Uncovering the Diversification of Tissue Engineering on the Emergent Areas of Stem Cells, Nanotechnology and Biomaterials

Author(s): Sunil K. Dubey*, Amit Alexander*, Munnangi Sivaram, Mukta Agrawal, Gautam Singhvi, Swapnil Sharma, Richa Dayaramani

Journal Name: Current Stem Cell Research & Therapy

Volume 15 , Issue 3 , 2020

Become EABM
Become Reviewer
Call for Editor


Damaged or disabled tissue is life-threatening due to the lack of proper treatment. Many conventional transplantation methods like autograft, iso-graft and allograft are in existence for ages, but they are not sufficient to treat all types of tissue or organ damages. Stem cells, with their unique capabilities like self-renewal and differentiate into various cell types, can be a potential strategy for tissue regeneration. However, the challenges like reproducibility, uncontrolled propagation and differentiation, isolation of specific kinds of cell and tumorigenic nature made these stem cells away from clinical application. Today, various types of stem cells like embryonic, fetal or gestational tissue, mesenchymal and induced-pluripotent stem cells are under investigation for their clinical application. Tissue engineering helps in configuring the stem cells to develop into a desired viable tissue, to use them clinically as a substitute for the conventional method. The use of stem cell-derived Extracellular Vesicles (EVs) is being studied to replace the stem cells, which decreases the immunological complications associated with the direct administration of stem cells. Tissue engineering also investigates various biomaterials to use clinically, either to replace the bones or as a scaffold to support the growth of stemcells/ tissue. Depending upon the need, there are various biomaterials like bio-ceramics, natural and synthetic biodegradable polymers to support replacement or regeneration of tissue. Like the other fields of science, tissue engineering is also incorporating the nanotechnology to develop nano-scaffolds to provide and support the growth of stem cells with an environment mimicking the Extracellular matrix (ECM) of the desired tissue. Tissue engineering is also used in the modulation of the immune system by using patient-specific Mesenchymal Stem Cells (MSCs) and by modifying the physical features of scaffolds that may provoke the immune system. This review describes the use of various stem cells, biomaterials and the impact of nanotechnology in regenerative medicine.

Keywords: Stem cell, tissue engineering, nanotechnology, regenerative medicine, scaffold, transplantation.

Hanson S, D’Souza RN, Hematti P. Biomaterial-mesenchymal stem cell constructs for immunomodulation in composite tissue engineering. Tissue Eng Part A 2014; 20(15-16): 2162-8.
[http://dx.doi.org/10.1089/ten.tea.2013.0359] [PMID: 25140989]
Parveen S, Krishnakumar K, Sahoo S. New era in health care: tissue engineering Journal of stem cells & regenerative medicine 2006; 1(1): 8-24. PubMed Central PMCID: PMCPmc3907955.
[PMID: 24692857]
Khan WS, Longo UG, Adesida A, Denaro V. Stem cell and tissue engineering applications in orthopaedics and musculoskeletal medicine. Stem Cells Int 2012; 2012 403170
[http://dx.doi.org/10.1155/2012/403170] [PMID: 22550506]
Campanella C, Caruso Bavisotto C. On the Choice of the Extracellular Vesicles for Therapeutic Purposes. Int J Mol Sci 2019; 20(2)
[http://dx.doi.org/10.3390/ijms20020236] [PMID: 30634425]
Ghasemi-Mobarakeh L, Prabhakaran MP, Tian L, et al. Structural properties of scaffolds: Crucial parameters towards stem cells differentiation. World journal of stem cells 2015; 267(4): 728-44. PubMed Central PMCID: PMCPmc4444613.
[http://dx.doi.org/10.4252/wjsc.v7.i4.728] [PMID: 26029344]
Rijal G, Li W. Native-mimicking in vitro microenvironment: An elusive and seductive future for tumor modeling and tissue engineering. J Biol Eng 2018; 12: 20. PubMed Central PMCID: PMCPmc6136168.
[http://dx.doi.org/10.1186/s13036-018-0114-7] [PMID: 30220913]
Alexander A, Ajaz A, Tripathi DK, et al. Mechanism responsible for mucoadhesion of mucoadhesive drug delivery system: A review Int J App Biol Pharmaceut Technol 2011; 2(1).
Cosson S, Otte EA, Hezaveh H, et al. Concise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine Stem cells translational medicine 2015 4(2): 156-64. PubMed Central PMCID: PMCPmc4303362.
[http://dx.doi.org/10.5966/sctm.2014-0203] [PMID: 25575526]
Giri TK, Alexander A, Agrawal M, Saraf S, Saraf S, Ajazuddin . Current status of stem cell therapies in tissue repair and regeneration. Curr Stem Cell Res Ther 2019; 14(2): 117-26.
