Role of Drug-metabolizing Enzymes in Cancer and Cancer Therapy

Author(s): Siqi Feng, Anqi Li, Yi-Chao Zheng*, Hong-Min Liu*

Journal Name: Current Drug Metabolism

Volume 21 , Issue 1 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Cancer is one of the most serious diseases threatening human health with high morbidity and mortality in the world. For the treatment of cancer, chemotherapy is one of the most widely used strategies, for almost all kinds of tumors and diverse stages of tumor development. The efficacy of chemotherapy not only depends on the activity of the drug administrated but also on whether the compound could reach the effective therapeutic concentration in tumor cells. Therefore, expression and activity of drug-metabolizing enzymes (DMEs) in tumor tissues and metabolic organs of cancer patients are important for the dispositional behavior of anticancer drugs as well as the clinical response of chemotherapy.

Methods: This review summarizes the recent advancement of the DMEs expression and activity in various cancers, as well as the potential regulatory mechanisms of major DMEs in cancer and cancer therapy.

Results: Compared to normal tissues, expression and activity of major DMEs are significantly dysregulated in patients by various factors including epigenetic modification, ligand-activated transcriptional regulation and signaling pathways. Additionally, DMEs play an important role in anticancer drug efficacy, chemoresistance as well as the activation of prodrugs.

Conclusion: This review reinforces a more comprehensive understanding of DMEs in cancer and cancer therapy, and provides more opportunities for cancer therapy.

Keywords: Drug-metabolizing enzymes, cancer, epigenetic modification, ligand-activated transcriptional regulation, signaling pathways, cancer therapy.

[1]
Zhang, J.; Zhou, F.; Wu, X.; Zhang, X.; Chen, Y.; Zha, B.S.; Niu, F.; Lu, M.; Hao, G.; Sun, Y.; Sun, J.; Peng, Y.; Wang, G. Cellular pharmacokinetic mechanisms of adriamycin resistance and its modulation by 20(S)-ginsenoside Rh2 in MCF-7/Adr cells. Br. J. Pharmacol., 2012, 165(1), 120-134.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01505.x] [PMID: 21615726]
[2]
Ye, L.; Yang, X.; Guo, E.; Chen, W.; Lu, L.; Wang, Y.; Peng, X.; Yan, T.; Zhou, F.; Liu, Z. Sorafenib metabolism is significantly altered in the liver tumor tissue of hepatocellular carcinoma patient. PLoS One, 2014, 9(5), e96664
[http://dx.doi.org/10.1371/journal.pone.0096664] [PMID: 24797816]
[3]
Miners, J.O.; Yang, X.; Knights, K.M.; Zhang, L. The role of the kidney in drug elimination: Transport, metabolism, and the impact of kidney disease on drug clearance. Clin. Pharmacol. Ther., 2017, 102(3), 436-449.
[http://dx.doi.org/10.1002/cpt.757] [PMID: 28599065]
[4]
Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
[http://dx.doi.org/10.1126/science.123.3191.309] [PMID: 13298683]
[5]
Yan, T.; Gao, S.; Peng, X.; Shi, J.; Xie, C.; Li, Q.; Lu, L.; Wang, Y.; Zhou, F.; Liu, Z.; Hu, M. Significantly decreased and more variable expression of major CYPs and UGTs in liver microsomes prepared from HBV-positive human hepatocellular carcinoma and matched pericarcinomatous tissues determined using an isotope label-free UPLC-MS/MS method. Pharm. Res., 2015, 32(3), 1141-1157.
[http://dx.doi.org/10.1007/s11095-014-1525-x] [PMID: 25288013]
[6]
Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; Singh, S.; Williams, C.; Soplop, N.; Uryu, K.; Pharmer, L.; King, T.; Bojmar, L.; Davies, A.E.; Ararso, Y.; Zhang, T.; Zhang, H.; Hernandez, J.; Weiss, J.M.; Dumont-Cole, V.D.; Kramer, K.; Wexler, L.H.; Narendran, A.; Schwartz, G.K.; Healey, J.H.; Sandstrom, P.; Labori, K.J.; Kure, E.H.; Grandgenett, P.M.; Hollingsworth, M.A.; de Sousa, M.; Kaur, S.; Jain, M.; Mallya, K.; Batra, S.K.; Jarnagin, W.R.; Brady, M.S.; Fodstad, O.; Muller, V.; Pantel, K.; Minn, A.J.; Bissell, M.J.; Garcia, B.A.; Kang, Y.; Rajasekhar, V.K.; Ghajar, C.M.; Matei, I.; Peinado, H.; Bromberg, J.; Lyden, D. Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527(7578), 329-335.
[http://dx.doi.org/10.1038/nature15756] [PMID: 26524530]
[7]
Fong, M.Y.; Zhou, W.; Liu, L.; Alontaga, A.Y.; Chandra, M.; Ashby, J.; Chow, A.; O’Connor, S.T.; Li, S.; Chin, A.R.; Somlo, G.; Palomares, M.; Li, Z.; Tremblay, J.R.; Tsuyada, A.; Sun, G.; Reid, M.A.; Wu, X.; Swiderski, P.; Ren, X.; Shi, Y.; Kong, M.; Zhong, W.; Chen, Y.; Wang, S.E. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat. Cell Biol., 2015, 17(2), 183-194.
