Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Natural New Bioactive Anthraquinones from Rubiaceae

Author(s): Guang-Yao Su, Ming-Long Chen and Kui-Wu Wang*

Volume 17, Issue 7, 2020

Page: [872 - 883] Pages: 12

DOI: 10.2174/1570193X17666200107092510

Price: $65

Abstract

Rubiaceae family belongs to the Gentianales, it contains 650 genera and 13,000 species and its worldwide distribution makes it the fourth largest angiosperms. Rubiaceae contains a large amount of anthraquinone compounds, especially in the roots. Anthraquinones are very important natural products with various bioactivities, including antibacterial, antiviral, cytotoxic and antitumor, which make it play an important role in recent research. In the previous study, many researchers have reported anthraquinones from Rubiaceae in different aspects. The present paper provides an overview of the bioactive properties of new naturally occurring anthraquinones and its structural diversity that have been isolated from the Rubiaceae family in recent years. The article covers the literature from 2007 to 2018, overall 95 new anthraquinones.

Keywords: Alizarin-type, anthqaquinones, biological activities, emodin-type, rubiaceae, structure.

Graphical Abstract
[1]
Mongrand, S.; Badoc, A.; Patouille, B.; Lacomblez, C.; Chavent, M.; Bessoule, J.J. Chemotaxonomy of the Rubiaceae family based on leaf fatty acid composition. Phytochemistry, 2005, 66(5), 549-559.
[http://dx.doi.org/10.1016/j.phytochem.2004.12.021] [PMID: 15721947]
[2]
Wang, R.J. Review and prospect of the taxonomy about the Rubiaceae. Yaredai Zhiwu Kexue, 2000, 29(4), 54-58.
[3]
Delprete, P.G. Review and prospect of the taxonomy about the Rubiaceae., 2004.
[4]
Koehbach, J.; Gruber, C.W. Cyclotides in the Rubiaceae. Adv. Bot. Res., 2015, 76, 51-78.
[http://dx.doi.org/10.1016/bs.abr.2015.09.002]
[5]
Martins, D.; Nunez, C.V. Secondary metabolites from Rubiaceae species. Molecules, 2015, 20(7), 13422-13495.
[http://dx.doi.org/10.3390/molecules200713422] [PMID: 26205062]
[6]
(a)Chien, S.C.; Wu, Y.C.; Chen, Z.W.; Yang, W.C. Naturally occurring anthraquinones: Chemistry and therapeutic potential in autoimmune diabetes. Evid-Based Compl. Alt.,2015, 2015., 357357.
(b)Chen, R.; He, J.; Tong, X. The Hedyotis diffusa Willd. (Rubiaceae): A review on phytochemistry, pharmacology, quality control and pharmacokinetics. Molecules, 2007, 21(6), 710-729.
[http://dx.doi.org/10.3390/molecules21060710] [PMID: 27248992]
(c)Saminathan, M.; Rai, R.B.; Dhama, K. Systematic review on anticancer potential and other health beneficial pharmacological activities of novel medicinal plant Morinda citrifolia (Noni). Int. J. Pharmacol., 2013, 9(8), 462-492.
[http://dx.doi.org/10.3923/ijp.2013.462.492]
(d)Khanh, P.N.; Huong, T.T.; Spiga, O. In silico screening of anthraquinones from Prismatomeris memecyloides as novel phosphodiesterase type-5 inhibitors (PDE-5Is). Rev. Int. Androl., 2018, 16(4), 147-158.
[http://dx.doi.org/10.1016/j.androl.2017.07.001] [PMID: 30286869]
(e)Jeremić, S.; Amić, A.; Stanojević-Pirković, M. Selected anthraquinones as potential free radical scavengers and P-glycoprotein inhibitors. Org. Biomol. Chem., 2018, 16(11), 1890-1902.
[http://dx.doi.org/10.1039/C8OB00060C] [PMID: 29479603]
(f)Isfahani, F.; Ajloo, D.; Kanaani, A. Photoconversion of an anthraquinone derivative in the presence of human serum albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018,, 205, 298-311.
