84.
[http://dx.doi.org/10.3109/13651501.2012.667114] [PMID: 22540422]
[44]
Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; Egger, M.; Takeshima, N.; Hayasaka, Y.; Imai, H.; Shinohara, K.; Tajika, A.; Ioannidis, J.P.A.; Geddes, J.R. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet, 2018, 391(10128), 1357-1366.
[http://dx.doi.org/10.1016/S0140-6736(17)32802-7] [PMID: 29477251]
[45]
Jakobsen, J.C.; Katakam, K.K.; Schou, A.; Hellmuth, S.G.; Stallknecht, S.E.; Leth-Møller, K.; Iversen, M.; Banke, M.B.; Petersen, I.J.; Klingenberg, S.L.; Krogh, J.; Ebert, S.E.; Timm, A.; Lindschou, J.; Gluud, C. Selective serotonin reuptake inhibitors versus placebo in patients with major depressive disorder. A systematic review with meta-analysis and Trial Sequential Analysis. BMC Psychiatry, 2017, 17(1), 58.
[http://dx.doi.org/10.1186/s12888-016-1173-2] [PMID: 28178949]
[46]
Kaplan, J.E.; Keeley, R.D.; Engel, M.; Emsermann, C.; Brody, D. Aspects of patient and clinician language predict adherence to antidepressant medication. J. Am. Board Fam. Med., 2013, 26(4), 409-420.
[http://dx.doi.org/10.3122/jabfm.2013.04.120201] [PMID: 23833156]
[47]
Goehler, L.E.; Park, S.M.; Opitz, N.; Lyte, M.; Gaykema, R.P. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav. Immun., 2008, 22(3), 354-366.
[http://dx.doi.org/10.1016/j.bbi.2007.08.009] [PMID: 17920243]
[48]
Lyte, M.; Li, W.; Opitz, N.; Gaykema, R.P.; Goehler, L.E. Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol. Behav., 2006, 89(3), 350-357.
[http://dx.doi.org/10.1016/j.physbeh.2006.06.019] [PMID: 16887154]
[49]
Barrett, E.; Ross, R.P.; O’Toole, P.W.; Fitzgerald, G.F.; Stanton, C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol., 2012, 113(2), 411-417.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05344.x] [PMID: 22612585]
[50]
Bercik, P.; Verdu, E.F.; Foster, J.A.; Macri, J.; Potter, M.; Huang, X.; Malinowski, P.; Jackson, W.; Blennerhassett, P.; Neufeld, K.A. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology, 2010, 139(6), 2102-2112.
[51]
Clarke, G.; Grenham, S.; Scully, P.; Fitzgerald, P.; Moloney, R.D.; Shanahan, F.; Dinan, T.G.; Cryan, J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry, 2013, 18(6), 666-673.
[http://dx.doi.org/10.1038/mp.2012.77] [PMID: 22688187]
[52]
Nadeem, I.; Rahman, M.Z.; Ad-Dab’bagh, Y.; Akhtar, M. Effect of probiotic interventions on depressive symptoms: A narrative review evaluating systematic reviews. Psychiatry Clin. Neurosci., 2019, 73(4), 154-162.
[http://dx.doi.org/10.1111/pcn.12804] [PMID: 30499231]
[53]
Ng, Q.X.; Peters, C.; Ho, C.Y.X.; Lim, D.Y.; Yeo, W-S. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J. Affect. Disord., 2018, 228, 13-19.
[http://dx.doi.org/10.1016/j.jad.2017.11.063] [PMID: 29197739]
[54]
Huang, R.; Wang, K.; Hu, J. Effect of probiotics on depression: A systematic review and meta-analysis of randomized controlled trials. Nutrients, 2016, 8(8), 483.
[http://dx.doi.org/10.3390/nu8080483] [PMID: 27509521]
[55]
Romijn, A.R.; Rucklidge, J.J. Systematic review of evidence to support the theory of psychobiotics. Nutr. Rev., 2015, 73(10), 675-693.
[http://dx.doi.org/10.1093/nutrit/nuv025] [PMID: 26370263]
[56]
Akbari, E.; Asemi, Z.; Daneshvar Kakhaki, R.; Bahmani, F.; Kouchaki, E.; Tamtaji, O.R.; Hamidi, G.A.; Salami, M. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front. Aging Neurosci., 2016, 8, 256.