[http://dx.doi.org/10.1038/ncb3094] [PMID: 25621950]
[8]
Ma, R.; Feng, Y.; Lin, S.; Chen, J.; Lin, H.; Liang, X.; Zheng, H.; Cai, X. Mechanisms involved in breast cancer liver metastasis. J. Transl. Med., 2015, 13, 64.
[http://dx.doi.org/10.1186/s12967-015-0425-0] [PMID: 25885919]
[9]
Travica, S.; Pors, K.; Loadman, P.M.; Shnyder, S.D.; Johansson, I.; Alandas, M.N.; Sheldrake, H.M.; Mkrtchian, S.; Patterson, L.H.; Ingelman-Sundberg, M. Colon cancer-specific cytochrome P450 2W1 converts duocarmycin analogues into potent tumor cytotoxins. Clin. Cancer Res., 2013, 19(11), 2952-2961.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0238] [PMID: 23589180]
[10]
Brown, G.T.; Cash, B.G.; Blihoghe, D.; Johansson, P.; Alnabulsi, A.; Murray, G.I. The expression and prognostic significance of retinoic acid metabolising enzymes in colorectal cancer. PLoS One, 2014, 9(3), e90776
[http://dx.doi.org/10.1371/journal.pone.0090776] [PMID: 24608339]
[11]
Guengerich, F.P.; Waterman, M.R.; Egli, M. Recent structural insights into cytochrome P450 function. Trends Pharmacol. Sci., 2016, 37(8), 625-640.
[http://dx.doi.org/10.1016/j.tips.2016.05.006] [PMID: 27267697]
[12]
Wang, H.; Cao, G.; Wang, G.; Hao, H. Regulation of mammalian UDP-glucuronosyltransferases. Curr. Drug Metab., 2018, 19(6), 490-501.
[http://dx.doi.org/10.2174/1389200219666180307122945] [PMID: 29521218]
[13]
Perperopoulou, F.; Pouliou, F.; Labrou, N.E. Recent advances in protein engineering and biotechnological applications of glutathione transferases. Crit. Rev. Biotechnol., 2018, 38(4), 511-528.
[http://dx.doi.org/10.1080/07388551.2017.1375890] [PMID: 28936894]
[14]
Liu, Y.Y.; Hill, R.A.; Li, Y.T. Ceramide glycosylation catalyzed by glucosylceramide synthase and cancer drug resistance. Adv. Cancer Res., 2013, 117, 59-89.
[http://dx.doi.org/10.1016/B978-0-12-394274-6.00003-0] [PMID: 23290777]
[15]
Azam, Y.J.; Machavaram, K.K.; Rostami-Hodjegan, A. The modulating effects of endogenous substances on drug metabolising enzymes and implications for inter-individual variability and quantitative prediction. Curr. Drug Metab., 2014, 15(6), 599-619.
[http://dx.doi.org/10.2174/1389200215666140926151642] [PMID: 25255874]
[16]
Eun, H.S.; Cho, S.Y.; Lee, B.S.; Kim, S.; Song, I.S.; Chun, K.; Oh, C.H.; Yeo, M.K.; Kim, S.H.; Kim, K.H. Cytochrome P450 4A11 expression in tumor cells: A favorable prognostic factor for hepatocellular carcinoma patients. J. Gastroenterol. Hepatol., 2019, 34(1), 224-233.
[http://dx.doi.org/10.1111/jgh.14406] [PMID: 30069903]
[17]
Eun, H.S.; Cho, S.Y.; Lee, B.S.; Seong, I.O.; Kim, K.H. Profiling cytochrome P450 family 4 gene expression in human hepatocellular carcinoma. Mol. Med. Rep., 2018, 18(6), 4865-4876.
[http://dx.doi.org/10.3892/mmr.2018.9526] [PMID: 30280198]
[18]
Yan, T.; Lu, L.; Xie, C.; Chen, J.; Peng, X.; Zhu, L.; Wang, Y.; Li, Q.; Shi, J.; Zhou, F.; Hu, M.; Liu, Z. Severely impaired and dysregulated cytochrome P450 expression and activities in hepatocellular carcinoma: Implications for personalized treatment in patients. Mol. Cancer Ther., 2015, 14(12), 2874-2886.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0274] [PMID: 26516155]
[19]
Ghassabian, S.; Rawling, T.; Zhou, F.; Doddareddy, M.R.; Tattam, B.N.; Hibbs, D.E.; Edwards, R.J.; Cui, P.H.; Murray, M. Role of human CYP3A4 in the biotransformation of sorafenib to its major oxidized metabolites. Biochem. Pharmacol., 2012, 84(2), 215-223.
