Fanconi Anemia DNA Repair Pathway as a New Mechanism to Exploit Cancer Drug Resistance

Author(s): Kajal Ghosal*, Christian Agatemor, Richard I. Han, Amy T. Ku, Sabu Thomas, Sudit Mukherjee

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 20 , Issue 9 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Chemotherapy employs anti-cancer drugs to stop the growth of cancerous cells, but one common obstacle to the success is the development of chemoresistance, which leads to failure of the previously effective anti-cancer drugs. Resistance arises from different mechanistic pathways, and in this critical review, we focus on the Fanconi Anemia (FA) pathway in chemoresistance. This pathway has yet to be intensively researched by mainstream cancer researchers. This review aims to inspire a new thrust toward the contribution of the FA pathway to drug resistance in cancer. We believe an indepth understanding of this pathway will open new frontiers to effectively treat drug-resistant cancer.

Keywords: Anti-cancer drugs, Fanconi anaemia pathway, Chemo-resistant cancer cells, Alternative treatment, Chemotherapy, DNA.

[1]
Hassan, M.; Watari, H.; AbuAlmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. BioMed Res. Int., 2014, 2014150845
[http://dx.doi.org/10.1155/2014/150845] [PMID: 25013758]
[2]
Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med., 2002, 53(1), 615-627.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103929] [PMID: 11818492]
[3]
Galluzzi, L.; Senovilla, L.; Vitale, I.; Michels, J.; Martins, I.; Kepp, O.; Castedo, M.; Kroemer, G. Molecular mechanisms of cisplatin resistance. Oncogene, 2012, 31(15), 1869-1883.
[http://dx.doi.org/10.1038/onc.2011.384] [PMID: 21892204]
[4]
Helleday, T.; Petermann, E.; Lundin, C.; Hodgson, B.; Sharma, R.A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer, 2008, 8(3), 193-204.
[http://dx.doi.org/10.1038/nrc2342] [PMID: 18256616]
[5]
Rajendra, E.; Garaycoechea, J.I.; Patel, K.J.; Passmore, L.A. Abundance of the Fanconi anaemia core complex is regulated by the RuvBL1 and RuvBL2 AAA+ ATPases. Nucleic Acids Res., 2014, 42(22), 13736-13748.
[http://dx.doi.org/10.1093/nar/gku1230] [PMID: 25428364]
[6]
Castella, M.; Jacquemont, C.; Thompson, E.L.; Yeo, J.E.; Cheung, R.S.; Huang, J.W.; Sobeck, A.; Hendrickson, E.A.; Taniguchi, T. FANCI regulates recruitment of the FA core complex at sites of DNA damage independently of FANCD2. PLoS Genet., 2015, 11(10)e1005563
[http://dx.doi.org/10.1371/journal.pgen.1005563] [PMID: 26430909]
[7]
Dong, H.; Nebert, D.W.; Bruford, E.A.; Thompson, D.C.; Joenje, H.; Vasiliou, V. Update of the human and mouse Fanconi anemia genes. Hum. Genomics, 2015, 9(1), 32.
[http://dx.doi.org/10.1186/s40246-015-0054-y] [PMID: 26596371]
[8]
Xie, J.; Kim, H.; Moreau, L.A.; Puhalla, S.; Garber, J.; Al Abo, M.; Takeda, S.; D’Andrea, A.D. RNF4-mediated polyubiquitination regulates the Fanconi anemia/BRCA pathway. J. Clin. Invest., 2015, 125(4), 1523-1532.
[http://dx.doi.org/10.1172/JCI79325] [PMID: 25751062]
[9]
Bogliolo, M.; Lyakhovich, A.; Callén, E.; Castellà, M.; Cappelli, E.; Ramírez, M.J.; Creus, A.; Marcos, R.; Kalb, R.; Neveling, K.; Schindler, D.; Surrallés, J. Histone H2AX and Fanconi anemia FANCD2 function in the same pathway to maintain chromosome stability. EMBO J., 2007, 26(5), 1340-1351.
