Neuroprotective Polyphenols: A Modulatory Action on Neurotransmitter Pathways

Author(s): Elzbieta Rebas, Jowita Rzajew, Tomasz Radzik, Ludmila Zylinska*

Journal Name: Current Neuropharmacology

Volume 18 , Issue 5 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Balance in neurotransmission is essential for the proper functioning of the nervous system and even a small, but prolonged disturbance, can induce the negative feedback mechanisms leading to various neuropathologies. Neurodegenerative and mood disorders such as Alzheimer’s, Parkinson’s or affective disorders are increasing medical and social problems. Among the wide spectrum of potentially destructive events, oxidative stress and disrupted metabolism of some neurotransmitters such as acetylcholine, GABA, glutamate, serotonin or dopamine appear to play a decisive role. Biologically active plant polyphenols have been shown to exert a positive impact on the function of the central nervous system by modulation of metabolism and the action of some neurotransmitters.

Methods: Based on published research, the pharmacological activities of some naturally occurring polyphenols have been reviewed, with a focus on their potential therapeutic importance in the regulation of neurotransmitter systems.

Results: Phytochemicals can be classified into several groups and most of them possess anticancer, antioxidative, anti-inflammatory and neuroprotective properties. They can also modulate the metabolism or action of some neurotransmitters and/or their receptors. Based on these properties, phytochemicals have been used in traditional medicine for ages, although it was focused mainly on treating symptoms. However, growing evidence indicates that polyphenols may also prevent or slow neurological diseases.

Conclusion: Phytochemicals seem to be less toxic than synthetic drugs and they can be a safer alternative for currently used preparations, which exert adverse side effects. The neuroprotective actions of some plant polyphenols in the regulation of neurotransmitters metabolism, functioning of neurotransmitters receptors and antioxidative defense have potential therapeutic applications in various neurodegenerative disorders.

Keywords: Polyphenols, neurotransmitters, neurotransmitter receptors, neuroprotection, neuropathology, central nervous system.

[1]
Gupta, C.; Prakash, D. Phytonutrients as therapeutic agents. J. Complement. Integr. Med., 2014, 11(3), 151-169.
[http://dx.doi.org/10.1515/jcim-2013-0021] [PMID: 25051278]
[2]
Liu, R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr., 2013, 4(3), 384S-392S.
[http://dx.doi.org/10.3945/an.112.003517] [PMID: 23674808]
[3]
Giuliani, C.; Iezzi, M.; Ciolli, L.; Hysi, A.; Bucci, I.; Di Santo, S.; Rossi, C.; Zucchelli, M.; Napolitano, G. Resveratrol has antithyroid effects both in vitro and in vivo. Food Chem. Toxicol., 2017, 107(Pt A), 237-247.
[http://dx.doi.org/10.1016/j.fct.2017.06.044] [PMID: 28668442]
[4]
Felker, P.; Bunch, R.; Leung, A.M. Concentrations of thiocyanate and goitrin in human plasma, their precursor concentrations in brassica vegetables, and associated potential risk for hypothyroidism. Nutr. Rev., 2016, 74(4), 248-258.
[http://dx.doi.org/10.1093/nutrit/nuv110] [PMID: 26946249]
[5]
Mezzomo, T.R.; Nadal, J. Effect of nutrients and dietary substances on thyroid function and hypothyroidism. Demetra, 2016, 11, 427-443.
[http://dx.doi.org/10.12957/demetra.2016.18304]
[6]
Bhullar, K.S.; Rupasinghe, H.P. Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. Oxid. Med. Cell. Longev., 2013, 2013, 891748
[http://dx.doi.org/10.1155/2013/891748] [PMID: 23840922]
[7]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci., 2016, 5, e47
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[8]
Dhanasekaran, S.; Perumal, P.; Palayan, M. Invitro screening for acetylcholinesterase enzyme inhibition potential and antioxidant activity of extracts of Ipomoea aquatica Forsk: therapeutic lead for Alzheimer’s disease. J. Appl. Pharm. Sci., 2015, 5(2), 12-16.
[http://dx.doi.org/10.7324/JAPS.2015.50203]
[9]
Ren, L.; Wang, F.; Xu, Z.; Chan, W.M.; Zhao, C.; Xue, H. GABA(A) receptor subtype selectivity underlying anxiolytic effect of 6-hydroxyflavone. Biochem. Pharmacol., 2010, 79(9), 1337-1344.
[http://dx.doi.org/10.1016/j.bcp.2009.12.024] [PMID: 20067772]
[10]
Xu, Y.; Wang, Z.; You, W.; Zhang, X.; Li, S.; Barish, P.A.; Vernon, M.M.; Du, X.; Li, G.; Pan, J.; Ogle, W.O. Antidepressant-like effect of trans-resveratrol: Involvement of serotonin and noradrenaline system. Eur. Neuropsychopharmacol., 2010, 20(6), 405-413.
[http://dx.doi.org/10.1016/j.euroneuro.2010.02.013] [PMID: 20353885]
[11]
Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.C.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A.M. Flavonoids: a review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 2001, 74(4), 418-425.