[http://dx.doi.org/10.2174/1574888X13666180502103831] [PMID: 29732992]
Levenberg S, Khademhosseini A, Langer R. Embryonic Stem Cells in Tissue EngineeringEssentials of Stem Cell Biology. 3rd ed. Boston: Academic Press 2014; pp. 581-92.
Khan J, Alexander A, Agrawal M, et al. Stem Cell-Based Therapies: A New Ray of Hope for Diabetic Patients. Curr Stem Cell Res Ther 2019; 14(2): 146-51.
[http://dx.doi.org/10.2174/1574888X13666181002154110] [PMID: 30280677]
Lo B, Parham L. Ethical issues in stem cell research Endocrine reviews 200; 30(3): 204-13 PubMed Central PMCID: PMCPmc2726839
[http://dx.doi.org/10.1210/er.2008-0031] [PMID: 19366754]
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391): 1145-7.
[http://dx.doi.org/10.1126/science.282.5391.1145] [PMID: 9804556]
Khademhosseini A, Karp JM, Gerecht-Nir S, et al. Embryonic Stem Cells as a Cell Source for Tissue EngineeringPrinciples of Tissue Engineering. 4th ed. Boston: Academic Press 2014; pp. 609-38.
Vats A, Tolley NS, Bishop AE, et al. Embryonic stem cells and tissue engineering: delivering stem cells to the clinic. J Royal Society Med 2005; 98(8). PubMed Central PMCID: PMCPmc1181832. eng.
[http://dx.doi.org/10.1258/jrsm.98.8.346.] [PMID: 16055897]
Yang D, Zhang ZJ, Oldenburg M, et al. Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats Stem cells (Dayton, Ohio) 2008 26(1): 55-63. PubMed Central PMCID: PMCPmc2707927.
[http://dx.doi.org/10.1634/stemcells.2007-0494] [PMID: 17951220]
Hill KL, Obrtlikova P, Alvarez DF, et al. Human embryonic stem cell-derived vascular progenitor cells capable of endothelial and smooth muscle cell function Exp Hematol 2010 38(3): 246-57. PubMed Central PMCID: PMCPmc2838385.
[http://dx.doi.org/10.1016/j.exphem.2010.01.001] [PMID: 20067819]
Lei IL, Bu L, Wang Z. Derivation of cardiac progenitor cells from embryonic stem cells. J Visual Exp : JoVE 2015; 12(95): 52047. PubMed Central PMCID: PMCPmc4354517.
[http://dx.doi.org/10.3791/52047] [PMID: 25650840]
Zhao D, Chen S, Cai J, et al. Derivation and characterization of hepatic progenitor cells from human embryonic stem cells PloS one 2009 314(7): e6468. PubMed Central PMCID: PMCPmc2714184.
[http://dx.doi.org/10.1371/journal.pone.0006468] [PMID: 19649295]
Shokeir AA, Harraz AM, El-Din AB. Tissue engineering and stem cells: basic principles and applications in urology. Int J Urol 2010; Dec 17(12): 964-73.
[http://dx.doi.org/10.1111/j.1442-2042.2010.02643.x] [PMID: 20969644]
Tabatabaei M, Mosaffa N, Nikoo S, et al. Isolation and partial characterization of human amniotic epithelial cells: the effect of trypsin Avicenna J Med Biotechnol 2014 6(1): 10-20. PubMed Central PMCID: PMCPmc3895574.
[PMID: 24523953]
Miki T, Strom SC. Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev 2006; 2(2): 133-42.
[http://dx.doi.org/10.1007/s12015-006-0020-0] [PMID: 17237552]
Kakishita K, Nakao N, Sakuragawa N, Itakura T. Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res 2003; 980(1): 48-56.
[http://dx.doi.org/10.1016/S0006-8993(03)02875-0] [PMID: 12865158]
Agrawal M, Ajazuddin , Tripathi DK, et al. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J Control Release 2017; 260: 61-77.
[http://dx.doi.org/10.1016/j.jconrel.2017.05.019] [PMID: 28549949]
Jiang S, Zhang S. Differentiation of cardiomyocytes from amniotic fluidderived mesenchymal stem cells by combined induction with trans-forming growth factor beta1 and 5azacytidine. Molecular medicine reports 2017 Nov; 16(5): 5887-93. PubMed Central PMCID: PMCPmc5865765.
[http://dx.doi.org/10.3892/mmr.2017.7373] [PMID: 28849231]
Vaghjiani V, Vaithilingam V, Saraswati I, et al. Hepatocyte-like cells derived from human amniotic epithelial cells can be encapsulated without loss of viability or function in vitro Stem Cells Develop 2014 1523(8): 866-76. PubMed Central PMCID: PMCPmc3992005.