[http://dx.doi.org/10.3389/fnagi.2016.00256] [PMID: 27891089]
[57]
Furman, R.; Murray, I.V.; Schall, H.E.; Liu, Q.; Ghiwot, Y.; Axelsen, P.H. Amyloid plaque-associated oxidative degradation of uniformly radiolabeled arachidonic acid. ACS Chem. Neurosci., 2016, 7(3), 367-377.
[http://dx.doi.org/10.1021/acschemneuro.5b00316] [PMID: 26800372]
[58]
Leszek, J.; Barreto, G.E.; Gąsiorowski, K.; Koutsouraki, E.; Ávila-Rodrigues, M.; Aliev, G. Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: Role of brain innate immune system. CNS Neurol. Disord. Drug Targets, 2016, 15(3), 329-336.
[http://dx.doi.org/10.2174/1871527315666160202125914] [PMID: 26831258]
[59]
Lei, M.; Hua, X.; Xiao, M.; Ding, J.; Han, Q.; Hu, G. Impairments of astrocytes are involved in the d-galactose-induced brain aging. Biochem. Biophys. Res. Commun., 2008, 369(4), 1082-1087.
[http://dx.doi.org/10.1016/j.bbrc.2008.02.151] [PMID: 18329384]
[60]
Jung, I.H.; Jung, M.A.; Kim, E.J.; Han, M.J.; Kim, D.H. Lactobacillus pentosus var. plantarum C29 protects scopolamine-induced memory deficit in mice. J. Appl. Microbiol., 2012, 113(6), 1498-1506.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05437.x] [PMID: 22925033]
[61]
Woo, J-Y.; Gu, W.; Kim, K-A.; Jang, S-E.; Han, M.J.; Kim, D-H. Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a D-galactose-induced accelerated aging mouse model. Anaerobe, 2014, 27, 22-26.
[http://dx.doi.org/10.1016/j.anaerobe.2014.03.003] [PMID: 24657159]
[62]
Peng, X.; Meng, J.; Chi, T.; Liu, P.; Man, C.; Liu, S.; Guo, Y.; Jiang, Y. Lactobacillus plantarum NDC 75017 alleviates the learning and memory ability in aging rats by reducing mitochondrial dysfunction. Exp. Ther. Med., 2014, 8(6), 1841-1846.
[http://dx.doi.org/10.3892/etm.2014.2000] [PMID: 25371742]
[63]
Mallikarjuna, N.; Praveen, K.; Yellamma, K. Role of Lactobacillus plantarum MTCC1325 in membrane-bound transport ATPases system in Alzheimer’s disease-induced rat brain. Bioimpacts, 2016, 6(4), 203-209.
[http://dx.doi.org/10.15171/bi.2016.27] [PMID: 28265536]
[64]
Chen, D.; Yang, X.; Yang, J.; Lai, G.; Yong, T.; Tang, X.; Shuai, O.; Zhou, G.; Xie, Y.; Wu, Q. Prebiotic effect of fructooligosaccharides from Morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Front. Aging Neurosci., 2017, 9, 403.
[http://dx.doi.org/10.3389/fnagi.2017.00403] [PMID: 29276488]
[65]
Glenwright, A.J.; Pothula, K.R.; Bhamidimarri, S.P.; Chorev, D.S.; Baslé, A.; Firbank, S.J.; Zheng, H.; Robinson, C.V.; Winterhalter, M.; Kleinekathöfer, U.; Bolam, D.N.; van den Berg, B. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature, 2017, 541(7637), 407-411.
[http://dx.doi.org/10.1038/nature20828] [PMID: 28077872]
[66]
Liu, K.; He, Y.; Yu, L.; He, R. Elevated formaldehyde in the cecum of APP/PS1 mouse. Microbiol. China, 2017, 44(8), 1761-1766.
[67]
Chen, D-L.; Zhang, P.; Lin, L.; Shuai, O.; Zhang, H-M.; Liu, S-H.; Wang, J-Y. Protective effect of Bajijiasu against β-amyloid-induced neurotoxicity in PC12 cells. Cell. Mol. Neurobiol., 2013, 33(6), 837-850.