[http://dx.doi.org/10.1016/j.bcp.2012.04.001] [PMID: 22513143]
[20]
Peer, C.J.; Sissung, T.M.; Kim, A.; Jain, L.; Woo, S.; Gardner, E.R.; Kirkland, C.T.; Troutman, S.M.; English, B.C.; Richardson, E.D.; Federspiel, J.; Venzon, D.; Dahut, W.; Kohn, E.; Kummar, S.; Yarchoan, R.; Giaccone, G.; Widemann, B.; Figg, W.D. Sorafenib is an inhibitor of UGT1A1 but is metabolized by UGT1A9: implications of genetic variants on pharmacokinetics and hyperbilirubinemia. Clin. Cancer Res., 2012, 18(7), 2099-2107.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2484] [PMID: 22307138]
[21]
Lu, L.; Zhou, J.; Shi, J.; Peng, X.J.; Qi, X.X.; Wang, Y.; Li, F.Y.; Zhou, F.Y.; Liu, L.; Liu, Z.Q. Drug-metabolizing activity, protein and gene expression of UDP-glucuronosyltransferases are significantly altered in hepatocellular cARCINOMA PATIENTS. PLoS One, 2015, 10(5), e0127524
[http://dx.doi.org/10.1371/journal.pone.0127524] [PMID: 26010150]
[22]
Hu, D.G.; Meech, R.; McKinnon, R.A.; Mackenzie, P.I. Transcriptional regulation of human UDP-glucuronosyltransferase genes. Drug Metab. Rev., 2014, 46(4), 421-458.
[http://dx.doi.org/10.3109/03602532.2014.973037] [PMID: 25336387]
[23]
Zhou, X.; Zheng, Z.; Xu, C.; Wang, J.; Min, M.; Zhao, Y.; Wang, X.; Gong, Y.; Yin, J.; Guo, M.; Guo, D.; Zheng, J.; Zhang, B.; Yin, X. Disturbance of Mammary UDP-Glucuronosyltransferase Represses Estrogen Metabolism and Exacerbates Experimental Breast Cancer. J. Pharm. Sci., 2017, 106(8), 2152-2162.
[http://dx.doi.org/10.1016/j.xphs.2017.04.073] [PMID: 28479355]
[24]
Dates, C.R.; Fahmi, T.; Pyrek, S.J.; Yao-Borengasser, A.; Borowa-Mazgaj, B.; Bratton, S.M.; Kadlubar, S.A.; Mackenzie, P.I.; Haun, R.S.; Radominska-Pandya, A. Human UDP-Glucuronosyltransferases: Effects of altered expression in breast and pancreatic cancer cell lines. Cancer Biol. Ther., 2015, 16(5), 714-723.
[http://dx.doi.org/10.1080/15384047.2015.1026480] [PMID: 25996841]
[25]
Surichan, S.; Arroo, R.R.; Ruparelia, K.; Tsatsakis, A.M.; Androutsopoulos, V.P. Nobiletin bioactivation in MDA-MB-468 breast cancer cells by cytochrome P450 CYP1 enzymes. Food Chem. Toxicol., 2018, 113, 228-235.
[http://dx.doi.org/10.1016/j.fct.2018.01.047] [PMID: 29408579]
[26]
Vaclavikova, R.; Hubackova, M.; Stribrna-Sarmanova, J.; Kodet, R.; Mrhalova, M.; Novotny, J.; Gut, I.; Soucek, P. RNA expression of cytochrome P450 in breast cancer patients. Anticancer Res., 2007, 27(6C), 4443-4450.
[PMID: 18214058]
[27]
Thota, K.; Prasad, K.; Basaveswara Rao, M.V. Detection of cytochrome P450 polymorphisms in breast cancer patients may impact on tamoxifen therapy. Asian Pac. J. Cancer Prev., 2018, 19(2), 343-350.
[PMID: 29479969]
[28]
Romero-Lorca, A.; Novillo, A.; Gaibar, M.; Bandrés, F.; Fernández-Santander, A. Impacts of the Glucuronidase Genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on Tamoxifen Metabolism in Breast Cancer Patients. PLoS One, 2015, 10(7), e0132269
[http://dx.doi.org/10.1371/journal.pone.0132269] [PMID: 26176234]
[29]
Sutiman, N.; Lim, J.S.L.; Muerdter, T.E.; Singh, O.; Cheung, Y.B.; Ng, R.C.H.; Yap, Y.S.; Wong, N.S.; Ang, P.C.S.; Dent, R.; Schroth, W.; Schwab, M.; Khor, C.C.; Chowbay, B. Pharmacogenetics of UGT1A4, UGT2B7 and UGT2B15 and their influence on tamoxifen disposition in asian breast cancer patients. Clin. Pharmacokinet., 2016, 55(10), 1239-1250.
[http://dx.doi.org/10.1007/s40262-016-0402-7] [PMID: 27098059]
[30]
Wang, J.; Wang, T.; Yin, G.Y.; Yang, L.; Wang, Z.G.; Bu, X.B. Glutathione S-transferase polymorphisms influence chemotherapy response and treatment outcome in breast cancer. Genet. Mol. Res., 2015, 14(3), 11126-11132.