[http://dx.doi.org/10.1093/ajcn/74.4.418] [PMID: 11566638]
[12]
Kennedy, D.O.; Wightman, E.L. Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv. Nutr., 2011, 2(1), 32-50.
[http://dx.doi.org/10.3945/an.110.000117] [PMID: 22211188]
[13]
Aman, U.; Subhan, F.; Shahid, M.; Akbar, S.; Ahmad, N.; Ali, G.; Fawad, K.; Sewell, R.D. Passiflora incarnata attenuation of neuropathic allodynia and vulvodynia apropos GABA-ergic and opioidergic antinociceptive and behavioural mechanisms. Complement. Altern. Med., 2016, 16(77), 1-17.
[http://dx.doi.org/10.1186/s12906-016-1048-6]
[14]
Arcos-Martínez, A.I.; Muñoz-Muñiz, O.D.; Domínguez-Ortiz, M.Á.; Saavedra-Vélez, M.V.; Vázquez-Hernández, M.; Alcántara-López, M.G. Anxiolytic-like effect of ethanolic extract of Argemone mexicana and its alkaloids in Wistar rats. Avicenna J. Phytomed., 2016, 6(4), 476-488.
[http://dx.doi.org/10.22038/AJP.2016.6701] [PMID: 27516989]
[15]
Candelario, M.; Cuellar, E.; Reyes-Ruiz, J.M.; Darabedian, N.; Feimeng, Z.; Miledi, R.; Russo-Neustadt, A.; Limon, A. Direct evidence for GABAergic activity of Withania somnifera on mammalian ionotropic GABAA and GABAρ receptors. J. Ethnopharmacol., 2015, 171, 264-272.
[http://dx.doi.org/10.1016/j.jep.2015.05.058] [PMID: 26068424]
[16]
Upadhyay, S.; Dixit, M. Role of polyphenols and other phytochemicals on molecular signaling. Oxid. Med. Cell. Longev., 2015, 2015, 504253
[http://dx.doi.org/10.1155/2015/504253] [PMID: 26180591]
[17]
Abotaleb, M.; Samuel, S.M.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in cancer and apoptosis. Cancers (Basel), 2018, 11(1), 1-39.
[http://dx.doi.org/10.3390/cancers11010028] [PMID: 30597838]
[18]
Grimaldi, M.; Marino, S.D.; Florenzano, F.; Ciotta, M.T.; Nori, S.L.; Rodriquez, M.; Sorrentino, G.; D’Ursi, A.M.; Scrima, M. β-Amyloid-acetylcholine molecular interaction: new role of cholinergic mediators in anti-Alzheimer therapy? Future Med. Chem., 2016, 8(11), 1179-1189.
[http://dx.doi.org/10.4155/fmc-2016-0006] [PMID: 27402297]
[19]
Ma, K.G.; Qian, Y.H. Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer’s disease. Neuropeptides, 2019, 73, 96-106.
[http://dx.doi.org/10.1016/j.npep.2018.12.003] [PMID: 30579679]
[20]
Parri, H.R.; Hernandez, C.M.; Dineley, K.T. Research update: Alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer’s disease. Biochem. Pharmacol., 2011, 82(8), 931-942.
[http://dx.doi.org/10.1016/j.bcp.2011.06.039] [PMID: 21763291]
[21]
Lebois, E.P.; Thorn, C.; Edgerton, J.R.; Popiolek, M.; Xi, S. Muscarinic receptor subtype distribution in the central nervous system and relevance to aging and Alzheimer’s disease. Neuropharmacology, 2018, 136(Pt C), 362-373.
[http://dx.doi.org/10.1016/j.neuropharm.2017.11.018] [PMID: 29138080]
[22]
Delbono, O.; Gopalakrishnan, M.; Renganathan, M.; Monteggia, L.M.; Messi, M.L.; Sullivan, J.P. Activation of the recombinant human alpha 7 nicotinic acetylcholine receptor significantly raises intracellular free calcium. J. Pharmacol. Exp. Ther., 1997, 280(1), 428-438.
[PMID: 8996225]
[23]
Nebrisi, E.E.; Al Kury, L.T.; Yang, K.S.; Jayaprakash, P.; Howarth, F.C.; Kabbani, N.; Oz, M. Curcumin potentiates the function of human α7-nicotinic acetylcholine receptors expressed in SH-EP1 cells. Neurochem. Int., 2018, 114, 80-84.
[http://dx.doi.org/10.1016/j.neuint.2017.12.010] [PMID: 29341902]
[24]
Zhang, X.; Wu, M.; Lu, F.; Luo, N.; He, Z.P.; Yang, H. Involvement of α7 nAChR signaling cascade in epigallocatechin gallate suppression of β-amyloid-induced apoptotic cortical neuronal insults. Mol. Neurobiol., 2014, 49(1), 66-77.
[http://dx.doi.org/10.1007/s12035-013-8491-x] [PMID: 23807728]
[25]
Gupta, R.; Shukla, R.K.; Chandravanshi, L.P.; Srivastava, P.; Dhuriya, Y.K.; Shanker, J.; Singh, M.P.; Pant, A.B.; Khanna, V.K. Protective role of quercetin in cadmium-induced cholinergic dysfunctions in rat brain by modulating mitochondrial integrity and MAP kinase signaling. Mol. Neurobiol., 2017, 54(6), 4560-4583.
[http://dx.doi.org/10.1007/s12035-016-9950-y] [PMID: 27389774]
[26]
Bakoyiannis, I.; Daskalopoulou, A.; Pergialiotis, V.; Perrea, D. Phytochemicals and cognitive health: Are flavonoids doing the trick? Biomed. Pharmacother., 2019, 109, 1488-1497.
[http://dx.doi.org/10.1016/j.biopha.2018.10.086] [PMID: 30551400]
[27]
Abhijit, S.; Subramanyam, M.V.V.; Devi, S.A. Grape seed proanthocyanidin and swimming exercise protects against cognitive decline: A study on M1 acetylcholine receptors in aging male rat brain. Neurochem. Res., 2017, 42(12), 3573-3586.
[http://dx.doi.org/10.1007/s11064-017-2406-6] [PMID: 28993969]
[28]
Fawcett, J.R.; Bordayo, E.Z.; Jackson, K.; Liu, H.; Peterson, J.; Svitak, A.; Frey, W.H., II Inactivation of the human brain muscarinic acetylcholine receptor by oxidative damage catalyzed by a low molecular weight endogenous inhibitor from Alzheimer’s brain is prevented by pyrophosphate analogs, bioflavonoids and other antioxidants. Brain Res., 2002, 950(1-2), 10-20.
[http://dx.doi.org/10.1016/S0006-8993(02)02981-5] [PMID: 12231224]
[29]
Liu, B.; Xu, L.; Guo, M.; Du, X.; Yan, L.; Wang, Q.; Wang, J. Resveratrol improves cognition of rats impaired by carotid artery stenosis through the cholinergic system. Biomed. Res. (Aligarh), 2017, 286-293.
[30]
Ko, S.Y.; Lee, H.E.; Park, S.J.; Jeon, S.J.; Kim, B.; Gao, Q.; Jang, D.S.; Ryu, J.H. Spinosin, a C-glucosylflavone, from Zizyphus jujuba var. spinosa ameliorates Aβ142 oligomer-induced memory impairment in mice. Biomol. Ther. (Seoul), 2015, 23(2), 156-164.
[http://dx.doi.org/10.4062/biomolther.2014.110] [PMID: 25767684]
[31]
Berk, C.; Sabbagh, M. Broader considerations of higher doses of donepezil in the treatment of mild, moderate, and severe Alzheimer’s disease. Int. J. Alzheimers Dis., 2012, 2012, 707468
[http://dx.doi.org/10.1155/2012/707468] [PMID: 22191061]
[32]
Rasool, M.; Malik, A.; Qureshi, M.S.; Manan, A.; Pushparaj, P.N.; Asif, M.; Qazi, M.H.; Qazi, A.M.; Kamal, M.A.; Gan, S.H.; Sheikh, I.A. Recent updates in the treatment of neurodegenerative disorders using natural compounds. Evid. Based Complement. Alternat. Med., 2014, 2014, Article ID 979730
[http://dx.doi.org/10.1155/2014/979730]
[33]
Lee, S.; Lee, D.; Baek, J.; Jung, E.B.; Baek, J.Y.; Lee, I.K.; Jang, T.S.; Kang, K.S.; Kim, K.H. In vitro assessment of selected Korean plants for antioxidant and antiacetylcholinesterase activities. Pharm. Biol., 2017, 55(1), 2205-2210.
[http://dx.doi.org/10.1080/13880209.2017.1397179] [PMID: 29115888]
[34]
Suganthy, N.; Devi, K.P. In vitro antioxidant and anti-cholinesterase activities of Rhizophora mucronata. Pharm. Biol., 2016, 54(1), 118-129.
[http://dx.doi.org/10.3109/13880209.2015.1017886] [PMID: 25856713]
[35]
Xiao, J.; Chen, X.; Zhang, L.; Talbot, S.G.; Li, G.C.; Xu, M. Investigation of the mechanism of enhanced effect of EGCG on huperzine A’s inhibition of acetylcholinesterase activity in rats by a multispectroscopic method. J. Agric. Food Chem., 2008, 56(3), 910-915.
[http://dx.doi.org/10.1021/jf073036k] [PMID: 18193834]
[36]
Wang, S.H.; Dong, X.Y.; Sun, Y. Thermodynamic analysis of the molecular interactions between amyloid β-protein fragments and (-)-epigallocatechin-3-gallate. J. Phys. Chem. B, 2012, 116(20), 5803-5809.
[http://dx.doi.org/10.1021/jp209406t] [PMID: 22536844]
[37]
Liaquat, L.; Batool, Z.; Sadir, S.; Rafiq, S.; Shahzad, S.; Perveen, T.; Haider, S. Naringenin-induced enhanced antioxidant defence system meliorates cholinergic neurotransmission and consolidates memory in male rats. Life Sci., 2018, 194, 213-223.
[http://dx.doi.org/10.1016/j.lfs.2017.12.034] [PMID: 29287782]
[38]
Rahigude, A.; Bhutada, P.; Kaulaskar, S.; Aswar, M.; Otari, K. Participation of antioxidant and cholinergic system in protective effect of naringenin against type-2 diabetes-induced memory dysfunction in rats. Neuroscience, 2012, 226, 62-72.
[http://dx.doi.org/10.1016/j.neuroscience.2012.09.026] [PMID: 22999973]
[39]
Ko, Y.H.; Kwon, S.H.; Lee, S.Y.; Jang, C.G. Liquiritigenin ameliorates memory and cognitive impairment through cholinergic and BDNF pathways in the mouse hippocampus. Arch. Pharm. Res., 2017, 40(10), 1209-1217.
[http://dx.doi.org/10.1007/s12272-017-0954-6] [PMID: 28940173]
[40]
El Omri, A.; Han, J.; Kawada, K.; Ben Abdrabbah, M.; Isoda, H. Luteolin enhances cholinergic activities in PC12 cells through ERK1/2 and PI3K/Akt pathways. Brain Res., 2012, 1437, 16-25.
[http://dx.doi.org/10.1016/j.brainres.2011.12.019] [PMID: 22226506]
[41]
Uzun, S.; Kozumplik, O.; Jakovljević, M.; Sedić, B. Side effects of treatment with benzodiazepines. Psychiatr. Danub., 2010, 22(1), 90-93.
[PMID: 20305598]
[42]
Hood, S.D.; Norman, A.; Hince, D.A.; Melichar, J.K.; Hulse, G.K. Benzodiazepine dependence and its treatment with low dose flumazenil. Br. J. Clin. Pharmacol., 2014, 77(2), 285-294.
[http://dx.doi.org/10.1111/bcp.12023] [PMID: 23126253]
[43]
Wasowski, C.; Marder, M. Flavonoids as GABAA receptor ligands: the whole story? J. Exp. Pharmacol., 2012, 4, 9-24.
[http://dx.doi.org/10.2147/JEP.S23105] [PMID: 27186113]
[44]
Hanrahan, J.R.; Chebib, M.; Johnston, G.A.R. Flavonoid modulation of GABA(A) receptors. Br. J. Pharmacol., 2011, 163(2), 234-245.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01228.x] [PMID: 21244373]
[45]
Johnston, G.A.R. Flavonoid nutraceuticals and ionotropic receptors for the inhibitory neurotransmitter GABA. Neurochem. Int., 2015, 89, 120-125.
[http://dx.doi.org/10.1016/j.neuint.2015.07.013] [PMID: 26190180]
[46]
Campbell, E.L.; Chebib, M.; Johnston, G.A.R. The dietary flavonoids apigenin and (-)-epigallocatechin gallate enhance the positive modulation by diazepam of the activation by GABA of recombinant GABA(A) receptors. Biochem. Pharmacol., 2004, 68(8), 1631-1638.
[http://dx.doi.org/10.1016/j.bcp.2004.07.022] [PMID: 15451406]
[47]
Hui, K.M.; Huen, M.S.Y.; Wang, H.Y.; Zheng, H.; Sigel, E.; Baur, R.; Ren, H.; Li, Z.W.; Wong, J.T.; Xue, H. Anxiolytic effect of wogonin, a benzodiazepine receptor ligand isolated from Scutellaria baicalensis Georgi. Biochem. Pharmacol., 2002, 64(9), 1415-1424.
[http://dx.doi.org/10.1016/S0006-2952(02)01347-3] [PMID: 12392823]
[48]
Scheepens, A.; Bisson, J.F.; Skinner, M. p-Coumaric acid activates the GABA-A receptor in vitro and is orally anxiolytic in vivo. Phytother. Res., 2014, 28(2), 207-211.
[http://dx.doi.org/10.1002/ptr.4968] [PMID: 23533066]
[49]
Shen, Y.; Lindemeyer, A.K.; Gonzalez, C.; Shao, X.M.; Spigelman, I.; Olsen, R.W.; Liang, J. Dihydromyricetin as a novel anti-alcohol intoxication medication. J. Neurosci., 2012, 32(1), 390-401.
[http://dx.doi.org/10.1523/JNEUROSCI.4639-11.2012] [PMID: 22219299]
[50]
Adachi, N.; Tomonaga, S.; Tachibana, T.; Denbow, D.M.; Furuse, M. (-)-Epigallocatechin gallate attenuates acute stress responses through GABAergic system in the brain. Eur. J. Pharmacol., 2006, 531(1-3), 171-175.
[http://dx.doi.org/10.1016/j.ejphar.2005.12.024] [PMID: 16457806]
[51]
Wang, F.; Xu, Z.; Ren, L.; Tsang, S.Y.; Xue, H. GABA A receptor subtype selectivity underlying selective anxiolytic effect of baicalin. Neuropharmacology, 2008, 55(7), 1231-1237.
[http://dx.doi.org/10.1016/j.neuropharm.2008.07.040] [PMID: 18723037]
[52]
de Carvalho, R.S.M.; Duarte, F.S.; de Lima, T.C.M. Involvement of GABAergic non-benzodiazepine sites in the anxiolytic-like and sedative effects of the flavonoid baicalein in mice. Behav. Brain Res., 2011, 221(1), 75-82.
[http://dx.doi.org/10.1016/j.bbr.2011.02.038] [PMID: 21377498]
[53]
Hansen, R.S.; Paulsen, I.; Davies, M. Determinants of amentoflavone interaction at the GABA(A) receptor. Eur. J. Pharmacol., 2005, 519(3), 199-207.
[http://dx.doi.org/10.1016/j.ejphar.2005.06.036] [PMID: 16129428]
[54]
Lundstrom, K.; Pham, H.T.; Dinh, L.D. Interaction of plant extracts with central nervous system receptors. Medicines (Basel), 2017, 4(1), E12
[http://dx.doi.org/10.3390/medicines4010012] [PMID: 28930228]
[55]
Kavvadias, D.; Sand, P.; Youdim, K.A.; Qaiser, M.Z.; Rice-Evans, C.; Baur, R.; Sigel, E.; Rausch, W.D.; Riederer, P.; Schreier, P. The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood-brain barrier and exhibits anticonvulsive effects. Br. J. Pharmacol., 2004, 142(5), 811-820.
[http://dx.doi.org/10.1038/sj.bjp.0705828] [PMID: 15231642]
[56]
Coleta, M.; Campos, M.G.; Cotrim, M.D.; Lima, T.C.; Cunha, A.P. Assessment of luteolin (3′,4′,5,7-tetrahydroxyflavone) neuropharmacological activity. Behav. Brain Res., 2008, 189(1), 75-82.
[http://dx.doi.org/10.1016/j.bbr.2007.12.010] [PMID: 18249450]
[57]
Fan, H.R.; Du, W.F.; Zhu, T.; Wu, Y.J.; Liu, Y.M.; Wang, Q.; Wang, Q.; Gu, X.; Shan, X.; Deng, S.; Zhu, T.; Xu, T.L.; Ge, W.H.; Li, W.G.; Li, F. Quercetin reduces cortical GABAergic transmission and alleviates MK-801-induced hyperactivity. EBioMedicine, 2018, 34, 201-213.
[http://dx.doi.org/10.1016/j.ebiom.2018.07.031] [PMID: 30057312]
[58]
Lee, B.H.; Choi, S.H.; Hwang, S.H.; Kim, H.J.; Lee, J.H.; Nah, S.Y. Resveratrol inhibits gabac ρ receptor-mediated ion currents expressed in xenopus oocytes. Korean J. Physiol. Pharmacol., 2013, 17(2), 175-180.
[http://dx.doi.org/10.4196/kjpp.2013.17.2.175] [PMID: 23626481]
[59]
Awad, R.; Muhammad, A.; Durst, T.; Trudeau, V.L.; Arnason, J.T. Bioassay-guided fractionation of lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activity. Phytother. Res., 2009, 23(8), 1075-1081.
[http://dx.doi.org/10.1002/ptr.2712] [PMID: 19165747]
[60]
Lin, T.Y.; Lu, C.W.; Wang, C.C.; Wang, Y.C.; Wang, S.J. Curcumin inhibits glutamate release in nerve terminals from rat prefrontal cortex: possible relevance to its antidepressant mechanism. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(7), 1785-1793.
[http://dx.doi.org/10.1016/j.pnpbp.2011.06.012] [PMID: 21741425]
[61]
Chang, C.Y.; Lin, T.Y.; Lu, C.W.; Wang, C.C.; Wang, Y.C.; Chou, S.S.P.; Wang, S.J. Apigenin, a natural flavonoid, inhibits glutamate release in the rat hippocampus. Eur. J. Pharmacol., 2015, 762, 72-81.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.035] [PMID: 26007643]
[62]
Lin, T.Y.; Huang, W.J.; Wu, C.C.; Lu, C.W.; Wang, S.J. Acacetin inhibits glutamate release and prevents kainic acid-induced neurotoxicity in rats. PLoS One, 2014, 9(2), e88644
[http://dx.doi.org/10.1371/journal.pone.0088644] [PMID: 24520409]
[63]
Lin, T.Y.; Lu, C.W.; Chang, C.C.; Huang, S.K.; Wang, S.J. Luteolin inhibits the release of glutamate in rat cerebrocortical nerve terminals. J. Agric. Food Chem., 2011, 59(15), 8458-8466.
[http://dx.doi.org/10.1021/jf201637u] [PMID: 21721589]
[64]
Lu, C.W.; Lin, T.Y.; Wang, S.J. Quercetin inhibits depolarization-evoked glutamate release in nerve terminals from rat cerebral cortex. Neurotoxicology, 2013, 39, 1-9.
[http://dx.doi.org/10.1016/j.neuro.2013.07.009] [PMID: 23933436]
[65]
de Almeida, L.M.V.; Piñeiro, C.C.; Leite, M.C.; Brolese, G.; Tramontina, F.; Feoli, A.M.; Gottfried, C.; Gonçalves, C.A. Resveratrol increases glutamate uptake, glutathione content, and S100B secretion in cortical astrocyte cultures. Cell. Mol. Neurobiol., 2007, 27(5), 661-668.
[http://dx.doi.org/10.1007/s10571-007-9152-2] [PMID: 17554623]
[66]
Li, C.; Allen, A.; Kwagh, J.; Doliba, N.M.; Qin, W.; Najafi, H.; Collins, H.W.; Matschinsky, F.M.; Stanley, C.A.; Smith, T.J. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J. Biol. Chem., 2006, 281(15), 10214-10221.
[http://dx.doi.org/10.1074/jbc.M512792200] [PMID: 16476731]
[67]
Li, C.; Li, M.; Chen, P.; Narayan, S.; Matschinsky, F.M.; Bennett, M.J.; Stanley, C.A.; Smith, T.J. Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site. J. Biol. Chem., 2011, 286(39), 34164-34174.
[http://dx.doi.org/10.1074/jbc.M111.268599] [PMID: 21813650]
[68]
Quincozes-Santos, A.; Bobermin, L.D.; Tramontina, A.C.; Wartchow, K.M.; Tagliari, B.; Souza, D.O.; Wyse, A.T.; Gonçalves, C.A. Oxidative stress mediated by NMDA, AMPA/KA channels in acute hippocampal slices: neuroprotective effect of resveratrol. Toxicol. In Vitro, 2014, 28(4), 544-551.
[http://dx.doi.org/10.1016/j.tiv.2013.12.021] [PMID: 24412540]
[69]
Zhang, L.N.; Ha, L.; Wang, H.Y.; Su, H.N.; Sun, Y.J.; Yang, X.Y.; Che, B.; Xue, J.; Gao, Z.B. Neuroprotective effect of resveratrol against glutamate-induced excitotoxicity. Neurochem. Res., 2015, 40(8), 1600-1608.
[http://dx.doi.org/10.1007/s11064-015-1636-8] [PMID: 26088684]
[70]
Gao, Z.B.; Chen, X.Q.; Hu, G.Y. Inhibition of excitatory synaptic transmission by trans-resveratrol in rat hippocampus. Brain Res., 2006, 1111(1), 41-47.
[http://dx.doi.org/10.1016/j.brainres.2006.06.096] [PMID: 16876771]
[71]
Tsai, R.Y.; Chou, K.Y.; Shen, C.H.; Chien, C.C.; Tsai, W.Y.; Huang, Y.N.; Tao, P.L.; Lin, Y.S.; Wong, C.S. Resveratrol regulates N-methyl-D-aspartate receptor expression and suppresses neuroinflammation in morphine-tolerant rats. Anesth. Analg., 2012, 115(4), 944-952.
[http://dx.doi.org/10.1213/ANE.0b013e31825da0fb] [PMID: 22713680]
[72]
Zhang, Y.; He, F.; Hua, T.; Sun, Q. Green tea polyphenols ameliorate ethanol-induced spatial learning and memory impairments by enhancing hippocampus NMDAR1 expression and CREB activity in rats. Neuroreport, 2018, 29(18), 1564-1570.
[http://dx.doi.org/10.1097/WNR.0000000000001152] [PMID: 30371539]
[73]
Tüzmen, M.N.; Yücel, N.C.; Kalburcu, T.; Demiryas, N. Effects of curcumin and tannic acid on the aluminum- and lead-induced oxidative neurotoxicity and alterations in NMDA receptors. Toxicol. Mech. Methods, 2015, 25(2), 120-127.
[http://dx.doi.org/10.3109/15376516.2014.997947] [PMID: 25496357]
[74]
Wang, G.; Amato, S.; Gilbert, J.; Man, H.Y. Resveratrol up-regulates AMPA receptor expression via AMP-activated protein kinase-mediated protein translation. Neuropharmacology, 2015, 95, 144-153.
[http://dx.doi.org/10.1016/j.neuropharm.2015.03.003] [PMID: 25791529]
[75]
Li, Z.; You, Z.; Li, M.; Pang, L.; Cheng, J.; Wang, L. Protective effect of resveratrol on the brain in a rat model of epilepsy. Neurosci. Bull., 2017, 33(3), 273-280.
[http://dx.doi.org/10.1007/s12264-017-0097-2] [PMID: 28161868]
[76]
Wu, Z.; Xu, Q.; Zhang, L.; Kong, D.; Ma, R.; Wang, L. Protective effect of resveratrol against kainate-induced temporal lobe epilepsy in rats. Neurochem. Res., 2009, 34(8), 1393-1400.
[http://dx.doi.org/10.1007/s11064-009-9920-0] [PMID: 19219549]
[77]
Khan, H.; Perviz, S.; Sureda, A.; Nabavi, S.M.; Tejada, S. Current standing of plant derived flavonoids as an antidepressant. Food Chem. Toxicol., 2018, 119, 176-188.
[http://dx.doi.org/10.1016/j.fct.2018.04.052] [PMID: 29704578]
[78]
Hu, L.; Wang, B.; Zhang, Y. Serotonin 5-HT6 receptors affect cognition in a mouse model of Alzheimer’s disease by regulating cilia function. Alzheimers Res. Ther., 2017, 9(1), 76.
[http://dx.doi.org/10.1186/s13195-017-0304-4] [PMID: 28931427]
[79]
Wang, R.; Xu, Y.; Wu, H.L.; Li, Y.B.; Li, Y.H.; Guo, J.B.; Li, X.J. The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors. Eur. J. Pharmacol., 2008, 578(1), 43-50.
[http://dx.doi.org/10.1016/j.ejphar.2007.08.045] [PMID: 17942093]
[80]
Chang, X.R.; Wang, L.; Li, J.; Wu, D.S. Analysis of anti-depressant potential of curcumin against depression induced male albino wistar rats. Brain Res., 2016, 1642, 219-225.
[http://dx.doi.org/10.1016/j.brainres.2016.03.010] [PMID: 26972530]
[81]
Ishola, I.O.; Chatterjee, M.; Tota, S.; Tadigopulla, N.; Adeyemi, O.O.; Palit, G.; Shukla, R. Antidepressant and anxiolytic effects of amentoflavone isolated from Cnestis ferruginea in mice. Pharmacol. Biochem. Behav., 2012, 103(2), 322-331.
[http://dx.doi.org/10.1016/j.pbb.2012.08.017] [PMID: 22944105]
[82]
Yi, L.T.; Xu, H.L.; Feng, J.; Zhan, X.; Zhou, L.P.; Cui, C.C. Involvement of monoaminergic systems in the antidepressant-like effect of nobiletin. Physiol. Behav., 2011, 102(1), 1-6.
[http://dx.doi.org/10.1016/j.physbeh.2010.10.008] [PMID: 20951716]
[83]
Jung, I.H.; Lee, H.E.; Park, S.J.; Ahn, Y.J.; Kwon, G.; Woo, H.; Lee, S.Y.; Kim, J.S.; Jo, Y.W.; Jang, D.S.; Kang, S.S.; Ryu, J.H. Ameliorating effect of spinosin, a C-glycoside flavonoid, on scopolamine-induced memory impairment in mice. Pharmacol. Biochem. Behav., 2014, 120, 88-94.
[http://dx.doi.org/10.1016/j.pbb.2014.02.015] [PMID: 24582850]
[84]
Nouri, Z.; Fakhri, S.; El-Senduny, F.F.; Sanadgol, N.; Abd-ElGhani, G.E.; Farzaei, M.H.; Chen, J.T. On the neuroprotective effects of naringenin: pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective. Biomolecules, 2019, 9(11), E690
[http://dx.doi.org/10.3390/biom9110690] [PMID: 31684142]
[85]
Yi, L.T.; Li, C.F.; Zhan, X.; Cui, C.C.; Xiao, F.; Zhou, L.P.; Xie, Y. Involvement of monoaminergic system in the antidepressant-like effect of the flavonoid naringenin in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34(7), 1223-1228.
[http://dx.doi.org/10.1016/j.pnpbp.2010.06.024] [PMID: 20603175]
[86]
Yi, L.T.; Li, J.M.; Li, Y.C.; Pan, Y.; Xu, Q.; Kong, L.D. Antidepressant-like behavioral and neurochemical effects of the citrus-associated chemical apigenin. Life Sci., 2008, 82(13-14), 741-751.
[http://dx.doi.org/10.1016/j.lfs.2008.01.007] [PMID: 18308340]
[87]
Beaulieu, J.M.; Gainetdinov, R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev., 2011, 63(1), 182-217.
[http://dx.doi.org/10.1124/pr.110.002642] [PMID: 21303898]
[88]
Klein, M.O.; Battagello, D.S.; Cardoso, A.R.; Hauser, D.N.; Bittencourt, J.C.; Correa, R.G. Dopamine: Functions, signaling, and association with neurological diseases. Cell. Mol. Neurobiol., 2019, 39(1), 31-59.
[http://dx.doi.org/10.1007/s10571-018-0632-3] [PMID: 30446950]
[89]
Hovde, M.J.; Larson, G.H.; Vaughan, R.A.; Foster, J.D. Model systems for analysis of dopamine transporter function and regulation. Neurochem. Int., 2019, 123, 13-21.
[http://dx.doi.org/10.1016/j.neuint.2018.08.015] [PMID: 30179648]
[90]
Meireles, M.; Moura, E.; Vieira-Coelho, M.A.; Santos-Buelga, C.; Gonzalez-Manzano, S.; Dueñas, M.; Mateus, N.; Faria, A.; Calhau, C. Flavonoids as dopaminergic neuromodulators. Mol. Nutr. Food Res., 2016, 60(3), 495-501.
[http://dx.doi.org/10.1002/mnfr.201500557] [PMID: 26582321]
[91]
ElMadani, M.A. ELSalam, A.R.M.; Attia, A.S.; El-shenawy, S.M.; Arbid, M.S. Neuropharmacological Effects of Naringenin, Harmine and Adenosine on Parkinsonism Induced in Rats. Der Pharmacia Lettre, 2016, 8(5), 45-57.
[92]
Zbarsky, V.; Datla, K.P.; Parkar, S.; Rai, D.K.; Aruoma, O.I.; Dexter, D.T. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic. Res., 2005, 39(10), 1119-1125.
[http://dx.doi.org/10.1080/10715760500233113] [PMID: 16298737]
[93]
Yoon, S.Y.; dela Peña, I.; Kim, S.M.; Woo, T.S.; Shin, C.Y.; Son, K.H.; Park, H.; Lee, Y.S.; Ryu, J.H.; Jin, M.; Kim, K.M.; Cheong, J.H. Oroxylin A improves attention deficit hyperactivity disorder-like behaviors in the spontaneously hypertensive rat and inhibits reuptake of dopamine in vitro. Arch. Pharm. Res., 2013, 36(1), 134-140.
[http://dx.doi.org/10.1007/s12272-013-0009-6] [PMID: 23371806]
[94]
Li, R.; Peng, N.; Li, X.P.; Le, W.D. (-)-Epigallocatechin gallate regulates dopamine transporter internalization via protein kinase C-dependent pathway. Brain Res., 2006, 1097(1), 85-89.
[http://dx.doi.org/10.1016/j.brainres.2006.04.071] [PMID: 16733047]
[95]
Butterweck, V.; Nahrstedt, A.; Evans, J.; Hufeisen, S.; Rauser, L.; Savage, J.; Popadak, B.; Ernsberger, P.; Roth, B.L. In vitro receptor screening of pure constituents of St. John’s wort reveals novel interactions with a number of GPCRs. Psychopharmacology (Berl.), 2002, 162(2), 193-202.
[http://dx.doi.org/10.1007/s00213-002-1073-7] [PMID: 12110997]
[96]
Fiedorowicz, J.G.; Swartz, K.L. The role of monoamine oxidase inhibitors in current psychiatric practice. J. Psychiatr. Pract., 2004, 10(4), 239-248.
[http://dx.doi.org/10.1097/00131746-200407000-00005] [PMID: 15552546]
[97]
Gidaro, M.C.; Astorino, C.; Petzer, A.; Carradori, S.; Alcaro, F.; Costa, G.; Artese, A.; Rafele, G.; Russo, F.M.; Petzer, J.P.; Alcaro, S. Kaempferol as selective human MAO-A inhibitor: Analytical detection in calabrian red wines, biological and molecular modeling studies. J. Agric. Food Chem., 2016, 64(6), 1394-1400.
[http://dx.doi.org/10.1021/acs.jafc.5b06043] [PMID: 26821152]
[98]
Kang, K.S.; Wen, Y.; Yamabe, N.; Fukui, M.; Bishop, S.C.; Zhu, B.T. Dual beneficial effects of (-)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: in vitro and in vivo studies. PLoS One, 2010, 5(8), e11951
[http://dx.doi.org/10.1371/journal.pone.0011951] [PMID: 20700524]
[99]
Kang, K.S.; Yamabe, N.; Wen, Y.; Fukui, M.; Zhu, B.T. Beneficial effects of natural phenolics on levodopa methylation and oxidative neurodegeneration. Brain Res., 2013, 1497, 1-14.
[http://dx.doi.org/10.1016/j.brainres.2012.11.043] [PMID: 23206800]
[100]
Setchell, K.D.R.; Brown, N.M.; Desai, P.; Zimmer-Nechemias, L.; Wolfe, B.E.; Brashear, W.T.; Kirschner, A.S.; Cassidy, A.; Heubi, J.E. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J. Nutr., 2001, 131(4)(Suppl.), 1362S-1375S.
[http://dx.doi.org/10.1093/jn/131.4.1362S] [PMID: 11285356]
[101]
Olthof, M.R.; Hollman, P.C.; Vree, T.B.; Katan, M.B.; Katan, M.B. Bioavailabilities of quercetin-3-glucoside and quercetin-4′-glucoside do not differ in humans. J. Nutr., 2000, 130(5), 1200-1203.
[http://dx.doi.org/10.1093/jn/130.5.1200] [PMID: 10801919]
[102]
Rein, D.; Lotito, S.; Holt, R.R.; Keen, C.L.; Schmitz, H.H.; Fraga, C.G. Epicatechin in human plasma: in vivo determination and effect of chocolate consumption on plasma oxidation status. J. Nutr., 2000, 130(8S)(Suppl.), 2109S-2114S.
[http://dx.doi.org/10.1093/jn/130.8.2109S] [PMID: 10917931]
[103]
Vareed, S.K.; Kakarala, M.; Ruffin, M.T.; Crowell, J.A.; Normolle, D.P.; Djuric, Z.; Brenner, D.E. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomarkers Prev., 2008, 17(6), 1411-1417.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-2693] [PMID: 18559556]
[104]
Sergides, C.; Chirilă, M.; Silvestro, L.; Pitta, D.; Pittas, A. Bioavailability and safety study of resveratrol 500 mg tablets in healthy male and female volunteers. Exp. Ther. Med., 2016, 11(1), 164-170.
[http://dx.doi.org/10.3892/etm.2015.2895] [PMID: 26889234]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 5
Year: 2020
Page: [431 - 445]
Pages: 15
DOI: 10.2174/1570159X18666200106155127
Price: $65

Article Metrics

PDF: 14
HTML: 1