[http://dx.doi.org/10.1007/s10571-013-9950-7] [PMID: 23812758]
[68]
Tan, B.; Chen, C.; Chen, J.; Su, W.; Li, X.; Lin, R.; Lin, L. Mechanism of BA-JI-SU in invigorating kidney to anti-aging. J. New Chin. Med., 2000, 32, 36-38.
[69]
Chen, D-L.; Li, N.; Lin, L.; Long, H.M.; Lin, H.; Chen, J.; Zhang, H-M.; Zeng, C.C.; Liu, S-H. Confocal mirco-Raman spectroscopic analysis of the antioxidant protection mechanism of the oligosaccharides extracted from Morinda officinalis on human sperm DNA. J. Ethnopharmacol., 2014, 153(1), 119-124.
[http://dx.doi.org/10.1016/j.jep.2014.01.021] [PMID: 24503037]
[70]
Benjamin, J.L.; Hedin, C.R.; Koutsoumpas, A.; Ng, S.C.; McCarthy, N.E.; Hart, A.L.; Kamm, M.A.; Sanderson, J.D.; Knight, S.C.; Forbes, A.; Stagg, A.J.; Whelan, K.; Lindsay, J.O. Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn’s disease. Gut, 2011, 60(7), 923-929.
[http://dx.doi.org/10.1136/gut.2010.232025] [PMID: 21262918]
[71]
Malaguarnera, M.; Vacante, M.; Antic, T.; Giordano, M.; Chisari, G.; Acquaviva, R.; Mastrojeni, S.; Malaguarnera, G.; Mistretta, A.; Li Volti, G.; Galvano, F. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig. Dis. Sci., 2012, 57(2), 545-553.
[http://dx.doi.org/10.1007/s10620-011-1887-4] [PMID: 21901256]
[72]
Wall, R.; Cryan, J.F.; Ross, R.P.; Fitzgerald, G.F.; Dinan, T.G.; Stanton, C. Bacterial neuroactive compounds produced by psychobiotics. Microbial endocrinology: The microbiota-gut-brain axis in health and disease; Springer, 2014, pp. 221-239.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_10]
[73]
Potgieter, M.; Bester, J.; Kell, D.B.; Pretorius, E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol. Rev., 2015, 39(4), 567-591.
[http://dx.doi.org/10.1093/femsre/fuv013] [PMID: 25940667]
[74]
Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 2015, 161(2), 264-276.
[http://dx.doi.org/10.1016/j.cell.2015.02.047] [PMID: 25860609]
[75]
Alkasir, R.; Li, J.; Li, X.; Jin, M.; Zhu, B. Human gut microbiota: the links with dementia development. Protein Cell, 2017, 8(2), 90-102.
[http://dx.doi.org/10.1007/s13238-016-0338-6] [PMID: 27866330]
[76]
Santocchi, E.; Guiducci, L.; Fulceri, F.; Billeci, L.; Buzzigoli, E.; Apicella, F.; Calderoni, S.; Grossi, E.; Morales, M.A.; Muratori, F. Gut to brain interaction in Autism Spectrum Disorders: a randomized controlled trial on the role of probiotics on clinical, biochemical and neurophysiological parameters. BMC Psychiatry, 2016, 16(1), 183.
[http://dx.doi.org/10.1186/s12888-016-0887-5] [PMID: 27260271]
[77]
Hansen, S.N.; Schendel, D.E.; Parner, E.T. Explaining the increase in the prevalence of autism spectrum disorders: the proportion attributable to changes in reporting practices. JAMA Pediatr., 2015, 169(1), 56-62.
[http://dx.doi.org/10.1001/jamapediatrics.2014.1893] [PMID: 25365033]
[78]
Fombonne, E. The prevalence of autism. JAMA, 2003, 289(1), 87-89.
[http://dx.doi.org/10.1001/jama.289.1.87] [PMID: 12503982]
[79]
Soke, G.N.; Rosenberg, S.A.; Hamman, R.F.; Fingerlin, T.; Robinson, C.; Carpenter, L.; Giarelli, E.; Lee, L-C.; Wiggins, L.D.; Durkin, M.S.; DiGuiseppi, C. Brief report: Prevalence of self-injurious behaviors among children with autism spectrum disorder—a population-based study. J. Autism Dev. Disord., 2016, 46(11), 3607-3614.