[http://dx.doi.org/10.1038/sj.emboj.7601574] [PMID: 17304220]
[10]
Garcia-Higuera, I.; Taniguchi, T.; Ganesan, S.; Meyn, M.S.; Timmers, C.; Hejna, J.; Grompe, M.; D’Andrea, A.D. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell, 2001, 7(2), 249-262.
[http://dx.doi.org/10.1016/S1097-2765(01)00173-3] [PMID: 11239454]
[11]
Smogorzewska, A.; Matsuoka, S.; Vinciguerra, P.; McDonald, E.R., III; Hurov, K.E.; Luo, J.; Ballif, B.A.; Gygi, S.P.; Hofmann, K.; D’Andrea, A.D.; Elledge, S.J. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell, 2007, 129(2), 289-301.
[http://dx.doi.org/10.1016/j.cell.2007.03.009] [PMID: 17412408]
[12]
Kim, H.; D’Andrea, A.D. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev., 2012, 26(13), 1393-1408.
[http://dx.doi.org/10.1101/gad.195248.112] [PMID: 22751496]
[13]
Knipscheer, P.; Räschle, M.; Smogorzewska, A.; Enoiu, M.; Ho, T.V.; Schärer, O.D.; Elledge, S.J.; Walter, J.C. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science, 2009, 326(5960), 1698-1701.
[http://dx.doi.org/10.1126/science.1182372] [PMID: 19965384]
[14]
Niedzwiedz, W.; Mosedale, G.; Johnson, M.; Ong, C.Y.; Pace, P.; Patel, K.J. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol. Cell, 2004, 15(4), 607-620.
[http://dx.doi.org/10.1016/j.molcel.2004.08.009] [PMID: 15327776]
[15]
Shimamura, A.; Montes de Oca, R.; Svenson, J.L.; Haining, N.; Moreau, L.A.; Nathan, D.G.; D’Andrea, A.D. A novel diagnostic screen for defects in the Fanconi anemia pathway. Blood, 2002, 100(13), 4649-4654.
[http://dx.doi.org/10.1182/blood-2002-05-1399] [PMID: 12393398]
[16]
Pulsipher, M.; Kupfer, G.M.; Naf, D.; Suliman, A.; Lee, J.S.; Jakobs, P.; Grompe, M.; Joenje, H.; Sieff, C.; Guinan, E.; Mulligan, R.; D’Andrea, A.D. Subtyping analysis of Fanconi anemia by immunoblotting and retroviral gene transfer. Mol. Med., 1998, 4(7), 468-479.
[http://dx.doi.org/10.1007/BF03401752] [PMID: 9713825]
[17]
Kutler, D.I.; Auerbach, A.D.; Satagopan, J.; Giampietro, P.F.; Batish, S.D.; Huvos, A.G.; Goberdhan, A.; Shah, J.P.; Singh, B. High incidence of head and neck squamous cell carcinoma in patients with Fanconi anemia. Arch. Otolaryngol. Head Neck Surg., 2003, 129(1), 106-112.
[http://dx.doi.org/10.1001/archotol.129.1.106] [PMID: 12525204]
[18]
Marsit, C.J.; Liu, M.; Nelson, H.H.; Posner, M.; Suzuki, M.; Kelsey, K.T. Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival. Oncogene, 2004, 23(4), 1000-1004.
[http://dx.doi.org/10.1038/sj.onc.1207256] [PMID: 14647419]
[19]
D’Andrea, A.D.; Grompe, M. The Fanconi anaemia/BRCA pathway. Nat. Rev. Cancer, 2003, 3(1), 23-34.
[http://dx.doi.org/10.1038/nrc970] [PMID: 12509764]
[20]
Narayan, G.; Arias-Pulido, H.; Nandula, S.V.; Basso, K.; Sugirtharaj, D.D.; Vargas, H.; Mansukhani, M.; Villella, J.; Meyer, L.; Schneider, A.; Gissmann, L.; Dürst, M.; Pothuri, B.; Murty, V.V. Promoter hypermethylation of FANCF: disruption of Fanconi Anemia-BRCA pathway in cervical cancer. Cancer Res., 2004, 64(9), 2994-2997.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0245] [PMID: 15126331]
[21]
Balacescu, O.; Balacescu, L.; Tudoran, O.; Todor, N.; Rus, M.; Buiga, R.; Susman, S.; Fetica, B.; Pop, L.; Maja, L.; Visan, S.; Ordeanu, C.; Berindan-Neagoe, I.; Nagy, V. Gene expression profiling reveals activation of the FA/BRCA pathway in advanced squamous cervical cancer with intrinsic resistance and therapy failure. BMC Cancer, 2014, 14(1), 246.