[http://dx.doi.org/10.1016/j.saa.2018.07.044] [PMID: 30029193]
[7]
Wijnsma, R.; Verpoorte, R. Anthraquinones in the Rubiaceae. Fortschr. Chem. Org. Naturst., 1986, 49, 79-149.
[http://dx.doi.org/10.1007/978-3-7091-8846-0_2]
[8]
Osman, C.P.; Ismail, N.H.; Ahmad, R.; Ahmat, N.; Awang, K.; Jaafar, F.M. Anthraquinones with antiplasmodial activity from the roots of Rennellia elliptica Korth. (Rubiaceae). Molecules, 2010, 15(10), 7218-7226.
[http://dx.doi.org/10.3390/molecules15107218] [PMID: 20966871]
[9]
Osman, C.P.; Ismail, N.H.; Ahmad, R.; Alitheen, N.B.; Ridwan, M.J.M.; Maakhmor, T. Antioxidant, antidiabetic and cytotoxic activities of Rennellia elliptica Korth. J. Teknologi., 2016, 78(11), 201-206.
[http://dx.doi.org/10.11113/.v78.8170]
[10]
Wang, C.C. Studies on the anthraquinones and its bioactivities of Prismatomeris connata; Anhui Normal University: Anhui, China, 2015.
[11]
Fraga, B.M.; Quintana, N.; Díaz, C.E. Anthraquinones from natural and transformed roots of Plocama pendula. Chem. Biodivers., 2009, 6(2), 182-192.
[http://dx.doi.org/10.1002/cbdv.200800047] [PMID: 19235160]
[12]
Nguyen, P.H.; Choi, H.S.; Ha, T.K.Q.; Seo, J.Y.; Yang, J.L.; Jung, D.W.; Williams, D.R.; Oh, W.K. Anthraquinones from Morinda longissima and their insulin mimetic activities via AMP-activated protein kinase (AMPK) activation. Bioorg. Med. Chem. Lett., 2017, 27(1), 40-44.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.034] [PMID: 27887844]
[13]
Wang, Y.; Chen, W.H.; Chen, G.Y.; Song, X.P.; Zhang, D.S.; Fu, B.; Chen, Y. Anthraquinones from the Leaves of Saprosma hainanense. Youji Huaxue, 2014, 34(3), 522-525.
[http://dx.doi.org/10.6023/cjoc201310014]
[14]
Wang, Y. Studies on chemical constituents and pharmacological activities of Saprosma hainanense.. PhD thesis, Hainan Normal University, China, 2014.
[15]
Loonjang, K.; Duangjinda, D.; Phongpaichit, S.; Sawangjaroen, N.; Rattanaburi, S.; Mahabusarakam, W. A new anthraquinone from Morinda elliptica Ridl. Nat. Prod. Res., 2015, 29(19), 1833-1838.
[http://dx.doi.org/10.1080/14786419.2015.1009062] [PMID: 25686628]
[16]
Badr, J.M. Antioxidant and antimicrobial constituents of Crucianella maritima L. Nat. Prod. Sci., 2008, 14(4), 227-232.
[17]
Feng, S.X.; Hao, J.; Chen, T.; Qiu, S.X. A new anthraquinone and two new tetrahydroanthraquinones from the roots of Prismatomeris connata. Helv. Chim. Acta, 2011, 94(10), 1843-1849.
[http://dx.doi.org/10.1002/hlca.201100108]
[18]
Wang, C.X.; Zhao, S.N.; Feng, S.X.; Zhang, X.P.; Chen, T. Two new anthraquinones from the roots of Prismatomeris connata. Nat. Prod. Commun., 2016, 11(4), 481-482.
[http://dx.doi.org/10.1177/1934578X1601100415] [PMID: 27396198]
[19]
Takashima, J.; Ikeda, Y.; Komiyama, K.; Hayashi, M.; Kishida, A.; Ohsaki, A. New constituents from the leaves of Morinda citrifolia. Chem. Pharm. Bull. (Tokyo), 2007, 55(2), 343-345.
[http://dx.doi.org/10.1248/cpb.55.343] [PMID: 17268114]
[20]
Chiou, C.T.; Hsu, R.Y.; Lin, L.C. Isolation and cytotoxic effect of anthraquinones from Morinda umbellata. Planta Med., 2014, 80(13), 1113-1117.
[http://dx.doi.org/10.1055/s-0034-1382956] [PMID: 25137574]
[21]
Tuntiwachwuttikul, P.; Butsuri, Y.; Sukkoet, P.; Prawat, U.; Taylor, W.C. Anthraquinones from the roots of Prismatomeris malayana. Nat. Prod. Res., 2008, 22(11), 962-968.
[http://dx.doi.org/10.1080/14786410701650261] [PMID: 18629711]
[22]