[http://dx.doi.org/10.1007/s10803-016-2879-1] [PMID: 27565654]
[80]
Boso, M.; Emanuele, E.; Minoretti, P.; Arra, M.; Politi, P.; Ucelli di Nemi, S.; Barale, F. Alterations of circulating endogenous secretory RAGE and S100A9 levels indicating dysfunction of the AGE-RAGE axis in autism. Neurosci. Lett., 2006, 410(3), 169-173.
[http://dx.doi.org/10.1016/j.neulet.2006.08.092] [PMID: 17101220]
[81]
Jyonouchi, H.; Geng, L.; Streck, D.L.; Toruner, G.A. Children with autism spectrum disorders (ASD) who exhibit chronic gastrointestinal (GI) symptoms and marked fluctuation of behavioral symptoms exhibit distinct innate immune abnormalities and transcriptional profiles of peripheral blood (PB) monocytes. J. Neuroimmunol., 2011, 238(1-2), 73-80.
[http://dx.doi.org/10.1016/j.jneuroim.2011.07.001] [PMID: 21803429]
[82]
Molloy, C.A.; Manning-Courtney, P. Prevalence of chronic gastrointestinal symptoms in children with autism and autistic spectrum disorders. Autism, 2003, 7(2), 165-171.
[http://dx.doi.org/10.1177/1362361303007002004] [PMID: 12846385]
[83]
Liu, Y.; Fatheree, N.Y.; Mangalat, N.; Rhoads, J.M. Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 299(5), G1087-G1096.
[http://dx.doi.org/10.1152/ajpgi.00124.2010] [PMID: 20798357]
[84]
Khailova, L.; Dvorak, K.; Arganbright, K.M.; Halpern, M.D.; Kinouchi, T.; Yajima, M.; Dvorak, B. Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 297(5), G940-G949.
[http://dx.doi.org/10.1152/ajpgi.00141.2009] [PMID: 20501441]
[85]
MacFabe, D.F. Enteric short-chain fatty acids: microbial messengers of metabolism, mitochondria, and mind: implications in autism spectrum disorders. Microb. Ecol. Health Dis., 2015, 26(1), 28177.
[PMID: 26031685]
[86]
Altieri, L.; Neri, C.; Sacco, R.; Curatolo, P.; Benvenuto, A.; Muratori, F.; Santocchi, E.; Bravaccio, C.; Lenti, C.; Saccani, M.; Rigardetto, R.; Gandione, M.; Urbani, A.; Persico, A.M. Urinary p-cresol is elevated in small children with severe autism spectrum disorder. Biomarkers, 2011, 16(3), 252-260.
[http://dx.doi.org/10.3109/1354750X.2010.548010] [PMID: 21329489]
[87]
Critchfield, J.W.; van Hemert, S.; Ash, M.; Mulder, L.; Ashwood, P. The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol. Res. Pract., 2011, 2011161358
[http://dx.doi.org/10.1155/2011/161358] [PMID: 22114588]
[88]
Gilbert, J.A.; Krajmalnik-Brown, R.; Porazinska, D.L.; Weiss, S.J.; Knight, R. Toward effective probiotics for autism and other neurodevelopmental disorders. Cell, 2013, 155(7), 1446-1448.
[http://dx.doi.org/10.1016/j.cell.2013.11.035] [PMID: 24360269]
[89]
Grimaldi, R.; Gibson, G.R.; Vulevic, J.; Giallourou, N.; Castro-Mejía, J.L.; Hansen, L.H.; Leigh Gibson, E.; Nielsen, D.S.; Costabile, A. A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome, 2018, 6(1), 133.
[http://dx.doi.org/10.1186/s40168-018-0523-3] [PMID: 30071894]
[90]
Garvey, J. Diet in autism and associated disorders. J. Fam. Health Care, 2002, 12(2), 34-38.
[PMID: 12415751]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 7
Year: 2020
Published on: 16 June, 2020
Page: [555 - 565]
Pages: 11
DOI: 10.2174/1389201021666200107113812

Article Metrics

PDF: 117
HTML: 13