[http://dx.doi.org/10.1186/1471-2407-14-246] [PMID: 24708616]
[22]
Sugarman, R.; Patel, R.; Sharma, S.; Plenker, D.; Tuveson, D.; Saif, M.W. Pharmacokinetics and pharmacodynamics of new drugs for pancreatic cancer. Expert Opin. Drug Metab. Toxicol., 2019, 15(7), 541-552.
[http://dx.doi.org/10.1080/17425255.2019.1637417]
[23]
van der Heijden, M.S.; Brody, J.R.; Dezentje, D.A.; Gallmeier, E.; Cunningham, S.C.; Swartz, M.J.; DeMarzo, A.M.; Offerhaus, G.J.A.; Isacoff, W.H.; Hruban, R.H.; Kern, S.E. In vivo therapeutic responses contingent on Fanconi anemia/BRCA2 status of the tumor. Clin. Cancer Res., 2005, 11(20), 7508-7515.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1048] [PMID: 16243825]
[24]
Sakai, W.; Swisher, E.M.; Karlan, B.Y.; Agarwal, M.K.; Higgins, J.; Friedman, C.; Villegas, E.; Jacquemont, C.; Farrugia, D.J.; Couch, F.J.; Urban, N.; Taniguchi, T. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature, 2008, 451(7182), 1116-1120.
[http://dx.doi.org/10.1038/nature06633] [PMID: 18264087]
[25]
Yarde, D.N.; Oliveira, V.; Mathews, L.; Wang, X.; Villagra, A.; Boulware, D.; Shain, K.H.; Hazlehurst, L.A.; Alsina, M.; Chen, D.T.; Beg, A.A. Targeting the Fanconi anemia/BRCA pathway circumvents drug resistance in multiple myeloma. Cancer Res., 2009, 9367-9375.
[26]
Di Lorenzo, G.; Ricci, G.; Severini, G.M.; Romano, F.; Biffi, S. Imaging and therapy of ovarian cancer: clinical application of nanoparticles and future perspectives. Theranostics, 2018, 8(16), 4279-4294.
[http://dx.doi.org/10.7150/thno.26345] [PMID: 30214620]
[27]
Taniguchi, T.; Tischkowitz, M.; Ameziane, N.; Hodgson, S.V.; Mathew, C.G.; Joenje, H.; Mok, S.C.; D’Andrea, A.D. Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat. Med., 2003, 9(5), 568-574.
[http://dx.doi.org/10.1038/nm852] [PMID: 12692539]
[28]
Jacquemont, C.; Taniguchi, T. Proteasome function is required for DNA damage response and fanconi anemia pathway activation. Cancer Res., 2007, 67(15), 7395-7405.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1015] [PMID: 17671210]
[29]
Kim, H.T.; Goldberg, A.L. UBL domain of Usp14 and other proteins stimulates proteasome activities and protein degradation in cells. Proc. Natl. Acad. Sci. USA, 2018, 115(50), E11642-E11650.
[http://dx.doi.org/10.1073/pnas.1808731115] [PMID: 30487212]
[30]
Jacquemont, C.; Simon, J.A.D.; D’Andrea, A.D.; Taniguchi, T. Non-specific chemical inhibition of the Fanconi anemia pathway sensitizes cancer cells to cisplatin. Mol. Cancer, 2012, 11(1), 26.
[http://dx.doi.org/10.1186/1476-4598-11-26] [PMID: 22537224]
[31]
Voter, A.F.; Manthei, K.A.; Keck, J.L. A high-throughput screening strategy to identify protein-protein interaction inhibitors that block the Fanconi Anemia DNA repair pathway. J. Biomol. Screen., 2016, 21(6), 626-633.
[http://dx.doi.org/10.1177/1087057116635503] [PMID: 26962873]
[32]
Burkitt, K.; Ljungman, M. Phenylbutyrate interferes with the Fanconi anemia and BRCA pathway and sensitizes head and neck cancer cells to cisplatin. Mol. Cancer, 2008, 7(1), 24.
[http://dx.doi.org/10.1186/1476-4598-7-24] [PMID: 18325101]
[33]
Kennedy, R.D.; Chen, C.C.; Stuckert, P.; Archila, E.M.; De la Vega, M.A.; Moreau, L.A.; Shimamura, A.; D’Andrea, A.D. Fanconi anemia pathway-deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated. J. Clin. Invest., 2007, 117(5), 1440-1449.
[http://dx.doi.org/10.1172/JCI31245] [PMID: 17431503]
[34]
Chen, C.C.; Kennedy, R.D.; Sidi, S.; Look, A.T.; D’Andrea, A. CHK1 inhibition as a strategy for targeting Fanconi Anemia (FA) DNA repair pathway deficient tumors. Mol. Cancer, 2009, 8(1), 24.
[http://dx.doi.org/10.1186/1476-4598-8-24] [PMID: 19371427]
[35]
Chirnomas, D.; Taniguchi, T.; de la Vega, M.; Vaidya, A.P.; Vasserman, M.; Hartman, A.R.; Kennedy, R.; Foster, R.; Mahoney, J.; Seiden, M.V.; D’Andrea, A.D. Chemosensitization to cisplatin by inhibitors of the Fanconi anemia/BRCA pathway. Mol. Cancer Ther., 2006, 5(4), 952-961.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0493] [PMID: 16648566]
[36]
Liang, Q.; Dexheimer, T.S.; Zhang, P.; Rosenthal, A.S.; Villamil, M.A.; You, C.; Zhang, Q.; Chen, J.; Ott, C.A.; Sun, H.; Luci, D.K.; Yuan, B.; Simeonov, A.; Jadhav, A.; Xiao, H.; Wang, Y.; Maloney, D.J.; Zhuang, Z. A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses. Nat. Chem. Biol., 2014, 10(4), 298-304.
[http://dx.doi.org/10.1038/nchembio.1455] [PMID: 24531842]
[37]
Williams, S.A.; Maecker, H.L.; French, D.M.; Liu, J.; Gregg, A.; Silverstein, L.B.; Cao, T.C.; Carano, R.A.; Dixit, V.M. USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma. Cell, 2011, 146(6), 918-930.
[http://dx.doi.org/10.1016/j.cell.2011.07.040] [PMID: 21925315]
[38]
Mistry, H.; Hsieh, G.; Buhrlage, S.J.; Huang, M.; Park, E.; Cuny, G.D.; Galinsky, I.; Stone, R.M.; Gray, N.S.; D’Andrea, A.D.; Parmar, K. Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells. Mol. Cancer Ther., 2013, 12(12), 2651-2662.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0103-T] [PMID: 24130053]
[39]
Eccles, L.J.; Bell, A.C.; Powell, S.N. Inhibition of non-homologous end joining in Fanconi Anemia cells results in rescue of survival after interstrand crosslinks but sensitization to replication associated double-strand breaks. DNA Repair (Amst.), 2018, 64, 1-9.
[http://dx.doi.org/10.1016/j.dnarep.2018.02.003] [PMID: 29459202]
[40]
Gregory, R.C., Taniguchi, T. and D’Andrea, A.D. February. Regulation of the Fanconi anemia pathway by monoubiquitination Semin. Cancer Biol., 2003, 13(1), 77-82. Academic Press.
[41]
García-Santisteban, I., Peters, G.J., Giovannetti, E. and Rodríguez,J.A., 2013. USP1 cellular functions, regulatory mechanisms and emerging potential as target in cancer therapy. Mol. Cancer, 2013, 12(1), 91.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 9
Year: 2020
Page: [779 - 787]
Pages: 9
DOI: 10.2174/1389557520666200103114556
Price: $65

Article Metrics

PDF: 21
HTML: 1