Noor, A.T.; Begum, A.; Anis, I.; Parveen, S.; Malik, A.; Tareen, R.B. Rosenones A and B, new anthraquinone derivatives from Aitchisonia rosea. J. Asian Nat. Prod. Res., 2009, 11(3), 209-212.
[http://dx.doi.org/10.1080/10286020802696403] [PMID: 19408143]
[23]
Huang, W.H.; Yu, S.H.; Li, Y.B.; Jiang, J.Q. Four anthraquinones from Hedyotis diffusa. J. Asian Nat. Prod. Res., 2008, 10(9-10), 887-889.
[http://dx.doi.org/10.1080/10286020802181083] [PMID: 18985502]
[24]
mAbdullah, H. N. Chemical constituents of Prismatomeris malayana Ridley and quantitative structure activity relationship study on anti-inflammatory agents and their analogues. PhD Thesis, University of Malaya: Kuala Lumpur, Malaysia 2014.
[25]
Luo, P.; Su, J.; Zhu, Y.; Wei, J.; Wei, W.; Pan, W. A new anthraquinone and eight constituents from Hedyotis caudatifolia Merr. et Metcalf: Isolation, purification and structural identification. Nat. Prod. Res., 2016, 30(19), 2190-2196.
[http://dx.doi.org/10.1080/14786419.2016.1160231] [PMID: 27027701]
[26]
Zhang, X.; Zhou, H.F.; Li, M.Y.; Yue, X.Y.; Wu, T. Three new anthraquinones from aerial parts of Paederia scandens. Chem. Nat. Compd., 2018, 54(2), 245-248.
[http://dx.doi.org/10.1007/s10600-018-2314-2]
[27]
Dimmer, J.A.; Núñez Montoya, S.C.; Mendoza, C.S.; Cabrera, J.L. Photosensitizing anthraquinones from Heterophyllaea lycioides (Rubiaceae). Phytochemistry, 2017, 137, 94-100.
[http://dx.doi.org/10.1016/j.phytochem.2017.02.003] [PMID: 28196653]
[28]
Hu, H.Q.; Han, H.D.; Lin, Y.; Chen, L.H.; Wang, X.L. Chemical constituents of Paederia pertomentosa. Zhongguo Zhongyao Zazhi, 2013, 38(16), 2657-2660.
[PMID: 24228582]
[29]
Lin, C.F.; Ni, C.L.; Huang, Y.L.; Sheu, S.J.; Chen, C.C. Lignans and anthraquinones from the fruits of Morinda citrifolia. Nat. Prod. Res., 2007, 21(13), 1199-1204.
[http://dx.doi.org/10.1080/14786410601132451] [PMID: 17987501]
[30]
Wang, J.F.; Qin, X.C.; Chen, Z.Y.; Ju, Z.R.; He, W.J.; Tan, Y.H.; Zhou, X.J.; Tu, Z.C.; Lu, F.G.; Liu, Y.H. Two new anthraquinones with antiviral activities from the barks of Morinda citrifolia (Noni). Phytochem. Lett., 2016, 15, 13-15.
[http://dx.doi.org/10.1016/j.phytol.2015.11.006]
[31]
Son, N.T. An overview of the genus Prismatomeris: Phytochemistry and biological activity. Bull. Fac. Pharm. Cairo Univ., 2017, 55(1), 11-18.
[http://dx.doi.org/10.1016/j.bfopcu.2017.03.003]
[32]
Zhao, F.; Wang, S.J.; Lin, S.; Zhu, C.G.; Yue, Z.G.; Yu, Y.; Liu, B.; Wu, X.L.; Yang, Y.C.; Li, Y.; Shi, J.G. Natural and unnatural anthraquinones isolated from the ethanol extract of the roots of Knoxia valerianoides. Acta Pharm. Sin. B, 2012, 2(3), 260-266.
[http://dx.doi.org/10.1016/j.apsb.2012.03.004]
[33]
Zhao, F.; Wang, S.J.; Lin, S.; Zhu, C.G.; Yuan, S.P.; Ding, X.Y.; Yue, Z.G.; Yu, Y.; Liu, B.; Wu, X.L.; Hou, Q.; Shi, J.G. Anthraquinones from the roots of Knoxia valerianoides. J. Asian Nat. Prod. Res., 2011, 13(11), 1023-1029.
[http://dx.doi.org/10.1080/10286020.2011.606813] [PMID: 22007602]
[34]
Fan, J.T.; Kuang, B.; Zeng, G.Z.; Zhao, S.M.; Ji, C.J.; Zhang, Y.M.; Tan, N.H. Biologically active arborinane-type triterpenoids and anthraquinones from Rubia yunnanensis. J. Nat. Prod., 2011, 74(10), 2069-2080.
[http://dx.doi.org/10.1021/np2002918] [PMID: 21973054]
[35]
Li, B.; Lai, X.W.; Xu, X.H.; Yu, B.W.; Zhu, Y. A new anthraquinone from the root of Lasianthus acuminatissimus. Yao Xue Xue Bao, 2007, 42(5), 502-504.
[PMID: 17703772]
[36]
Kang, X.D.; Li, X.; Zhao, C.C.; Mao, Y. Two new anthraquinones from Hedyotis diffusa W. J. Asian Nat. Prod. Res., 2008, 10(1-2), 193-197.