[http://dx.doi.org/10.4238/2015.September.22.6] [PMID: 26400343]
[31]
Oliveira, A.L.; Oliveira Rodrigues, F.F.; Dos Santos, R.E.; Rozenowicz, R.L.; Barbosa de Melo, M. GSTT1, GSTM1, and GSTP1 polymorphisms as a prognostic factor in women with breast cancer. Genet. Mol. Res., 2014, 13(2), 2521-2530.
[http://dx.doi.org/10.4238/2014.January.22.9] [PMID: 24535908]
[32]
Gomez, A.; Karlgren, M.; Edler, D.; Bernal, M.L.; Mkrtchian, S.; Ingelman-Sundberg, M. Expression of CYP2W1 in colon tumors: regulation by gene methylation. Pharmacogenomics, 2007, 8(10), 1315-1325.
[http://dx.doi.org/10.2217/14622416.8.10.1315] [PMID: 17979506]
[33]
Stenstedt, K.; Hallstrom, M.; Johansson, I.; Ingelman-Sundberg, M.; Ragnhammar, P.; Edler, D. The expression of CYP2W1: a prognostic marker in colon cancer. Anticancer Res., 2012, 32(9), 3869-3874.
[PMID: 22993331]
[34]
Chung, F.F.; Mai, C.W.; Ng, P.Y.; Leong, C.O. Cytochrome P450 2W1 (CYP2W1) in colorectal cancers. Curr. Cancer Drug Targets, 2016, 16(1), 71-78.
[http://dx.doi.org/10.2174/1568009616888151112095948] [PMID: 26563883]
[35]
Ren, A.; Qin, T.; Wang, Q.; Du, H.; Zhong, D.; Hua, Y.; Zhu, L. Cytochrome P450 1A1 gene polymorphisms and digestive tract cancer susceptibility: a meta-analysis. J. Cell. Mol. Med., 2016, 20(9), 1620-1631.
[http://dx.doi.org/10.1111/jcmm.12853] [PMID: 27061602]
[36]
Murray, G.I.; Taylor, M.C.; Burke, M.D.; Melvin, W.T. Enhanced expression of cytochrome P450 in stomach cancer. Br. J. Cancer, 1998, 77(7), 1040-1044.
[http://dx.doi.org/10.1038/bjc.1998.173] [PMID: 9569036]
[37]
Cengiz, B.; Yumrutas, O.; Bozgeyik, E.; Borazan, E.; Igci, Y.Z.; Bozgeyik, I.; Oztuzcu, S. Differential expression of the UGT1A family of genes in stomach cancer tissues. Tumour Biol., 2015, 36(8), 5831-5837.
[http://dx.doi.org/10.1007/s13277-015-3253-1] [PMID: 25712374]
[38]
Liu, H.; Li, Q.; Cheng, X.; Wang, H.; Wang, G.; Hao, H. UDP-glucuronosyltransferase 1A determinates intracellular accumulation and anti-cancer effect of β-lapachone in human colon cancer cells. PLoS One, 2015, 10(2), e0117051
[http://dx.doi.org/10.1371/journal.pone.0117051] [PMID: 25692465]
[39]
Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[40]
Forkert, P.G.; Lord, J.A.; Parkinson, A. Alterations in expression of CYP1A1 and NADPH-cytochrome P450 reductase during lung tumor development in SWR/J mice. Carcinogenesis, 1996, 17(1), 127-132.
[http://dx.doi.org/10.1093/carcin/17.1.127] [PMID: 8565121]
[41]
Vasile, E.; Tibaldi, C.; Leon, G.L.; D’Incecco, A.; Giovannetti, E. Cytochrome P450 1B1 (CYP1B1) polymorphisms are associated with clinical outcome of docetaxel in non-small cell lung cancer (NSCLC) patients. J. Cancer Res. Clin. Oncol., 2015, 141(7), 1189-1194.
[http://dx.doi.org/10.1007/s00432-014-1880-3] [PMID: 25504507]
[42]
Sun, L.; Fan, X. Expression of cytochrome P450 2A13 in human non-small cell lung cancer and its clinical significance. J. Biomed. Res., 2013, 27(3), 202-207.
[PMID: 23720675]
[43]
Wang, H.; Gao, X.; Zhang, X.; Gong, W.; Peng, Z.; Wang, B.; Wang, L.; Chang, S.; Ma, P.; Wang, S. Glutathione S-transferase gene polymorphisms are associated with an improved treatment response to cisplatin-based chemotherapy in patients with Non-Small Cell Lung Cancer (NSCLC): A meta-analysis. Med. Sci. Monit., 2018, 24, 7482-7492.
[http://dx.doi.org/10.12659/MSM.912373] [PMID: 30341887]
[44]
Yilmaz, L.; Borazan, E.; Aytekin, T.; Baskonus, I.; Aytekin, A.; Oztuzcu, S.; Bozdag, Z.; Balik, A. Increased UGT1A3 and UGT1A7 expression is associated with pancreatic cancer. Asian Pac. J. Cancer Prev., 2015, 16(4), 1651-1655.
[http://dx.doi.org/10.7314/APJCP.2015.16.4.1651] [PMID: 25743847]
[45]
Grant, D.J.; Chen, Z.; Howard, L.E.; Wiggins, E.; De Hoedt, A.; Vidal, A.C.; Carney, S.T.; Squires, J.; Magyar, C.E.; Huang, J.; Freedland, S.J. UDP-glucuronosyltransferases and biochemical recurrence in prostate cancer progression. BMC Cancer, 2017, 17(1), 463.
[http://dx.doi.org/10.1186/s12885-017-3463-6] [PMID: 28673330]
[46]
Norris, J.D.; Ellison, S.J.; Baker, J.G.; Stagg, D.B.; Wardell, S.E.; Park, S.; Alley, H.M.; Baldi, R.M.; Yllanes, A.; Andreano, K.J.; Stice, J.P.; Lawrence, S.A.; Eisner, J.R.; Price, D.K.; Moore, W.R.; Figg, W.D.; McDonnell, D.P. Androgen receptor antagonism drives cytochrome P450 17A1 inhibitor efficacy in prostate cancer. J. Clin. Invest., 2017, 127(6), 2326-2338.
[http://dx.doi.org/10.1172/JCI87328] [PMID: 28463227]
[47]
McFadyen, M.C.; Melvin, W.T.; Murray, G.I. Cytochrome P450 CYP1B1 activity in renal cell carcinoma. Br. J. Cancer, 2004, 91(5), 966-971.
[http://dx.doi.org/10.1038/sj.bjc.6602053] [PMID: 15280921]
[48]
McFadyen, M.C.; Cruickshank, M.E.; Miller, I.D.; McLeod, H.L.; Melvin, W.T.; Haites, N.E.; Parkin, D.; Murray, G.I. Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer. Br. J. Cancer, 2001, 85(2), 242-246.
[http://dx.doi.org/10.1054/bjoc.2001.1907] [PMID: 11461084]
[49]
Margaillan, G.; Rouleau, M.; Fallon, J.K.; Caron, P.; Villeneuve, L.; Turcotte, V.; Smith, P.C.; Joy, M.S.; Guillemette, C. Quantitative profiling of human renal UDP-glucuronosyltransferases and glucuronidation activity: a comparison of normal and tumoral kidney tissues. Drug Metab. Dispos., 2015, 43(4), 611-619.
[http://dx.doi.org/10.1124/dmd.114.062877] [PMID: 25650382]
[50]
Whiteside, T.L. The tumor microenvironment and its role in promoting tumor growth. Oncogene, 2008, 27(45), 5904-5912.
[http://dx.doi.org/10.1038/onc.2008.271] [PMID: 18836471]
[51]
Fukumura, D.; Jain, R.K. Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J. Cell. Biochem., 2007, 101(4), 937-949.
[http://dx.doi.org/10.1002/jcb.21187] [PMID: 17171643]
[52]
Patterson, L.H.; McKeown, S.R. AQ4N: a new approach to hypoxia-activated cancer chemotherapy. Br. J. Cancer, 2000, 83(12), 1589-1593.
[http://dx.doi.org/10.1054/bjoc.2000.1564] [PMID: 11104551]
[53]
Legendre, C.; Hori, T.; Loyer, P.; Aninat, C.; Ishida, S.; Glaise, D.; Lucas-Clerc, C.; Boudjema, K.; Guguen-Guillouzo, C.; Corlu, A.; Morel, F. Drug-metabolising enzymes are down-regulated by hypoxia in differentiated human hepatoma HepaRG cells: HIF-1alpha involvement in CYP3A4 repression. Eur. J. Cancer, 2009, 45(16), 2882-2892.
[http://dx.doi.org/10.1016/j.ejca.2009.07.010] [PMID: 19695866]
[54]
Moon, Y.; Park, B.; Park, H. Hypoxic repression of CYP7A1 through a HIF-1α- and SHP-independent mechanism. BMB Rep., 2016, 49(3), 173-178.
[http://dx.doi.org/10.5483/BMBRep.2016.49.3.188] [PMID: 26521940]
[55]
du Souich, P.; Fradette, C. The effect and clinical consequences of hypoxia on cytochrome P450, membrane carrier proteins activity and expression. Expert Opin. Drug Metab. Toxicol., 2011, 7(9), 1083-1100.
[http://dx.doi.org/10.1517/17425255.2011.586630] [PMID: 21619472]
[56]
Fradette, C.; Du Souich, P. Effect of hypoxia on cytochrome P450 activity and expression. Curr. Drug Metab., 2004, 5(3), 257-271.
[http://dx.doi.org/10.2174/1389200043335577] [PMID: 15180495]
[57]
Kim, H.G.; Han, E.H.; Im, J.H.; Lee, E.J.; Jin, S.W.; Jeong, H.G. Caffeic acid phenethyl ester inhibits 3-MC-induced CYP1A1 expression through induction of hypoxia-inducible factor-1α. Biochem. Biophys. Res. Commun., 2015, 465(3), 562-568.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.060] [PMID: 26296470]
[58]
Gerweck, L.E.; Vijayappa, S.; Kozin, S. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol. Cancer Ther., 2006, 5(5), 1275-1279.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0024] [PMID: 16731760]
[59]
Tsukamoto, H.; Fujieda, K.; Senju, S.; Ikeda, T.; Oshiumi, H.; Nishimura, Y. Immune-suppressive effects of interleukin-6 on T-cell-mediated anti-tumor immunity. Cancer Sci., 2018, 109(3), 523-530.
[http://dx.doi.org/10.1111/cas.13433] [PMID: 29090850]
[60]
Kumari, N.; Dwarakanath, B.S.; Das, A.; Bhatt, A.N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol., 2016, 37(9), 11553-11572.
[http://dx.doi.org/10.1007/s13277-016-5098-7] [PMID: 27260630]
[61]
Bergmann, J.; Müller, M.; Baumann, N.; Reichert, M.; Heneweer, C.; Bolik, J.; Lücke, K.; Gruber, S.; Carambia, A.; Boretius, S.; Leuschner, I.; Becker, T.; Rabe, B.; Herkel, J.; Wunderlich, F.T.; Mittrücker, H.W.; Rose-John, S.; Schmidt-Arras, D. IL-6 trans-signaling is essential for the development of hepatocellular carcinoma in mice. Hepatology, 2017, 65(1), 89-103.
[http://dx.doi.org/10.1002/hep.28874] [PMID: 27770462]
[62]
Rivory, L.P.; Slaviero, K.A.; Clarke, S.J. Hepatic cytochrome P450 3A drug metabolism is reduced in cancer patients who have an acute-phase response. Br. J. Cancer, 2002, 87(3), 277-280.
[http://dx.doi.org/10.1038/sj.bjc.6600448] [PMID: 12177794]
[63]
Dallas, S.; Chattopadhyay, S.; Sensenhauser, C.; Batheja, A.; Singer, M.; Silva, J. Interleukins-12 and -23 do not alter expression or activity of multiple cytochrome P450 enzymes in cryopreserved human hepatocytes. Drug Metab. Dispos., 2013, 41(4), 689-693.
[http://dx.doi.org/10.1124/dmd.112.048884] [PMID: 23349185]
[64]
Febvre-James, M.; Bruyère, A.; Le Vée, M.; Fardel, O. The JAK1/2 Inhibitor Ruxolitinib Reverses Interleukin-6-Mediated Suppression of Drug-Detoxifying Proteins in Cultured Human Hepatocytes. Drug Metab. Dispos., 2018, 46(2), 131-140.
[http://dx.doi.org/10.1124/dmd.117.078048] [PMID: 29162613]
[65]
Habano, W.; Gamo, T.; Sugai, T.; Otsuka, K.; Wakabayashi, G.; Ozawa, S. CYP1B1, but not CYP1A1, is downregulated by promoter methylation in colorectal cancers. Int. J. Oncol., 2009, 34(4), 1085-1091.
[http://dx.doi.org/10.3892/ijo_00000235] [PMID: 19287966]
[66]
Gagnon, J.F.; Bernard, O.; Villeneuve, L.; Têtu, B.; Guillemette, C. Irinotecan inactivation is modulated by epigenetic silencing of UGT1A1 in colon cancer. Clin. Cancer Res., 2006, 12(6), 1850-1858.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2130] [PMID: 16551870]
[67]
Bélanger, A.S.; Tojcic, J.; Harvey, M.; Guillemette, C. Regulation of UGT1A1 and HNF1 transcription factor gene expression by DNA methylation in colon cancer cells. BMC Mol. Biol., 2010, 11, 9.
[http://dx.doi.org/10.1186/1471-2199-11-9] [PMID: 20096102]
[68]
Russo, J.; Russo, I.H. The role of estrogen in the initiation of breast cancer. J. Steroid Biochem. Mol. Biol., 2006, 102(1-5), 89-96.
[http://dx.doi.org/10.1016/j.jsbmb.2006.09.004] [PMID: 17113977]
[69]
Harrington, W.R.; Sengupta, S.; Katzenellenbogen, B.S. Estrogen regulation of the glucuronidation enzyme UGT2B15 in estrogen receptor-positive breast cancer cells. Endocrinology, 2006, 147(8), 3843-3850.
[http://dx.doi.org/10.1210/en.2006-0358] [PMID: 16690804]
[70]
Hu, D.G.; Selth, L.A.; Tarulli, G.A.; Meech, R.; Wijayakumara, D.; Chanawong, A.; Russell, R.; Caldas, C.; Robinson, J.L.L.; Carroll, J.S.; Tilley, W.D.; Mackenzie, P.I.; Hickey, T.E. Androgen and Estrogen Receptors in Breast Cancer Coregulate Human UDP-Glucuronosyltransferases 2B15 and 2B17. Cancer Res., 2016, 76(19), 5881-5893.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3372] [PMID: 27496708]
[71]
Edavana, V.K.; Penney, R.B.; Yao-Borengasser, A.; Williams, S.; Rogers, L.; Dhakal, I.B.; Kadlubar, S. Fulvestrant up regulates UGT1A4 and MRPs through ERα and c-Myb pathways: a possible primary drug disposition mechanism. Springerplus, 2013, 2, 620.
[http://dx.doi.org/10.1186/2193-1801-2-620] [PMID: 24298433]
[72]
Mochinaga, K.; Tsuchiya, T.; Nagasaki, T.; Arai, J.; Tominaga, T.; Yamasaki, N.; Matsumoto, K.; Miyazaki, T.; Nanashima, A.; Hayashi, T.; Tsukamoto, K.; Nagayasu, T. High expression of dihydropyrimidine dehydrogenase in lung adenocarcinoma is associated with mutations in epidermal growth factor receptor: implications for the treatment of non--small-cell lung cancer using 5-fluorouracil. Clin. Lung Cancer, 2014, 15(2), 136-144.e4.
[http://dx.doi.org/10.1016/j.cllc.2013.09.002] [PMID: 24405586]
[73]
Rieger, J.K.; Reutter, S.; Hofmann, U.; Schwab, M.; Zanger, U.M. Inflammation-associated microRNA-130b down-regulates cytochrome P450 activities and directly targets CYP2C9. Drug Metab. Dispos., 2015, 43(6), 884-888.
[http://dx.doi.org/10.1124/dmd.114.062844] [PMID: 25802328]
[74]
Wijayakumara, D.D.; Mackenzie, P.I.; McKinnon, R.A.; Hu, D.G.; Meech, R. Regulation of UDP-glucuronosyltransferases UGT2B4 and UGT2B7 by microRNAs in liver cancer cells. J. Pharmacol. Exp. Ther., 2017, 361(3), 386-397.
[http://dx.doi.org/10.1124/jpet.116.239707] [PMID: 28389526]
[75]
Margaillan, G.; Lévesque, É.; Guillemette, C. Epigenetic regulation of steroid inactivating UDP-glucuronosyltransferases by microRNAs in prostate cancer. J. Steroid Biochem. Mol. Biol.,, 2016, 155(Pt A), 85-93.
[http://dx.doi.org/10.1016/j.jsbmb.2015.09.021] [PMID: 26385605]
[76]
Goldstein, I.; Rivlin, N.; Shoshana, O.Y.; Ezra, O.; Madar, S.; Goldfinger, N.; Rotter, V. Chemotherapeutic agents induce the expression and activity of their clearing enzyme CYP3A4 by activating p53. Carcinogenesis, 2013, 34(1), 190-198.
[http://dx.doi.org/10.1093/carcin/bgs318] [PMID: 23054612]
[77]
Hu, D.G.; Rogers, A.; Mackenzie, P.I. Epirubicin upregulates UDP glucuronosyltransferase 2B7 expression in liver cancer cells via the p53 pathway. Mol. Pharmacol., 2014, 85(6), 887-897.
[http://dx.doi.org/10.1124/mol.114.091603] [PMID: 24682467]
[78]
Thomas, M.; Bayha, C.; Vetter, S.; Hofmann, U.; Schwarz, M.; Zanger, U.M.; Braeuning, A. Activating and inhibitory functions of WNT/β-catenin in the induction of cytochromes P450 by nuclear receptors in HepaRG cells. Mol. Pharmacol., 2015, 87(6), 1013-1020.
[http://dx.doi.org/10.1124/mol.114.097402] [PMID: 25824487]
[79]
Barouki, R.; Morel, Y. Repression of cytochrome P450 1A1 gene expression by oxidative stress: mechanisms and biological implications. Biochem. Pharmacol., 2001, 61(5), 511-516.
[http://dx.doi.org/10.1016/S0006-2952(00)00543-8] [PMID: 11239493]
[80]
Bezerra, L.S.; Santos-Veloso, M.A.O.; Bezerra Junior, N.D.S.; Fonseca, L.C.D.; Sales, W.L.A. Impacts of Cytochrome P450 2D6 (CYP2D6) Genetic Polymorphism in Tamoxifen Therapy for Breast Cancer. Rev. Bras. Ginecol. Obstet., 2018, 40(12), 794-799.
[http://dx.doi.org/10.1055/s-0038-1676303] [PMID: 30536272]
[81]
Leong, C.O.; Gaskell, M.; Martin, E.A.; Heydon, R.T.; Farmer, P.B.; Bibby, M.C.; Cooper, P.A.; Double, J.A.; Bradshaw, T.D.; Stevens, M.F. Antitumour 2-(4-aminophenyl)benzothiazoles generate DNA adducts in sensitive tumour cells in vitro and in vivo. Br. J. Cancer, 2003, 88(3), 470-477.
[http://dx.doi.org/10.1038/sj.bjc.6600719] [PMID: 12569393]
[82]
Dellinger, R.W.; Matundan, H.H.; Ahmed, A.S.; Duong, P.H.; Meyskens, F.L., Jr Anti-cancer drugs elicit re-expression of UDP-glucuronosyltransferases in melanoma cells. PLoS One, 2012, 7(10), e47696
[http://dx.doi.org/10.1371/journal.pone.0047696] [PMID: 23110092]
[83]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[84]
Diasio, R.B.; Harris, B.E. Clinical pharmacology of 5-fluorouracil. Clin. Pharmacokinet., 1989, 16(4), 215-237.
[http://dx.doi.org/10.2165/00003088-198916040-00002] [PMID: 2656050]
[85]
Launay, M.; Dahan, L.; Duval, M.; Rodallec, A.; Milano, G.; Duluc, M.; Lacarelle, B.; Ciccolini, J.; Seitz, J.F. Beating the odds: efficacy and toxicity of dihydropyrimidine dehydrogenase-driven adaptive dosing of 5-FU in patients with digestive cancer. Br. J. Clin. Pharmacol., 2016, 81(1), 124-130.
[http://dx.doi.org/10.1111/bcp.12790] [PMID: 26392323]
[86]
Ciccolini, J.; Gross, E.; Dahan, L.; Lacarelle, B.; Mercier, C. Routine dihydropyrimidine dehydrogenase testing for anticipating 5-fluorouracil-related severe toxicities: hype or hope? Clin. Colorectal Cancer, 2010, 9(4), 224-228.
[http://dx.doi.org/10.3816/CCC.2010.n.033] [PMID: 20920994]
[87]
Zhang, C.; Liu, H.; Ma, B.; Song, Y.; Gao, P.; Xu, Y.; Yu, D.; Wang, Z. The impact of the expression level of intratumoral dihydropyrimidine dehydrogenase on chemotherapy sensitivity and survival of patients in gastric cancer: A meta-analysis. Dis. Markers, 2017, 2017, 9202676
[http://dx.doi.org/10.1155/2017/9202676] [PMID: 28255193]
[88]
de Almagro, M.C.; Selga, E.; Thibaut, R.; Porte, C.; Noé, V.; Ciudad, C.J. UDP-glucuronosyltransferase 1A6 overexpression in breast cancer cells resistant to methotrexate. Biochem. Pharmacol., 2011, 81(1), 60-70.
[http://dx.doi.org/10.1016/j.bcp.2010.09.008] [PMID: 20854796]
[89]
Xie, S.; Tu, Z.; Xiong, J.; Kang, G.; Zhao, L.; Hu, W.; Tan, H.; Tembo, K.M.; Ding, Q.; Deng, X.; Huang, J.; Zhang, Q. CXCR4 promotes cisplatin-resistance of non-small cell lung cancer in a CYP1B1-dependent manner. Oncol. Rep., 2017, 37(2), 921-928.
[http://dx.doi.org/10.3892/or.2016.5289] [PMID: 27922681]
[90]
Sharma, R.; Gatchie, L.; Williams, I.S.; Jain, S.K.; Vishwakarma, R.A.; Chaudhuri, B.; Bharate, S.B. Glycyrrhiza glabra extract and quercetin reverses cisplatin resistance in triple-negative MDA-MB-468 breast cancer cells via inhibition of cytochrome P450 1B1 enzyme. Bioorg. Med. Chem. Lett., 2017, 27(24), 5400-5403.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.013] [PMID: 29150398]
[91]
Borowa-Mazgaj, B.; Mróz, A.; Augustin, E.; Paluszkiewicz, E.; Mazerska, Z. The overexpression of CPR and P450 3A4 in pancreatic cancer cells changes the metabolic profile and increases the cytotoxicity and pro-apoptotic activity of acridine antitumor agent, C-1748. Biochem. Pharmacol., 2017, 142, 21-38.
[http://dx.doi.org/10.1016/j.bcp.2017.06.124] [PMID: 28645477]
[92]
Karlgren, M.; Gomez, A.; Stark, K.; Svärd, J.; Rodriguez-Antona, C.; Oliw, E.; Bernal, M.L.; Ramón y Cajal, S.; Johansson, I.; Ingelman-Sundberg, M. Tumor-specific expression of the novel cytochrome P450 enzyme, CYP2W1. Biochem. Biophys. Res. Commun., 2006, 341(2), 451-458.
[http://dx.doi.org/10.1016/j.bbrc.2005.12.200] [PMID: 16426568]
[93]
Ikeda, K.; Yoshisue, K.; Matsushima, E.; Nagayama, S.; Kobayashi, K.; Tyson, C.A.; Chiba, K.; Kawaguchi, Y. Bioactivation of tegafur to 5-fluorouracil is catalyzed by cytochrome P-450 2A6 in human liver microsomes in vitro. Clin. Cancer Res., 2000, 6(11), 4409-4415.
[PMID: 11106261]
[94]
Komatsu, T.; Yamazaki, H.; Shimada, N.; Nakajima, M.; Yokoi, T. Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver microsomes. Drug Metab. Dispos., 2000, 28(12), 1457-1463.
[PMID: 11095583]
[95]
Beverage, J.N.; Sissung, T.M.; Sion, A.M.; Danesi, R.; Figg, W.D. CYP2D6 polymorphisms and the impact on tamoxifen therapy. J. Pharm. Sci., 2007, 96(9), 2224-2231.
[http://dx.doi.org/10.1002/jps.20892] [PMID: 17518364]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 1
Year: 2020
Page: [67 - 76]
Pages: 10
DOI: 10.2174/1389200221666200103111053
Price: $65

Article Metrics

PDF: 34
HTML: 4