[http://dx.doi.org/10.1089/scd.2013.0485] [PMID: 24295364]
Badwaik HR, Sakure K, Alexander A, Ajazuddin , Dhongade H, Tripathi DK. Synthesis and characterisation of poly(acryalamide) grafted carboxymethyl xanthan gum copolymer. Int J Biol Macromol 2016; 85: 361-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.014] [PMID: 26772913]
Miki T. Amnion-derived stem cells: in quest of clinical applications Stem Cell Res Ther 2011 192(3): 25. PubMed Central PMCID: PMCPmc3152995.
[http://dx.doi.org/10.1186/scrt66] [PMID: 21596003]
Oliveira MS, Barreto-Filho JB. Placental-derived stem cells: Culture, differentiation and chal-lenges. World J Stem Cells 2015 May; 267(4): 769-75. PubMed Central PMCID: PMCPmc4444616.
[http://dx.doi.org/10.4252/wjsc.v7.i4.769] [PMID: 26029347]
Yen BL, Chien CC, Chen YC, et al. Placenta-derived multipotent cells differentiate into neuronal and glial cells in vitro. Tissue Eng Part A 2008; 14(1): 9-17.
[http://dx.doi.org/10.1089/ten.a.2006.0352] [PMID: 18333820]
Passipieri JA, Kasai-Brunswick TH, Suhett G, et al. Improvement of cardiac function by placenta-derived mesenchymal stem cells does not require permanent engraftment and is independent of the insulin signaling pathway Stem cell Research Ther 2014 215(4): 102. PubMed Central PMCID: PMCPmc4354978.
[http://dx.doi.org/10.1186/scrt490] [PMID: 25145631]
Jung J, Choi JH, Lee Y, et al. Human placenta-derived mesenchymal stem cells promote hepatic regeneration in CCl4 -injured rat liver model via increased autophagic mechanism. Stem Cells 2013; 31(8): 1584-96.
[http://dx.doi.org/10.1002/stem.1396] [PMID: 23592412]
Spurway J, Logan P, Pak S. The development, structure and blood flow within the umbilical cord with particular reference to the venous system Australasian journal of ultrasound in medicine 2012 15(3): 97-102. PubMed Central PMCID: PMCPmc5025097.
[http://dx.doi.org/10.1002/j.2205-0140.2012.tb00013.x] [PMID: 28191152]
Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 2004; 22(7): 1330-7.
[http://dx.doi.org/10.1634/stemcells.2004-0013] [PMID: 15579650]
Li Y, Wu Q, Wang Y, et al. Construction of bioengineered hepatic tissue derived from human umbilical cord mesenchymal stem cells via aggregation culture in porcine decellularized liver scaffolds. Xenotransplantation 2017; 24(1)
[http://dx.doi.org/10.1111/xen.12285] [PMID: 28127796]
Liang J, Wu S, Zhao H, et al. Human umbilical cord mesenchymal stem cells derived from Wharton’s jelly differentiate into cholinergic-like neurons in vitro. Neurosci Lett 2013; 532: 59-63.
[http://dx.doi.org/10.1016/j.neulet.2012.11.014] [PMID: 23178189]
Wang L, Ott L, Seshareddy K, et al. Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells Regenerative medicine 2011 6(1): 95-109. PubMed Central PMCID: PMCPmc3057462.
[http://dx.doi.org/10.2217/rme.10.98] [PMID: 21175290]
Maslova O, Novak M, Kruzliak P. Umbilical Cord Tissue-Derived Cells as Therapeutic Agents. Stem Cells Int 2015; 2015 150609
[http://dx.doi.org/10.1155/2015/150609] [PMID: 26246808]
Pountos I, Corscadden D, Emery P, et al. Mesenchymal stem cell tissue engineering: techniques for isolation, expansion and application. Injury 2007; 38: S23-33.
Witwer KW, Van Balkom BWM, Bruno S, et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J Extracell Vesicles 2019; 8(1) 1609206
[http://dx.doi.org/10.1080/20013078.2019.1609206] [PMID: 31069028]
Rosenbaum AJ, Grande DA, Dines JS. The use of mesenchymal stem cells in tissue engineering: A global assessment. A global assessment. Organogenesis 2008; 4(1): 23-7. PubMed Central PMCID: PMCPmc2634175.
[http://dx.doi.org/10.4161/org.6048] [PMID: 19279711]
Fukuda K. Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artif Organs 2001; 25(3): 187-93.
[http://dx.doi.org/10.1046/j.1525-1594.2001.025003187.x] [PMID: 11284885]
Chan J, O’Donoghue K, Gavina M, et al. Galectin-1 induces skeletal muscle differentiation in human fetal mesenchymal stem cells and increases muscle regeneration. Stem Cells 2006; 24(8): 1879-91.
[http://dx.doi.org/10.1634/stemcells.2005-0564] [PMID: 16675596]
Takeda YS, Xu Q. Neuronal differentiation of human mesenchymal stem cells using exosomes derived from differentiating neuronal cells PloS one 2015 10(8): e0135111. PubMed Central PMCID: PMCPmc4527703.
[http://dx.doi.org/10.1371/journal.pone.0135111] [PMID: 26248331]
Kim N, Cho SG. New strategies for overcoming limitations of mesenchymal stem cell-based immune modulation Int J Stem Cells 2015 8(1): 54-68. PubMed Central PMCID: PMCPmc4445710.
[http://dx.doi.org/10.15283/ijsc.2015.8.1.54] [PMID: 26019755]
Jiang Z, Han Y, Cao X. Induced pluripotent stem cell (iPSCs) and their application in immunotherapy. Cellular Mol Immunol 2014; 11(1): 17-24. PubMed Central PMCID: PMCPmc4002145.
[http://dx.doi.org/10.1038/cmi.2013.62] [PMID: 24336163]
Agrawal M, Alexander A, Khan J, et al. Recent Biomedical Applications on Stem Cell Therapy: A Brief Overview. Curr Stem Cell Res Ther 2019; 14(2): 127-36.
[http://dx.doi.org/10.2174/1574888X13666181002161700] [PMID: 30280676]
Ma MS, Boddeke E, Copray S. Pluripotent stem cells for Schwann cell engineering. Stem Cell Rev Rep 2015; 11(2): 205-18.
[http://dx.doi.org/10.1007/s12015-014-9577-1] [PMID: 25433863]
Agrawal M, Saraf S, Saraf S, et al. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release 2018; 281: 139-77.http://dx.doi.org/doi.org/10.1016/j.jconrel.2018.05.011
Wang A, Tang Z, Park IH, et al. Induced pluripotent stem cells for neural tissue engineering Biomaterials 2011 Aug; 32(22): 5023-32. PubMed Central PMCID: PMCPmc3100451.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.070] [PMID: 21514663]
Choi KD, Yu J, Smuga-Otto K, et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells Stem cells (Dayton, Ohio) 2009 27(3): 559-67. PubMed Central PMCID: PMCPmc2931800.
[http://dx.doi.org/10.1002/stem.20080922] [PMID: 19259936]
Westenskow PD, Bucher F, Bravo S, et al. iPSC-Derived Retinal Pigment Epithelium Allografts Do Not Elicit Detrimental Effects in Rats: A Follow-Up Study. Stem Cells Int 2016; 2016: 8470263. PubMed Central PMCID: PMCPmc4736415.
[http://dx.doi.org/10.1155/2016/8470263] [PMID: 26880994]
Li YC, Zhu K, Young TH. Induced pluripotent stem cells, form in vitro tissue engineer-ing to in vivo allogeneic transplantation. Journal of thoracic disease 2017; 9(3): 455-9. PubMed Central PMCID: PMCPmc5394022.
[http://dx.doi.org/10.21037/jtd.2017.02.77] [PMID: 28449443]
Thery C, Witwer KW. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7(1) 1535750
[http://dx.doi.org/10.1080/20013078.2018.1535750] [PMID: 30637094]
Raposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles. The Journal of experimental medicine 1996; 1183(3): 1161-72. PubMed Central PMCID: PMCPmc2192324..
[http://dx.doi.org/10.1084/jem.183.3.1161] [PMID: 8642258]
Raposo G, Stahl PD. Extracellular vesicles: a new communication paradigm? Nat Rev Mol Cell Biol 1996; 09 20(9): 509-10.
Sheveleva O, Domaratskaya E, Payushina O. Extracellular Vesicles and Prospects of Their Use for Tissue Regeneration. Biochemistry (Moscow). Supplement Series A: Membrane and Cell Biology 2019; 0113: 1-11.
Surman M, Drożdż A, Stępień E, Przybyło M. Extracellular Vesicles as Drug Delivery Systems - Methods of Production and Potential Therapeutic Applications. Curr Pharm Des 2019; 25(2): 132-54.
[http://dx.doi.org/10.2174/1381612825666190306153318] [PMID: 30848183]
Grange C, Tritta S, Tapparo M, et al. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Scientific Reports 2019; 14 9(1): 4468.
Ruppert KA, Nguyen TT, Prabhakara KS, et al. Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles Modify Microglial Response and Improve Clinical Outcomes in Experimental Spinal Cord Injury. Sci Rep 2018; 8(1): 480.
[http://dx.doi.org/10.1038/s41598-017-18867-w] [PMID: 29323194]
Qin Y, Wang L, Gao Z, et al. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Scientific Reports 2016; 25 6(1): 21961.
Ren S, Chen J, Duscher D, et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways. Stem Cell Res Ther 2019; 31 10(1): 47.
[http://dx.doi.org/10.1186/s13287-019-1152-x] [PMID: 30704535]
Zhou X, Li T, Chen Y, et al. Mesenchymal stem cell‑derived extracellular vesicles promote the in vitro proliferation and migration of breast cancer cells through the activation of the ERK pathway. Int J Oncol 2019; 54(5): 1843-52.
[http://dx.doi.org/10.3892/ijo.2019.4747] [PMID: 30864702]
Reiner AT, Witwer KW, van Balkom BWM, et al. Concise Review: Developing Best-Practice Models for the Therapeutic Use of Extracellular Vesicles. Stem cells transla-tional medicine 2017 Aug; 6(8): 1730-9. PubMed Central PMCID: PMCPmc5689784.
[http://dx.doi.org/10.1002/sctm.17-0055] [PMID: 28714557]
Lener T, Gimona M, Aigner L, et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. Journal of extracellular vesi-cles 2015; 4: 30087. PubMed Central PMCID: PMCPmc4698466.
[http://dx.doi.org/10.3402/jev.v4.30087] [PMID: 26725829]
Baek G, Choi H, Kim Y, Lee HC, Choi C. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Therapeutics and as a Drug Delivery Platform. Stem Cells Transl Med 2019; 8(9): 880-6.
[http://dx.doi.org/10.1002/sctm.18-0226] [PMID: 31045328]
O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today 2011; Mar; 0114(3): 88-95.
Ishikawa K, Matsuya S, Miyamoto Y, et al. 905 - BioceramicsComprehensive Structural Integrity. Oxford: Pergamon 2003; pp. 169-214.
Kawahara H, Hirabayashi M, Shikita T. Single crystal alumina for dental implants and bone screws. J Biomed Mater Res 1980; 14(5): 597-605.
[http://dx.doi.org/10.1002/jbm.820140506] [PMID: 7349666]
Zeng P. Biocompatible alumina ceramic for total hip replacements. Mater Sci Technol 2008; 0124(5): 505-16.
Hayashi K, Matsuguchi N, Uenoyama K, Sugioka Y. Re-evaluation of the biocompatibility of bioinert ceramics in vivo. Biomaterials 1992; 13(4): 195-200.
[http://dx.doi.org/10.1016/0142-9612(92)90184-P] [PMID: 1520824]
Spies BC, Stampf S, Kohal RJ. Evaluation of Zirconia-Based All-Ceramic Single Crowns and Fixed Dental Prosthesis on Zirconia Implants: 5-Year Results of a Prospective Cohort Study. Clin Implant Dent Relat Res 2015; 17(5): 1014-28.
[http://dx.doi.org/10.1111/cid.12203] [PMID: 24506777]
Scarano A, Di Carlo F, Quaranta M, Piattelli A. Bone response to zirconia ceramic implants: an experimental study in rabbits. J Oral Implantol 2003; 29(1): 8-12.
[http://dx.doi.org/10.1563/1548-1336(2003)029<0008:BRTZCI>2.3.CO;2] [PMID: 12614079]
Hench LL, Paschall HA. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res 1973; 7(3): 25-42.
[http://dx.doi.org/10.1002/jbm.820070304] [PMID: 4123968]
Farraro KF, Kim KE, Woo SL, et al. Revolutionizing orthopaedic biomaterials: The potential of bi-odegradable and bioresorbable magnesium-based materials for functional tissue engineering. Journal of biomechanics 2014; 2747(9): 1979-86. PubMed Central PMCID: PMCPmc4144980.
[http://dx.doi.org/10.1016/j.jbiomech.2013.12.003] [PMID: 24373510]
Baino F, Novajra G, Vitale-Brovarone C. Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering Frontiers in bioengineering and biotechnology 2015 3: 202. PubMed Central PMCID: PMCPmc4681769.
[http://dx.doi.org/10.3389/fbioe.2015.00202] [PMID: 26734605]
Mano JF, Silva GA, Azevedo HS, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends Journal of the Royal Society, Interface 2007 224(17): 999-1030. PubMed Central PMCID: PMCPmc2396201. eng.
[http://dx.doi.org/10.1098/rsif.2007.0220] [PMID: 17412675]
Paramonov SE, Gauba V, Hartgerink JD. Synthesis of Collagen-like Peptide Polymers by Native Chemical Ligation. Macromolecules 2005; 0138(18): 7555.
Liu B, Xu Z, Yu R, et al. The Use of Type I and Type III Injectable Human Collagen for Dermal Fill: 10 Years of Clinical Experience in China. Semin Plast Surg 2005; 19(3): 241-50. PubMed PMID: PMC2884804.
Yang G, Rothrauff BB, Tuan RS. Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm Birth Defects Res C Embryo Today 2013 99(3): 203-22. PubMed Central PMCID: PMCPmc4041869.
[http://dx.doi.org/10.1002/bdrc.21041] [PMID: 24078497]
Kuo Y-C, Leou S-N. Chondrogenesis of articular chondrocytes in hydroxyapatite/chitin/chitosan scaffolds supplemented with pituitary extract. Eng Life Sci 2010; 10(1): 65-74.
Funakoshi T, Majima T, Suenaga N, Iwasaki N, Yamane S, Minami A. Rotator cuff regeneration using chitin fabric as an acellular matrix. J Shoulder Elbow Surg 2006; 15(1): 112-8.
[http://dx.doi.org/10.1016/j.jse.2005.05.012] [PMID: 16414479]
Marin E, Briceno MI, Caballero-George C. Critical evaluation of biodegradable polymers used in nanodrugs International journal of nanomedicine 2013 8: 3071-90. PubMed Central PMCID: PMCPmc3753153.
[http://dx.doi.org/10.2147/ijn.s47186] [PMID: 23990720]
Ulery BD, Nair LS, Laurencin CT. Biomedical Applications of Biodegradable Polymers Journal of polymer science Part B, Polymer physics 2011 1549(12): 832-64. PubMed Central PMCID: PMCPmc3136871. eng.
[http://dx.doi.org/10.1002/polb.22259] [PMID: 21769165]
BaoLin G, Ma PX. Synthetic biodegradable functional polymers for tissue engineering: A brief review. Science China Chemistry 2014; 157(4): 490-500. PubMed Central PMCID: PMCPmc4341840. http://dx.doi.org/25729390
Moran JM, Pazzano D, Bonassar LJ. Characterization of polylactic acid-polyglycolic acid composites for cartilage tissue engineering. Tissue Eng 2003; 9(1): 63-70.
[http://dx.doi.org/10.1089/107632703762687546] [PMID: 12625955]
Song R, Murphy M, Li C, et al. Current development of biodegradable polymeric materials for biomedical applications Drug design, development and therapy 2018 12: 3117-45. PubMed Central PMCID: PMCPmc6161720.
[http://dx.doi.org/10.2147/DDDT.S165440] [PMID: 30288019]
Endres M, Neumann K, Schröder SE, et al. Human polymer-based cartilage grafts for the regeneration of articular cartilage defects. Tissue Cell 2007; 39(5): 293-301.
[http://dx.doi.org/10.1016/j.tice.2007.05.002] [PMID: 17688898]
Slomkowski S. Biodegradable Polyesters for Tissue Engineering. Macromol Symp 2007; 253(1): 47-58.
Vert M. Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromolecules 2005; 6(2): 538-46.
[http://dx.doi.org/10.1021/bm0494702] [PMID: 15762610]
Cheung DY, Duan B, Butcher JT. Current progress in tissue engineering of heart valves: Multiscale problems, multiscale solutions. Expert Opin Biol Ther 2015; 15(8): 1155-72. PubMed Central PMCID: PMCPmc4883659.
[http://dx.doi.org/10.1517/14712598.2015.1051527] [PMID: 26027436]
Baj-Rossi C, Cavallini A, Rezzonico Jost T, et al. Biocompatible packagings for fully implantable multi-panel devices for remote monitoring of metabolism. IEEE 2015.
Seeto WJ, Tian Y, Lipke EA. Peptide-grafted poly(ethylene glycol) hydrogels support dynamic adhesion of endothelial progenitor cells. Acta Biomater 2013; 9(9): 8279-89.
[http://dx.doi.org/10.1016/j.actbio.2013.05.023] [PMID: 23770139]
Guo B, Ma PX. Conducting Polymers for Tissue Engineering. Biomacromolecules 2018; 19(6): 1764-82.
[http://dx.doi.org/10.1021/acs.biomac.8b00276] [PMID: 29684268]
Danie Kingsley J, Ranjan S, Dasgupta N, et al. Nanotechnology for tissue engineering: Need, techniques and applications. J Pharm Res 2013; 017(2): 200-4.
Alexander A. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J Control Release 2016; 10 241: 110-24.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.017] [PMID: 27663228]
Agrawal M, Saraf S, Saraf S, et al. Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region Expert Opin Drug Deliv 2018 15(6): 589-617. [Review].
[http://dx.doi.org/10.1080/17425247.2018.1471058] [PMID: 29733231]
Chen FM, Liu X. Advancing biomaterials of human origin for tissue engineering Prog Polym Sci 2016; 153: 86-168 PubMed Central PMCID: PMCPmc4808059
[http://dx.doi.org/10.1016/j.progpolymsci.2015.02.004] [PMID: 27022202]
Alexander A, Saraf S, Saraf S, et al. Amalgamation of Stem Cells with Nanotechnology: A Unique Therapeutic Approach. Curr Stem Cell Res Ther 2019; 14(2): 83-92.
[http://dx.doi.org/10.2174/1574888X13666180703143219] [PMID: 29968543]
Hasan A, Morshed M, Memic A, et al. Nanoparticles in tissue engineering: applications, challenges and prospects. International journal of nanomedicine 2018; 13: 5637-55. PubMed Central PMCID: PMCPmc6161712.
[http://dx.doi.org/10.2147/IJN.S153758] [PMID: 30288038]
Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. International journal of nanomedicine 2006; 1(1): 15-30. PubMed Central PMCID: PMCPmc2426767.
[http://dx.doi.org/10.2147/nano.2006.1.1.15] [PMID: 17722259]
Chieruzzi M, Pagano S, Moretti S, et al. Nanomaterials for Tissue Engineering In Dentistry. Nanomaterials (Basel, Switzerland) 2016; 216(7) PubMed Central PMCID: PMCPmc5224610.
[http://dx.doi.org/10.3390/nano6070134] [PMID: 28335262]
Seyedjafari E, Soleimani M, Ghaemi N, Sarbolouki MN. Enhanced osteogenic differentiation of cord blood-derived unrestricted somatic stem cells on electrospun nanofibers. J Mater Sci Mater Med 2011; 22(1): 165-74.
[http://dx.doi.org/10.1007/s10856-010-4174-6] [PMID: 21069560]
Shukla T, Upmanyu N, Agrawal M, Saraf S, Saraf S, Alexander A. Biomedical applications of microemulsion through dermal and transdermal route. Biomed Pharmacother 2018; 108: 1477-94. [Review].
[http://dx.doi.org/10.1016/j.biopha.2018.10.021] [PMID: 30372850]
Lü LX, Zhang XF, Wang YY, et al. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. ACS Appl Mater Interfaces 2013; 5(2): 319-30.
[http://dx.doi.org/10.1021/am302146w] [PMID: 23267692]
Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005; 26(15): 2603-10.
[http://dx.doi.org/10.1016/j.biomaterials.2004.06.051] [PMID: 15585263]
Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A. Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity. J Med Chem 2016; 59(18): 8149-67.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01770] [PMID: 27142556]
Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. 2007; 0128(2): 344-53.
Akasaka T, Yokoyama A, Matsuoka M, et al. Adhesion of human osteoblast-like cells (Saos-2) to carbon nanotube sheets. Biomed Mater Eng 2009; 19(2-3): 147-53.
[http://dx.doi.org/10.3233/BME-2009-0574] [PMID: 19581708]
Bosi S, Fabbro A, Ballerini L, et al. Carbon nanotubes: A promise for nerve tissue engineering? Nanotechnol Rev 2012; 10(01)
Lee SJ, Zhu W, Nowicki M, et al. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. J Neural Eng 2018; 15(1) 016018
[http://dx.doi.org/10.1088/1741-2552/aa95a5] [PMID: 29064377]
Zhou Z, Liu X, Wu W, et al. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds. Biomaterials Science 2018; 6(9): 2375-85.
Gorain B, Choudhury H, Pandey M, et al. Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications. Biomedicine & Pharmacotherapy 2018; 01 104: 496-508.
El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: Progress and chal-lenges. Global cardiology science & practice 2013; 2013(3): 316-42. PubMed Central PMCID: PMCPmc3963751.
[http://dx.doi.org/10.5339/gcsp.2013.38] [PMID: 24689032]
Alexander A, Ajazuddin A, Khan J, Saraf S, Saraf S. Formulation and evaluation of chitosan-based long-acting injectable hydrogel for PEGylated melphalan conjugate. J Pharm Pharmacol 2014; 66(9): 1240-50. [Article].
[http://dx.doi.org/10.1111/jphp.12262] [PMID: 24824413]
Zhu J, Marchant RE. Design properties of hydrogel tissueengineering scaffolds. Expert review of medical devices 2011 Sep; 8(5): 607-26. PubMed Central PMCID: PMCPmc3206299.
[http://dx.doi.org/10.1586/erd.11.27] [PMID: 22026626]
Alexander A, Ajaz A. Polymers and Permeation Enhancers: Specialized Compo-nents of Mucoadhesives. Stamford J of Pharmaceut Sci 2011; Vol. 4.
Alexander A, Saraf S, Saraf S. A comparative study of chitosan and poloxamer based thermosensitive hydrogel for the delivery of PEGylated melphalan conjugates Drug Dev Ind Pharm 2015; 41(12): 1954-61 [Article]
[http://dx.doi.org/10.3109/03639045.2015.1011167] [PMID: 25678314]
Alexander A, Saraf S, Saraf S. Understanding the role of poloxamer 407 based thermoreversible in situ gelling hydrogel for delivery of PEGylated melphalan conjugate Curr Drug Deliv 2016; 13(4): 621- 30 [Article]
[http://dx.doi.org/10.2174/1567201813666160204114000] [PMID: 26845559]
Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering Bone Res 2017; 5: 17014 PubMed Central PMCID: PMCPmc5448314
[http://dx.doi.org/10.1038/boneres.2017.14] [PMID: 28584674]
Naderi-Meshkin H, Andreas K, Matin MM, et al. Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering. Cell Biol Int 2014; 38(1): 72-84.
[http://dx.doi.org/10.1002/cbin.10181] [PMID: 24108671]
Andorko JI, Jewell CM. Designing biomaterials with immunomodulatory properties for tissue engineering and regenerative medicine. Cell biology international 2017; 38(1): 72-84.
[http://dx.doi.org/10.1002/btm2.10063] [PMID: 24108671]
Geckil H, Xu F, Zhang X, et al Engineering hydrogels as extracellular matrix mimics Nanomedicine (London, England) 2010 Apr; 5(3): 469-84 PubMed Central PMCID: PMCPmc2892416
[http://dx.doi.org/10.2217/nnm.10.12] [PMID: 20394538]
Fernández TD, Pearson JR, Leal MP, et al. Intracellular accumulation and immunological properties of fluorescent gold nanoclusters in human dendritic cells. Biomaterials 2015; 43: 1-12.
[http://dx.doi.org/10.1016/j.biomaterials.2014.11.045] [PMID: 25591956]
Vaine CA, Patel MK, Zhu J, et al. Tuning innate immune activation by surface texturing of polymer microparticles: the role of shape in inflammasome activation Journal of immunology (Baltimore, Md : 1950) 2013; 1190(7): 3525-32 PubMed Central PMCID: PMCPmc3646559 eng
[http://dx.doi.org/10.4049/jimmunol.1200492] [PMID: 23427254]
Seong SY, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 2004; 4(6): 469-78.
[http://dx.doi.org/10.1038/nri1372] [PMID: 15173835]
Neumann S, Burkert K, Kemp R, Rades T, Rod Dunbar P, Hook S. Activation of the NLRP3 inflammasome is not a feature of all particulate vaccine adjuvants. Immunol Cell Biol 2014; 92(6): 535-42.
[http://dx.doi.org/10.1038/icb.2014.21] [PMID: 24687021]
Boehler RM, Graham JG, Shea LD. Tissue engineering tools for modulation of the immune response BioTechniques 2011; 51(4): 239-40 242, 244 passim PubMed Central PMCID: PMCPmc3526814
[http://dx.doi.org/10.2144/000113754] [PMID: 21988690]
Furth ME, Atala A. Tissue Engineering: Future PerspectivesPrinciples of Tissue Engineering. 4th ed. Boston: Academic Press 2014; pp. 83-123.
Bradley JA, Bolton EM, Pedersen RA. Stem cell medicine encounters the immune system. Nat Rev Immunol 2002; 2(11): 859-71.
[http://dx.doi.org/10.1038/nri934] [PMID: 12415309]
Harrison BS, Eberli D, Lee SJ, Atala A, Yoo JJ. Oxygen producing biomaterials for tissue regeneration. Biomaterials 2007; 28(31): 4628-34.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.003] [PMID: 17681597]
Williams D. Benefit and risk in tissue engineering. Mater Today 2004; 017(5): 24-9.
Mironov V, Reis N, Derby B. Review: bioprinting: a beginning. Tissue Eng 2006; 12(4): 631-4.
[http://dx.doi.org/10.1089/ten.2006.12.631] [PMID: 16674278]
Khan J, Alexander A, Ajazuddin A, Saraf S, Saraf S. Luteolinphospholipid complex: Preparation, characterization and biological evaluation. J Pharm Pharmacol 2014; 66(10): 1451-62. [Article].
[http://dx.doi.org/10.1111/jphp.12280] [PMID: 24934881]
Dzobo K, Thomford NE, Senthebane DA, et al. Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine. Stem Cells Int 2018; 20182495848
[http://dx.doi.org/10.1155/2018/2495848] [PMID: 30154861]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 03 January, 2020
Page: [187 - 201]
Pages: 15
DOI: 10.2174/1574888X15666200103124821
Price: $65

Article Metrics

PDF: 72