[http://dx.doi.org/10.1080/10286020701394464] [PMID: 18253888]
[37]
Kang, J.; Zhang, P.; Gao, Z.; Zhang, J.; Yan, Z.; Wang, H.; Chen, R. Naphthohydroquinones, naphthoquinones, anthraquinones, and a naphthohydroquinone dimer isolated from the aerial parts of Morinda parvifolia and their cytotoxic effects through up-regulation of p53. Phytochemistry, 2016, 130, 144-151.
[http://dx.doi.org/10.1016/j.phytochem.2016.04.001] [PMID: 27298278]
[38]
Luo, Y.; Shen, H.Y.; Shen, Q.X.; Cao, Z.H.; Zhang, M.; Long, S.Y.; Wang, Z.B.; Tan, J.W. A new anthraquinone and a new naphthoquinone from the whole plant of Spermacoce latifolia. J. Asian Nat. Prod. Res., 2017, 19(9), 869-876.
[http://dx.doi.org/10.1080/10286020.2017.1279609] [PMID: 28357881]
[39]
Yang, F.; Su, Y.F.; Zhao, Z.Q.; Que, M.; Li, T.X.; Gao, X.M. Anthraquinones and Iridoids from Morinda officinalis. Chem. Nat. Compd., 2016, 52(6), 989-991.
[http://dx.doi.org/10.1007/s10600-016-1843-9]
[40]
Zhao, F.; Zhao, S.; Han, J.T.; Wang, Y.F.; Wang, Y.N.; Wang, C.H. Antiviral anthraquinones from the roots of Knoxia valerianoides. Phytochem. Lett., 2015, 11, 57-60.
[http://dx.doi.org/10.1016/j.phytol.2014.11.015]
[41]
Endale, M.; Ekberg, A.; Alao, J.P.; Akala, H.M.; Ndakala, A.; Sunnerhagen, P.; Erdélyi, M.; Yenesew, A. Anthraquinones of the roots of Pentas micrantha. Molecules, 2012, 18(1), 311-321.
[http://dx.doi.org/10.3390/molecules18010311] [PMID: 23271468]
[42]
Wang, C.; Ding, X.; Feng, S.X.; Guan, Q.; Zhang, X.P.; Du, C.; Di, Y.T.; Chen, T. Seven new tetrahydroanthraquinones from the root of Prismatomeris connata and their cytotoxicity against lung tumor cell growth. Molecules, 2015, 20(12), 22565-22577.
[http://dx.doi.org/10.3390/molecules201219856] [PMID: 26694340]
[43]
Lv, L.; Chen, H.; Ho, C.T.; Sang, S. Chemical components of the roots of Noni (Morinda citrifolia) and their cytotoxic effects. Fitoterapia, 2011, 82(4), 704-708.
[http://dx.doi.org/10.1016/j.fitote.2011.02.008] [PMID: 21356281]
[44]
Osman, C.P.; Ismail, N.H.; Wibowo, A.; Ahmad, R. Two new pyranoanthraquinones from the root of Rennellia elliptica, Korth (Rubiaceae). Phytochem. Lett., 2016, 16, 225-229.
[http://dx.doi.org/10.1016/j.phytol.2016.04.019]
[45]
Donfack, A.R.N.; Tala, M.F.; Wabo, H.K.; Jerz, G.; Zeng, G.Z.; Winterhalter, P.; Tan, N.H.; Tane, P. Two new anthraquinone dimers from the stem bark of Pentas schimperi (Rubiaceae). Phytochem. Lett., 2014, 8(1), 55-58.
[http://dx.doi.org/10.1016/j.phytol.2014.01.012]
[46]
Fraga, B.M.; Quintana, N.; Diaz, C.E. Dihydroanthracenones and hydronaphthalenones from the roots of Plocama pendula. Phytochem. Lett., 2012, 5(1), 211-213.
[http://dx.doi.org/10.1016/j.phytol.2011.12.010]
[47]
Hu, X.P.; Zhang, S.W.; Liu, S.S.; Xuan, L.J. New Anthraquinone and iridoid glycosides from the stems of Hedyotis hedyotidea. Helv. Chim. Acta, 2011, 94(4), 675-685.
[http://dx.doi.org/10.1002/hlca.201000270]
[48]
Yang, X.L.; Zhang, P.; Wu, J.Z. Chemical constituents from the root of Damnacanthus officinarum Huang. Biochem. Syst. Ecol., 2014, 52(1), 49-52.
[http://dx.doi.org/10.1016/j.bse.2013.12.001]
[49]
Kamiya, K.; Hamabe, W.; Tokuyama, S.; Satake, T. New anthraquinone glycosides from the roots of Morinda citrifolia. Fitoterapia, 2009, 80(3), 196-199.
[http://dx.doi.org/10.1016/j.fitote.2009.01.014] [PMID: 19233251 ]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy