Potent Acetylcholinesterase Inhibitors: Potential Drugs for Alzheimer’s Disease

Author(s): Hulya Akıncıoğlu*, İlhami Gülçin*

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 20 , Issue 8 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Alzheimer’s disease (AD) is one of the cognitive or memory-related impairments occurring with advancing age. Since its exact mechanism is not known, the full therapy has still not been found. Acetylcholinesterase (AChE) has been reported to be a viable therapeutic target for the treatment of AD and other dementias. To this end, acetylcholinesterase inhibitors (AChEIs) are commonly used. AChE is a member of the hydrolase enzyme family. A hydrolase is an enzyme that catalyzes the hydrolysis of a chemical bond. AChE is useful for the development of novel and mechanism-based inhibitors. It has a role in the breakdown of acetylcholine (ACh) neurotransmitters, such as acetylcholinemediated neurotransmission. AChEIs are the most effective approaches to treat AD. AChE hydrolyzes ACh to acetate and choline, as an important neurotransmitter substance. Recently, Gülçin and his group explored new AChEIs. The most suggested mechanism for AD is the deficiency of ACh, which is an important neurotransmitter. In this regard, AChEIs are commonly used for the symptomatic treatment of AD. They act in different ways, such as by inhibiting AChE, protecting cells from free radical toxicity and β-amyloid-induced injury or inhibiting the release of cytokines from microglia and monocytes. This review focuses on the role of AChEIs in AD using commonly available drugs. Also, the aim of this review is to research and discuss the role of AChEIs in AD using commonly available drugs. Therefore, in our review, related topics like AD and AChEIs are highlighted. Also, the latest work related to AChEIs is compiled. In recent research studies, novel natural and synthetic AChEIs, used for AD, are quite noteworthy. These studies can be very promising in detecting potent drugs against AD.

Keywords: Acetylcholinesterase, enzyme, inhibitor, Alzheimer’s disease, Cholinesterases (ChEs), postsynaptic receptor.

[1]
Nachmansohhn, D. Chemical, Molecular Basis of Nevre Activity; Academic Press: New York, 1959.
[2]
Greenfield, S.; Vaux, D.J. Parkinson’s disease, Alzheimer’s disease and motor neurone disease: identifying a common mechanism. Neuroscience, 2002, 113(3), 485-492.
[http://dx.doi.org/10.1016/S0306-4522(02)00194-X] [PMID: 12150769]
[3]
Small, D.H.; Michaelson, S.; Sberna, G. Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis and Alzheimer’s disease. Neurochem. Int., 1996, 28(5-6), 453-483.
[http://dx.doi.org/10.1016/0197-0186(95)00099-2] [PMID: 8792327]
[4]
Soreq, H.; Seidman, S.; Seidman, S. Acetylcholinesterase--new roles for an old actor. Nat. Rev. Neurosci., 2001, 2(4), 294-302.
[http://dx.doi.org/10.1038/35067589] [PMID: 11283752]
[5]
Daniels, G. Functions of red cell surface proteins. Vox Sang., 2007, 93(4), 331-340.
[PMID: 18070278]
[6]
Getman, D.K.; Eubanks, J.H.; Camp, S.; Evans, G.A.; Taylor, P. The human gene encoding acetylcholinesterase is located on the long arm of chromosome 7. Am. J. Hum. Genet., 1992, 51(1), 170-177.
[PMID: 1609795]
[7]
Taylor, P.; Radić, Z. The cholinesterases: from genes to proteins. Annu. Rev. Pharmacol. Toxicol., 1994, 34, 281-320.
[http://dx.doi.org/10.1146/annurev.pa.34.040194.001433] [PMID: 8042853]
[8]
Göçer, H.; Akıncıoğlu, A.; Öztaşkın, N.; Göksu, S.; Gülçin, İ. Synthesis, antioxidant, and antiacetylcholinesterase activities of sulfonamide derivatives of dopamine-related compounds. Arch. Pharm. (Weinheim), 2013, 346(11), 783-792.
[http://dx.doi.org/10.1002/ardp.201300228] [PMID: 24591156]
[9]
Rosenberry, T.L. Catalysis by acetylcholinesterase: Evidence that the rate-limiting step for acylation with certain substrates precedes general acid-base catalysis. Proc. Natl. Acad. Sci. USA, 1975, 72(10), 3834-3838.
[http://dx.doi.org/10.1073/pnas.72.10.3834] [PMID: 668]
[10]
Çokuğraş, A.N. Butyrylcholineesterase: Structure, and physological importance. Turk. J. Biochem., 2003, 28, 54-61.
[11]
Ordentlich, A.; Barak, D.; Kronman, C.; Ariel, N.; Segall, Y.; Velan, B.; Shafferman, A. Functional characteristics of the oxyanion hole in human acetylcholinesterase. J. Biol. Chem., 1998, 273(31), 19509-19517.
[http://dx.doi.org/10.1074/jbc.273.31.19509] [PMID: 9677373]
[12]
Topal, M.; Gülçin, İ. Rosmarinic acid: A potent carbonic anhydrase isoenzymes inhibitor. Turk. J. Chem., 2014, 38, 894-902.
[http://dx.doi.org/10.3906/kim-1403-5]
[13]
Arabaci, B.; Gülçin, I.; Alwasel, S. Capsaicin: a potent inhibitor of carbonic anhydrase isoenzymes. Molecules, 2014, 19(7), 10103-10114.
[http://dx.doi.org/10.3390/molecules190710103] [PMID: 25014536]
[14]
Akıncıoğlu, A.; Topal, M.; Gülçin, I.; Göksu, S. Novel sulphamides and sulphonamides incorporating the tetralin scaffold as carbonic anhydrase and acetylcholine esterase inhibitors. Arch. Pharm. (Weinheim), 2014, 347(1), 68-76.
[http://dx.doi.org/10.1002/ardp.201300273] [PMID: 24243403]
[15]
Çetinkaya, Y.; Göçer, H.; Gülçin, I.; Menzek, A. Synthesis and carbonic anhydrase isoenzymes inhibitory effects of brominated diphenylmethanone and its derivatives. Arch. Pharm. (Weinheim), 2014, 347(5), 354-359.
[http://dx.doi.org/10.1002/ardp.201300349] [PMID: 24599599]
[16]
Aksu, K.; Nar, M.; Tanç, M.; Vullo, D.; Gülçin, İ.; Göksu, S.; Tümer, F.; Supuran, C.T. The synthesis of sulfamide analogues of dopamine related compounds and their carbonic anhydrase inhibitory properties. Bioorg. Med. Chem., 2013, 21, 2925-2931.
[http://dx.doi.org/10.1016/j.bmc.2013.03.077] [PMID: 23623256]
[17]
Çetinkaya, Y.; Göçer, H.; Göksu, S.; Gülçin, İ. Synthesis and carbonic anhydrase isoenzymes I and II inhibitory effects of novel benzylamine derivatives. J. Enzyme Inhib. Med. Chem., 2014, 29(2), 168-174.
[http://dx.doi.org/10.3109/14756366.2012.763163] [PMID: 23391138]
[18]
Güney, M.; Coşkun, A.; Topal, F.; Daştan, A.; Gülçin, I.; Supuran, C.T. Oxidation of cyanobenzocycloheptatrienes: Synthesis, photooxygenation reaction and carbonic anhydrase isoenzymes inhibition properties of some new benzotropone derivatives. Bioorg. Med. Chem., 2014, 22(13), 3537-3543.
[http://dx.doi.org/10.1016/j.bmc.2014.04.007] [PMID: 24856184]
[19]
Akbaba, Y.; Akıncıoğlu, A.; Göçer, H.; Göksu, S.; Gülçin, I.; Supuran, C.T. Carbonic anhydrase inhibitory properties of novel sulfonamide derivatives of aminoindanes and aminotetralins. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 35-42.
[http://dx.doi.org/10.3109/14756366.2012.750311] [PMID: 23311862]
[20]
Akıncıoğlu, A.; Akbaba, Y.; Göçer, H.; Göksu, S.; Gülçin, İ.; Supuran, C.T. Novel sulfamides as potential carbonic anhydrase isoenzymes inhibitors. Bioorg. Med. Chem., 2013, 21(6), 1379-1385.
[http://dx.doi.org/10.1016/j.bmc.2013.01.019] [PMID: 23394864]
[21]
Gülçin, I.; Beydemir, Ş. Phenolic compounds as antioxidants: carbonic anhydrase isoenzymes inhibitors. Mini Rev. Med. Chem., 2013, 13(3), 408-430.
[PMID: 23190033]
[22]
Nar, M.; Çetinkaya, Y.; Gülçin, İ.; Menzek, A. (3,4-Dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and its derivatives as carbonic anhydrase isoenzymes inhibitors. J. Enzyme Inhib. Med. Chem., 2013, 28(2), 402-406.
[http://dx.doi.org/10.3109/14756366.2012.670807] [PMID: 22468746]
[23]
Şişecioğlu, M.; Gülçin, İ.; Çankaya, M.; Özdemir, H. The inhibitory effects of L-Adrenaline on Lactoperoxidase enzyme (LPO) purified from buffalo milk. Int. J. Food Prop., 2012, 15, 1182-1189.
[http://dx.doi.org/10.1080/10942912.2010.511924]
[24]
Oztürk Sarikaya, S.B.; Topal, F.; Sentürk, M.; Gülçin, I.; Supuran, C.T. In vitro inhibition of α-carbonic anhydrase isozymes by some phenolic compounds. Bioorg. Med. Chem. Lett., 2011, 21(14), 4259-4262.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.071] [PMID: 21669522]
[25]
Göçer, H.; Gülçin, I. Caffeic acid phenethyl ester (CAPE): correlation of structure and antioxidant properties. Int. J. Food Sci. Nutr., 2011, 62(8), 821-825.
[http://dx.doi.org/10.3109/09637486.2011.585963] [PMID: 21631390]
[26]
Şişecioğlu, M.; Uguz, M.T.; Çankaya, M.; Özdemir, H.; Gülçin, İ. Effects of Ceftazidime Pentahydrate, Prednisolone, Amikacin sulfate, Ceftriaxone sodium and Teicoplanin on bovine milk lactoperoxidase activity. Int. J. Pharmacol., 2011, 7, 79-83.
[http://dx.doi.org/10.3923/ijp.2011.79.83]
[27]
Aras-Hisar, S.; Hisar, O.; Beydemir, S.; Gülçin, I.; Yanik, T. Effect of vitamin E on carbonic anhydrase enzyme activity in rainbow trout (Oncorhynchus mykiss) erythrocytes in vitro and in vivo. Acta Vet. Hung., 2004, 52(4), 413-422.
[http://dx.doi.org/10.1556/AVet.52.2004.4.4] [PMID: 15595275]
[28]
Beydemir, S.; Gülçin, I. Effects of melatonin on carbonic anhydrase from human erythrocytes in vitro and from rat erythrocytes in vivo. J. Enzyme Inhib. Med. Chem., 2004, 19(2), 193-197.
[http://dx.doi.org/10.1080/14756360310001656736] [PMID: 15449736]
[29]
Gülçin, I.; Beydemir, S.; Büyükokuroğlu, M.E. In vitro and in vivo effects of dantrolene on carbonic anhydrase enzyme activities. Biol. Pharm. Bull., 2004, 27(5), 613-616.
[http://dx.doi.org/10.1248/bpb.27.613] [PMID: 15133231]
[30]
Hisar, O.; Beydemir, S.; Gülçin, I.; Küfrevioğlu, Ö.İ.; Supuran, C.T. Effects of low molecular weight plasma inhibitors of rainbow trout (Oncorhynchus mykiss) on human erythrocyte carbonic anhydrase-II isozyme activity in vitro and rat erythrocytes in vivo. J. Enzyme Inhib. Med. Chem., 2005, 20(1), 35-39.
[http://dx.doi.org/10.1080/1475636040001704461] [PMID: 15895682]
[31]
Hisar, O.; Beydemir, Ş.; Gülçin, İ. ArasHisar, Ş.; Yanık, T.; Küfrevioğlu, Ö.İ. The effect of melatonin hormone on carbonic anhydrase enzyme activity in rainbow trout (Oncorhynchus mykiss) erythrocytes in vitro and in vivo. Turk. J. Vet. Anim. Sci., 2005, 29, 841-845.
[32]
Innocenti, A.; Gülçin, I.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Antioxidant polyphenols effectively inhibit mammalian isoforms I-XV. Bioorg. Med. Chem. Lett., 2010, 20(17), 5050-5053.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.038] [PMID: 20674354]
[33]
Innocenti, A.; Beyza Öztürk Sarıkaya, S.; Gülçin, İ.; Supuran, C.T. Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I-XIV with a series of natural product polyphenols and phenolic acids. Bioorg. Med. Chem., 2010, 18(6), 2159-2164.
[http://dx.doi.org/10.1016/j.bmc.2010.01.076] [PMID: 20185318]
[34]
Sarikaya, S.B.; Gülçin, I.; Supuran, C.T. Carbonic anhydrase inhibitors: Inhibition of human erythrocyte isozymes I and II with a series of phenolic acids. Chem. Biol. Drug Des., 2010, 75(5), 515-520.
[http://dx.doi.org/10.1111/j.1747-0285.2010.00965.x] [PMID: 20486938]
[35]
Sentürk, M.; Gülçin, I.; Beydemir, S.; Küfrevioğlu, Ö.İ.; Supuran, C.T. In Vitro inhibition of human carbonic anhydrase I and II isozymes with natural phenolic compounds. Chem. Biol. Drug Des., 2011, 77(6), 494-499.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01104.x] [PMID: 21332948]
[36]
Sentürk, M.; Gülçin, I.; Daştan, A.; Küfrevioğlu, Ö.İ.; Supuran, C.T. Carbonic anhydrase inhibitors. Inhibition of human erythrocyte isozymes I and II with a series of antioxidant phenols. Bioorg. Med. Chem., 2009, 17(8), 3207-3211.
[http://dx.doi.org/10.1016/j.bmc.2009.01.067] [PMID: 19231207]
[37]
Çoban, T.A.; Beydemir, S.; Gülçin, I.; Ekinci, D. Morphine inhibits erythrocyte carbonic anhydrase in vitro and in vivo. Biol. Pharm. Bull., 2007, 30(12), 2257-2261.
[http://dx.doi.org/10.1248/bpb.30.2257] [PMID: 18057708]
[38]
Çoban, T.A.; Beydemir, Ş.; Gülçin, İ.; Ekinci, D. The inhibitory effect of ethanol on carbonic anhydrase isoenzymes: In vivo and in vitro studies. J. Enzyme Inhib. Med. Chem., 2008, 23, 266-270.
[http://dx.doi.org/10.1080/14756360701474780] [PMID: 18343914]
[39]
Sişecioğlu, M.; Çankaya, M.; Gülçin, I.; Özdemir, H. The inhibitory effect of propofol on bovine lactoperoxidase. Protein Pept. Lett., 2009, 16(1), 46-49.
[http://dx.doi.org/10.2174/092986609787049394] [PMID: 19149672]
[40]
Şişecioğlu, M.; Gülçin, İ.; Çankaya, M.; Atasever, A.; Özdemir, H. The effects of norepinephrine on Lactoperoxidase enzyme (LPO). Sci. Res. Essays, 2010, 5, 1351-1356.
[41]
Şişecioğlu, M.; Kireçci, E.; Çankaya, M.; Özdemir, H.; Gülçin, İ.; Atasever, A. The prohibitive effect of Lactoperoxidase system (LPS) on some pathogen fungi and bacteria. Afr. J. Pharm. Pharmacol., 2010, 4, 671-677.
[42]
Şişecioğlu, M.; Çankaya, M.; Gülçin, İ.; Özdemir, H. Interactions of melatonin and serotonin with lactoperoxidase enzyme. J. Enzyme Inhib. Med. Chem., 2010, 25(6), 779-783.
[http://dx.doi.org/10.3109/14756360903425239] [PMID: 20121623]
[43]
Güllçin, I.; Küfrevioğlu, Ö.İ.; Oktay, M. Purification and characterization of polyphenol oxidase from nettle (Urtica dioica L.) and inhibitory effects of some chemicals on enzyme activity. J. Enzyme Inhib. Med. Chem., 2005, 20(3), 297-302.
[http://dx.doi.org/10.1080/1475636032000141890] [PMID: 16119202]
[44]
Sentürk, M.; Gülçin, I.; Çiftci, M.; Küfrevioğlu, Ö.İ. Dantrolene inhibits human erythrocyte glutathione reductase. Biol. Pharm. Bull., 2008, 31(11), 2036-2039.
[http://dx.doi.org/10.1248/bpb.31.2036] [PMID: 18981569]
[45]
Gülçin, İ.; Beydemir, Ş.; Çoban, T.A.; Ekinci, D. The inhibitory effect of dantrolene sodium and propofol on 6-phosphogluconate dehydrogenase from rat erythrocyte. Fresenius Environ. Bull., 2008, 17, 1283-1287.
[46]
Beydemir, Ş.; Gülçin, İ.; Hisar, O.; Küfrevioğlu, Ö.İ.; Yanık, T. Effect of melatonin on glucose-6-phospate dehydrogenase from rainbow trout (Oncorhynchus mykiss) erythrocytes in vitro and in vivo. J. Appl. Anim. Res., 2005, 28, 65-68.
[http://dx.doi.org/10.1080/09712119.2005.9706791]
[47]
Beydemir, S.; Gülçin, I.; Küfrevioğlu, Ö.İ.; Ciftçi, M. Glucose 6-phosphate dehydrogenase: in vitro and in vivo effects of dantrolene sodium. Pol. J. Pharmacol., 2003, 55(5), 787-792.
[PMID: 14704475]
[48]
Taslimi, P.; Caglayan, C.; Farzaliyev, V.; Nabiyev, O.; Sujayev, A.; Turkan, F.; Kaya, R.; Gulçin, İ. Synthesis and discovery of potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and alpha-glycosidase enzymes inhibitors: The novel N,N′-bis-cyanomethylamine and alkoxymethylamine derivatives. J. Biochem. Mol. Toxicol., 2018, 32(4) e22042
[http://dx.doi.org/10.1002/jbt.22042]
[49]
Pohanka, M. Acetylcholinesterase inhibitors: a patent review (2008–Present). . Expert Opin. Ther. Pat., 2012, 22, 871-886.
[50]
Thomas, Y. Advanced lucid dreaming-The power of supplements; Lulu, 2006.
[51]
Taylor, D.; Paton, C.; Shitij, K. Maudsley Prescribing Guidelines in Psychiatry, 11th ed; Wiley-Blackwell: West Sussex, 2012.
[52]
Wright, C.I.; Geula, C.; Mesulam, M.M. Neurological cholinesterases in the normal brain and in Alzheimer’s disease: relationship to plaques, tangles, and patterns of selective vulnerability. Ann. Neurol., 1993, 34(3), 373-384.
[http://dx.doi.org/10.1002/ana.410340312] [PMID: 8363355]
[53]
Polat Köse, L.; Gülçin, İ.; Gören, A.C.; Namiesnik, J.; Martinez-Ayala, A.L.; Gorinstein, S. LC-MS/MS analysis, antioxidant and anticholinergic properties of galanga (Alpinia officinarum Hance) rhizomes. Ind. Crops Prod., 2015, 74, 712-721.
[http://dx.doi.org/10.1016/j.indcrop.2015.05.034]
[54]
Steele, L.S.; Glazier, R.H. Is donepezil effective for treating Alzheimer’s disease? Can. Fam. Physician, 1999, 45, 917-919.
[PMID: 10216789]
[55]
Tricco, A.C.; Soobiah, C.; Berliner, S.; Ho, J.M.; Ng, C.H.; Ashoor, H.M.; Chen, M.H.; Hemmelgarn, B.; Straus, S.E. Efficacy and safety of cognitive enhancers for patients with mild cognitive impairment: a systematic review and meta-analysis. CMAJ, 2013, 185(16), 1393-1401.
[http://dx.doi.org/10.1503/cmaj.130451] [PMID: 24043661]
[56]
Erkinjuntti, T.; Kurz, A.; Gauthier, S.; Bullock, R.; Lilienfeld, S.; Damaraju, C.V. Efficacy of galantamine in probable vascular dementia and Alzheimer’s disease combined with cerebrovascular disease: a randomised trial. Lancet, 2002, 359(9314), 1283-1290.
[http://dx.doi.org/10.1016/S0140-6736(02)08267-3] [PMID: 11965273]
[57]
Inglis, F. The tolerability and safety of cholinesterase inhibitors in the treatment of dementia. Int. J. Clin. Pract. Suppl., 2002, 127(127), 45-63.
[PMID: 12139367]
[58]
Yu, Q.S.; Zhu, X.; Holloway, H.W.; Whittaker, N.F.; Brossi, A.; Greig, N.H. Anticholinesterase activity of compounds related to geneserine tautomers. N-Oxides and 1,2-oxazines. J. Med. Chem., 2002, 45(17), 3684-3691.
[http://dx.doi.org/10.1021/jm010491d] [PMID: 12166941]
[59]
Snyder, C.; Lusdwig Laqueur, M.D. I saw for the first time in front of both my eyes the ominous colored halos. Arch. Ophthalmol., 1964, 72, 111-113.
[http://dx.doi.org/10.1001/archopht.1964.00970020113023] [PMID: 14149738]
[60]
Arendt, T.; Brückner, M.K.; Lange, M.; Bigl, V. Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease resemble embryonic development--a study of molecular forms. Neurochem. Int., 1992, 21(3), 381-396.
[http://dx.doi.org/10.1016/0197-0186(92)90189-X] [PMID: 1303164]
[61]
Mufson, E.J.; Counts, S.E.; Perez, S.E.; Ginsberg, S.D. Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev. Neurother., 2008, 8(11), 1703-1718.
[http://dx.doi.org/10.1586/14737175.8.11.1703] [PMID: 18986241]
[62]
Graeber, M.B.; Kösel, S.; Grasbon-Frodl, E.; Möller, H.J.; Mehraein, P. Histopathology and APOE genotype of the first Alzheimer disease patient, Auguste D. Neurogenetics, 1998, 1(3), 223-228.
[http://dx.doi.org/10.1007/s100480050033] [PMID: 10737127]
[63]
Alonso, D.; Dorronsoro, I.; Rubio, L.; Muñoz, P.; García-Palomero, E.; Del Monte, M.; Bidon-Chanal, A.; Orozco, M.; Luque, F.J.; Castro, A.; Medina, M.; Martínez, A. Donepezil-tacrine hybrid related derivatives as new dual binding site inhibitors of AChE. Bioorg. Med. Chem., 2005, 13(24), 6588-6597.
[http://dx.doi.org/10.1016/j.bmc.2005.09.029] [PMID: 16230018]
[64]
Belluti, F.; Rampa, A.; Piazzi, L.; Bisi, A.; Gobbi, S.; Bartolini, M.; Andrisano, V.; Cavalli, A.; Recanatini, M.; Valenti, P. Cholinesterase inhibitors: xanthostigmine derivatives blocking the acetylcholinesterase-induced beta-amyloid aggregation. J. Med. Chem., 2005, 48(13), 4444-4456.
[http://dx.doi.org/10.1021/jm049515h] [PMID: 15974596]
[65]
Tumiatti, V.; Andrisano, V.; Banzi, R.; Bartolini, M.; Minarini, A.; Rosini, M.; Melchiorre, C. Structure-activity relationships of acetylcholinesterase noncovalent inhibitors based on a polyamine backbone. 3. Effect of replacing the inner polymethylene chain with cyclic moieties. J. Med. Chem., 2004, 47(26), 6490-6498.
[http://dx.doi.org/10.1021/jm0494366] [PMID: 15588084]
[66]
Arduini, F.; Errico, I.; Amine, A.; Micheli, L.; Palleschi, G.; Moscone, D. Enzymatic spectrophotometric method for aflatoxin B detection based on acetylcholinesterase inhibition. Anal. Chem., 2007, 79(9), 3409-3415.
[http://dx.doi.org/10.1021/ac061819j] [PMID: 17408242]
[67]
Arduini, F.; Amine, A.; Moscone, D.; Palleschi, G. Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin b-1 detection. Mikrochim. Acta, 2010, 170, 193-214.
[http://dx.doi.org/10.1007/s00604-010-0317-1]
[68]
Brazzolotto, X.; Wandhammer, M.; Ronco, C.; Trovaslet, M.; Jean, L.; Lockridge, O.; Renard, P.Y.; Nachon, F. Human butyrylcholinesterase produced in insect cells: huprine-based affinity purification and crystal structure. FEBS J., 2012, 279(16), 2905-2916.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08672.x] [PMID: 22726956]
[69]
Massoulié, J. The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals, 2002, 11(3), 130-143.
[http://dx.doi.org/10.1159/000065054] [PMID: 12138250]
[70]
Marrs, T.C.; Maynard, R.L. Neurotranmission systems as targets for toxicants: a review. Cell Biol. Toxicol., 2013, 29(6), 381-396.
[http://dx.doi.org/10.1007/s10565-013-9259-9] [PMID: 24036955]
[71]
Marrs, T.C. Organophosphate poisoning. Pharmacol. Ther., 1993, 58(1), 51-66.
[http://dx.doi.org/10.1016/0163-7258(93)90066-M] [PMID: 8415873]
[72]
Pohanka, M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2011, 155(3), 219-229.
[http://dx.doi.org/10.5507/bp.2011.036] [PMID: 22286807]
[73]
Zawadzka, A.; Lozińska, I.; Molęda, Z.; Panasiewicz, M.; Czarnocki, Z. Highly selective inhibition of butyrylcholinesterase by a novel melatonin-tacrine heterodimers. J. Pineal Res., 2013, 54(4), 435-441.
[http://dx.doi.org/10.1111/jpi.12006] [PMID: 24325732]
[74]
Bartolucci, C.; Stojan, J.; Yu, Q.S.; Greig, N.H.; Lamba, D. Kinetics of Torpedo californica acetylcholinesterase inhibition by bisnorcymserine and crystal structure of the complex with its leaving group. Biochem. J., 2012, 444(2), 269-277.
[http://dx.doi.org/10.1042/BJ20111675] [PMID: 22390827]
[75]
Lee, N.Y.; Kang, Y.S. The inhibitory effect of rivastigmine and galantamine on choline transport in brain capillary endothelial cells. Biomol. Ther. (Seoul), 2010, 18, 65-70.
[http://dx.doi.org/10.4062/biomolther.2010.18.1.065]
[76]
Di Stefano, A.; Iannitelli, A.; Laserra, S.; Sozio, P. Drug delivery strategies for Alzheimer’s disease treatment. Expert Opin. Drug Deliv., 2011, 8(5), 581-603.
[http://dx.doi.org/10.1517/17425247.2011.561311] [PMID: 21391862]
[77]
Beilin, B.; Bessler, H.; Papismedov, L.; Weinstock, M.; Shavit, Y. Continuous physostigmine combined with morphine-based patient-controlled analgesia in the postoperative period. Acta Anaesthesiol. Scand., 2005, 49(1), 78-84.
[http://dx.doi.org/10.1111/j.1399-6576.2004.00548.x] [PMID: 15675987]
[78]
Arkhypova, V.N.; Dzyadevych, S.V.; Soldatkin, A.P.; El’skaya, A.V.; Martelet, C.; Jaffrezic-Renault, N. Development and optimisation of biosensors based on pH-sensitive field effect transistors and cholinesterases for sensitive detection of solanaceous glycoalkaloids. Biosens. Bioelectron., 2003, 18(8), 1047-1053.
[http://dx.doi.org/10.1016/S0956-5663(02)00222-1] [PMID: 12782468]
[79]
Dzyadevich, S.V.; Arkhypova, V.N.; Soldatkin, A.P.; El’skaya, A.V.; Martelet, C.; Jaffrezic-Renault, N. Enzyme biosensor for tomatine detection in tomatoes. Anal. Lett., 2004, 37, 1611-1624.
[http://dx.doi.org/10.1081/AL-120037591]
[80]
Benilova, I.V.; Arkhypova, V.N.; Dzyadeviych, S.V.; Jaffrezic-Renault, N.; Martelet, C.; Soldatkin, A.P. Kinetics of human and horse sera cholinesterases inhibition with solanaceous glycoalkaloids: Study by potentiometric biosensor. Pestic. Biochem. Physiol., 2006, 86, 203-210.
[http://dx.doi.org/10.1016/j.pestbp.2006.04.002]
[81]
Ingkaninan, K.; Phengpa, P.; Yuenyongsawad, S.; Khorana, N. Acetylcholinesterase inhibitors from Stephania venosa tuber. J. Pharm. Pharmacol., 2006, 58(5), 695-700.
[http://dx.doi.org/10.1211/jpp.58.5.0015] [PMID: 16640839]
[82]
Xiao, H.T.; Peng, J.; Liang, Y.; Yang, J.; Bai, X.; Hao, X.Y.; Yang, F.M.; Sun, Q.Y. Acetylcholinesterase inhibitors from Corydalis yanhusuo. Nat. Prod. Res., 2011, 25(15), 1418-1422.
[http://dx.doi.org/10.1080/14786410802496911] [PMID: 20234973]
[83]
Jann, M.W.; Shirley, K.L.; Small, G.W. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin. Pharmacokinet., 2002, 41(10), 719-739.
[http://dx.doi.org/10.2165/00003088-200241100-00003] [PMID: 12162759]
[84]
Jemia, M.B.; Tundis, R.; Pugliese, A.; Menichini, F.; Senatore, F.; Bruno, M.; Kchouk, M.E.; Loizzo, M.R. Effect of bioclimatic area on the composition and bioactivity of Tunisian Rosmarinus officinalis essential oils. Nat. Prod. Res., 2014, 7, 1-10.
[PMID: 25104041]
[85]
Cheewakriengkrai, L.; Gauthier, S. A 10-year perspective on donepezil. Expert Opin. Pharmacother., 2013, 14(3), 331-338.
[http://dx.doi.org/10.1517/14656566.2013.760543] [PMID: 23316713]
[86]
Pohanka, M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int. J. Mol. Sci., 2014, 15(6), 9809-9825.
[http://dx.doi.org/10.3390/ijms15069809] [PMID: 24893223]
[87]
Thies, W.; Bleiler, L.; Alzheimer, A. 2013 Alzheimer’s disease facts and figures. Alzheimers Dement., 2013, 9(2), 208-245.
[http://dx.doi.org/10.1016/j.jalz.2013.02.003] [PMID: 23507120]
[88]
Brookmeyer, R.; Johnson, E.; Ziegler-Graham, K.; Arrighi, H.M. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement., 2007, 3(3), 186-191.
[http://dx.doi.org/10.1016/j.jalz.2007.04.381] [PMID: 19595937]
[89]
Bolognesi, M.L.; Andrisano, V.; Bartolini, M.; Banzi, R.; Melchiorre, C. Propidium-based polyamine ligands as potent inhibitors of acetylcholinesterase and acetylcholinesterase-induced amyloid-β aggregation. J. Med. Chem., 2005, 48(1), 24-27.
[http://dx.doi.org/10.1021/jm049156q] [PMID: 15633997]
[90]
Rogan, S.; Lippa, C.F. Alzheimer’s disease and other dementias: a review. Am. J. Alzheimers Dis. Other Demen., 2002, 17(1), 11-17.
[http://dx.doi.org/10.1177/153331750201700106] [PMID: 11831415]
[91]
Cipriani, G.; Dolciotti, C.; Picchi, L.; Bonuccelli, U. Alzheimer and his disease: a brief history. Neurol. Sci., 2011, 32(2), 275-279.
[http://dx.doi.org/10.1007/s10072-010-0454-7] [PMID: 21153601]
[92]
Dahm, R. Alzheimer’s discovery. Curr. Biol., 2006, 16(21), R906-R910.
[http://dx.doi.org/10.1016/j.cub.2006.09.056] [PMID: 17084683]
[93]
Tasso, B.; Catto, M.; Nicolotti, O.; Novelli, F.; Tonelli, M.; Giangreco, I.; Pisani, L.; Sparatore, A.; Boido, V.; Carotti, A.; Sparatore, F. Quinolizidinyl derivatives of bi- and tricyclic systems as potent inhibitors of acetyl- and butyrylcholinesterase with potential in Alzheimer’s disease. Eur. J. Med. Chem., 2011, 46(6), 2170-2184.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.071] [PMID: 21459491]
[94]
Gao, S.; Hendrie, H.C.; Hall, K.S.; Hui, S. The relationships between age, sex, and the incidence of dementia and Alzheimer disease: a meta-analysis. Arch. Gen. Psychiatry, 1998, 55(9), 809-815.
[http://dx.doi.org/10.1001/archpsyc.55.9.809] [PMID: 9736007]
[95]
Wang, X.P.; Ding, H.L. Alzheimer’s disease: epidemiology, genetics, and beyond. Neurosci. Bull., 2008, 24(2), 105-109.
[http://dx.doi.org/10.1007/s12264-008-0105-7] [PMID: 18369390]
[96]
Hattori, H. [Elderly depression and depressive state with Alzheimer’s disease]. Nihon Rinsho, 2009, 67(4), 835-844.
[PMID: 19348250]
[97]
Williamson, J.; Goldman, J.; Marder, K.S. Genetic aspects of Alzheimer disease. Neurologist, 2009, 15(2), 80-86.
[http://dx.doi.org/10.1097/NRL.0b013e318187e76b] [PMID: 19276785]
[98]
Geula, C.; Mesulam, M.M.; Saroff, D.M.; Wu, C.K. Relationship between plaques, tangles, and loss of cortical cholinergic fibers in Alzheimer disease. J. Neuropathol. Exp. Neurol., 1998, 57(1), 63-75.
[http://dx.doi.org/10.1097/00005072-199801000-00008] [PMID: 9600198]
[99]
Szekely, C.A.; Breitner, J.C.; Zandi, P.P. Prevention of Alzheimer’s disease. Int. Rev. Psychiatry, 2007, 19(6), 693-706.
[http://dx.doi.org/10.1080/09540260701797944] [PMID: 18092245]
[100]
Ballard, C.; Gauthier, S.; Corbett, A.; Brayne, C.; Aarsland, D.; Jones, E. Alzheimer’s disease. Lancet, 2011, 377(9770), 1019-1031.
[http://dx.doi.org/10.1016/S0140-6736(10)61349-9] [PMID: 21371747]
[101]
Samanta, M.K.; Wilson, B.; Santhi, K.; Kumar, K.P.; Suresh, B. Alzheimer disease and its management: a review. Am. J. Ther., 2006, 13(6), 516-526.
[http://dx.doi.org/10.1097/01.mjt.0000208274.80496.f1] [PMID: 17122533]
[102]
Friedlander, A.H.; Norman, D.C.; Mahler, M.E.; Norman, K.M.; Yagiela, J.A. Alzheimer’s disease: psychopathology, medical management and dental implications. J. Am. Dent. Assoc., 2006, 137(9), 1240-1251.
[http://dx.doi.org/10.14219/jada.archive.2006.0381] [PMID: 16946428]
[103]
Gilman, S. Alzheimer’s disease. Perspect. Biol. Med., 1997, 40(2), 230-245.
[http://dx.doi.org/10.1353/pbm.1997.0020] [PMID: 9058953]
[104]
Villemagne, V.L.; Burnham, S.; Bourgeat, P.; Brown, B.; Ellis, K.A.; Salvado, O.; Szoeke, C.; Macaulay, S.L.; Martins, R.; Maruff, P.; Ames, D.; Rowe, C.C.; Masters, C.L. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol., 2013, 12(4), 357-367.
[http://dx.doi.org/10.1016/S1474-4422(13)70044-9] [PMID: 23477989]
[105]
Gauthier, S.; Reisberg, B.; Zaudig, M.; Petersen, R.C.; Ritchie, K.; Broich, K.; Belleville, S.; Brodaty, H.; Bennett, D.; Chertkow, H.; Cummings, J.L.; de Leon, M.; Feldman, H.; Ganguli, M.; Hampel, H.; Scheltens, P.; Tierney, M.C.; Whitehouse, P.; Winblad, B. Mild cognitive impairment. Lancet, 2006, 367(9518), 1262-1270.
[http://dx.doi.org/10.1016/S0140-6736(06)68542-5] [PMID: 16631882]
[106]
Alzheimermedsite.. http://www.alzheimermed.com.br/conceitos/aspectossocioeconomicos [Accessed April 19, 2012];
[107]
Sameem, B.; Saeedi, M.; Mahdavi, M.; Shafiee, A. A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 128, 332-345.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.060] [PMID: 27876467]
[108]
Korábečný, J.; Nepovimová, E.; Cikánková, T.; Špilovská, K.; Vašková, L.; Mezeiová, E.; Kuča, K.; Hroudová, J. Newly developed drugs for Alzheimer’s disease in relation to energy metabolism, cholinergic and monoaminergic neurotransmission. Neuroscience, 2018, 370, 191-206.
[http://dx.doi.org/10.1016/j.neuroscience.2017.06.034] [PMID: 28673719]
[109]
León, R.; Garcia, A.G.; Marco-Contelles, J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med. Res. Rev., 2013, 33(1), 139-189.
[http://dx.doi.org/10.1002/med.20248] [PMID: 21793014]
[110]
Grossberg, G.T.; Lake, J.T. The role of the psychiatrist in Alzheimer’s disease. J. Clin. Psychiatry, 1998, 59(Suppl. 9), 3-6.
[PMID: 9720480]
[111]
Taslimi, P.; Akıncıoglu, H.; Gülçin, İ. Synephrine and phenylephrine act as α-amylase, α-glycosidase, acetylcholinesterase, butyrylcholinesterase, and carbonic anhydrase enzymes inhibitors. J. Biochem. Mol. Toxicol., 2017, 31(11) e21973
[http://dx.doi.org/10.1002/jbt.21973] [PMID: 28800181]
[112]
Göçer, H.; Akincioğlu, A.; Göksu, S.; Gülçin, İ.; Supuran, C.T. Carbonic anhydrase and acetylcholinesterase inhibitory effects of carbamates and sulfamoylcarbamates. J. Enzyme Inhib. Med. Chem., 2015, 30(2), 316-320.
[http://dx.doi.org/10.3109/14756366.2014.928704] [PMID: 24964347]
[113]
Akıncıoğlu, A.; Topal, M.; Gülçin, I.; Göksu, S. Novel sulphamides and sulphonamides incorporating the tetralin scaffold as carbonic anhydrase and acetylcholine esterase inhibitors. Arch. Pharm. (Weinheim), 2014, 347(1), 68-76.
[http://dx.doi.org/10.1002/ardp.201300273] [PMID: 24243403]
[114]
Akıncioglu, H.; Gülçin, İ.; Alwasel, S.H. Investigation of inhibitory effect of humic acid on acetylcholinesterase and butyrylcholinesterase enzymes. Fresenius Environ. Bull., 2017, 26(6), 3733-3739.
[115]
Gocer, H.; Topal, F.; Topal, M.; Küçük, M.; Teke, D.; Gülçin, İ.; Alwasel, S.H.; Supuran, C.T. Acetylcholinesterase and carbonic anhydrase isoenzymes I and II inhibition profiles of taxifolin. J. Enzyme Inhib. Med. Chem., 2016, 31(3), 441-447.
[PMID: 25893707]
[116]
Taslimi, P.; Caglayan, C.; Farzaliyev, V.; Nabiyev, O.; Sujayev, A.; Turkan, F.; Kaya, R.; Gulçin, İ. Synthesis and discovery of potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase enzymes inhibitors: The novel N,N′-bis-cyanomethylamine and alkoxymethylamine derivatives. J. Biochem. Mol. Toxicol., 2018, 32(4) e22042
[http://dx.doi.org/10.1002/jbt.22042] [PMID: 29457667]
[117]
Akıncıoğlu, A.; Akıncıoğlu, H.; Gülçin, İ.; Durdagi, S.; Supuran, C.T.; Göksu, S. Discovery of potent carbonic anhydrase and acetylcholine esterase inhibitors: novel sulfamoylcarbamates and sulfamides derived from acetophenones. Bioorg. Med. Chem., 2015, 23(13), 3592-3602.
[http://dx.doi.org/10.1016/j.bmc.2015.04.019] [PMID: 25921269]
[118]
Yamali, C.; Gul, H.I.; Ece, A.; Taslimi, P.; Gulcin, I. Synthesis, molecular modeling, and biological evaluation of 4-[5-aryl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl] benzenesulfonamides toward acetylcholinesterase, carbonic anhydrase I and II enzymes. Chem. Biol. Drug Des., 2018, 91(4), 854-866.
[http://dx.doi.org/10.1111/cbdd.13149] [PMID: 29143485]
[119]
Türker, F.; Barut Celepci, D.; Aktaş, A.; Taslimi, P.; Gök, Y.; Aygün, M.; Gülçin, İ. meta-Cyanobenzyl substituted benzimidazolium salts: Synthesis, characterization, crystal structure and carbonic anhydrase, α-glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties. Arch. Pharm. (Weinheim), 2018, 351(7) e1800029
[http://dx.doi.org/10.1002/ardp.201800029] [PMID: 29963738]
[120]
Taslimi, P.; Sujayev, A.; Turkan, F.; Garibov, E.; Huyut, Z.; Farzaliyev, V.; Mamedova, S.; Gulçin, İ. Synthesis and investigation of the conversion reactions of pyrimidine-thiones with nucleophilic reagent and evaluation of their acetylcholinesterase, carbonic anhydrase inhibition, and antioxidant activities. J. Biochem. Mol. Toxicol., 2018, 32(2) e22019
[http://dx.doi.org/10.1002/jbt.22019] [PMID: 29283199]
[121]
Burmaoglu, S.; Yilmaz, A.O.; Taslimi, P.; Algul, O.; Kilic, D.; Gulcin, I. Synthesis and biological evaluation of phloroglucinol derivatives possessing α-glycosidase, acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase inhibitory activity. Arch. Pharm. (Weinheim), 2018, 351(2) e1700314
[http://dx.doi.org/10.1002/ardp.201700314] [PMID: 29323749]
[122]
Rezai, M.; Bayrak, C.; Taslimi, P.; Gulcin, I.; Menzek, A. The first synthesis and antioxidant and anticholinergic activities of 1-(4,5-dihydroxybenzyl)pyrrolidin-2-one derivative bromophenols including natural products. Turk. J. Chem., 2018, 42(3), 808-825.
[http://dx.doi.org/10.3906/kim-1709-34]
[123]
Kocyigit, U.M.; Budak, Y.; Gürdere, M.B.; Ertürk, F.; Yencilek, B.; Taslimi, P.; Gülçin, İ.; Ceylan, M. Synthesis of chalcone-imide derivatives and investigation of their anticancer and antimicrobial activities, carbonic anhydrase and acetylcholinesterase enzymes inhibition profiles. Arch. Physiol. Biochem., 2018, 124(1), 61-68.
[http://dx.doi.org/10.1080/13813455.2017.1360914] [PMID: 28792233]
[124]
Akıncıoğlu, A.; Kocaman, E.; Akıncıoğlu, H.; Salmas, R.E.; Durdagi, S.; Gülçin, İ.; Supuran, C.T.; Göksu, S. The synthesis of novel sulfamides derived from β-benzylphenethylamines as acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase enzymes inhibitors. Bioorg. Chem., 2017, 74, 238-250.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.012] [PMID: 28866249]
[125]
Öztaskın, N.; Taslimi, P.; Maraş, A.; Gülcin, İ.; Göksu, S. Novel antioxidant bromophenols with acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase inhibitory actions. Bioorg. Chem., 2017, 74, 104-114.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.010] [PMID: 28772158]
[126]
Kose, L.P.; Gulcin, I. Inhibition effects of some lignans on carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase enzymes. Rec. Nat. Prod., 2017, 11(6), 558-561.
[http://dx.doi.org/10.25135/rnp.71.17.04.074]
[127]
Budak, Y.; Kocyigit, U.M.; Gurdere, M.B.; Ozcan, K.; Taslimi, P.; Gulcin, I.; Ceylan, M. Synthesis and investigation of antibacterial activities and carbonic anhydrase and acetyl cholinesterase inhibition profiles of novel 4,5-dihydropyrazol and pyrazolyl-thiazole derivatives containing methanoisoindol-1,3-dion unit. Synth. Commun., 2017, 47(24), 2313-2323.
[http://dx.doi.org/10.1080/00397911.2017.1373406]
[128]
Topal, F.; Gulcin, I.; Dastan, A.; Guney, M. Novel eugenol derivatives:Potent acetylcholinesterase and carbonic anhydrase inhibitors. Int. J. Biol. Macromol.,, 2017, 94(Pt B), 845-851.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.096] [PMID: 27984137]
[129]
Erdemir, F.; Barut Celepci, D.; Aktaş, A.; Taslimi, P.; Gök, Y.; Karabıyık, H.; Gulçin, İ. 2-Hydroxyethyl substituted NHC precursors: Synthesis, characterization, crystal structure and carbonic anhydrase, α-glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties. J. Mol. Struct., 2018, 1155, 797-806.
[http://dx.doi.org/10.1016/j.molstruc.2017.11.079]
[130]
Yamali, C.; Gül, H.İ.; Ece, A.; Taslimi, P.; Gulçin, I. Synthesis, molecular modeling, and biological evaluation of 4-[5-aryl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl] benzenesulfonamides toward acetylcholinesterase, carbonic anhydrase I and II enzymes. Chem. Biol. Drug Des., 2018, 91(4), 854-866.
[http://dx.doi.org/10.1111/cbdd.13149] [PMID: 29143485]
[131]
Behcet, A.; Çağlılar, T.; Barut Celepci, D.; Aktaş, A.; Taslimi, P.; Gök, Y.; Aygün, M.; Kaya, R.; Gulçin, İ. Synthesis, characterization and crystal structure of 2-(4-hydroxyphenyl)ethyl and 2-(4-nitrophenyl)ethyl substituted benzimidazolium bromide salts: Their inhibitory properties against carbonic anhydrase and acetylcholinesterase. J. Mol. Struct., 2018, 1170, 160-169.
[http://dx.doi.org/10.1016/j.molstruc.2018.05.077]
[132]
Türker, F.; Barut Celepci, D.; Aktaş, A.; Taslimi, P.; Gök, Y.; Aygün, M. Gulçin, İ. Meta-cyanobenzyl substituted benzimidazole: Synthesis, characterization, crystal structure and carbonic anhydrase, α-glycosidase, butyrylcholinesterase, acetylcholinesterase inhibitory properties. Arch. Pharm. , 2018, 351(7) e201800029
[http://dx.doi.org/10.1002/ardp.201800029]
[133]
Yiğit, B.; Yiğit, M.; Barut Celepci, D.; Gök, Y.; Aktaş, A.; Aygün, M.; Taslimi, P.; Gulçin, İ. Novel benzylic substituted imidazolinium, tetrahydropyrimidinium and tetrahydrodiazepinium salts-Potent carbonic anhydrase and acetylcholinesterase inhibitors. Chem. Select, 2018, 3(27), 7976-7982.
[http://dx.doi.org/10.1002/slct.201801019]
[134]
Taslimi, P.; Gulçin, İ. Antioxidant and anticholinergic properties of olivetol. J. Food Biochem., 2018, 42(3) e12516
[http://dx.doi.org/10.1111/jfbc.12516]
[135]
Sugimoto, H.; Yamanishi, Y.; Iimura, Y.; Kawakami, Y. Donepezil hydrochloride (E2020) and other acetylcholinesterase inhibitors. Curr. Med. Chem., 2000, 7(3), 303-339.
[http://dx.doi.org/10.2174/0929867003375191] [PMID: 10637367]
[136]
Giacobini, E. Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol. Res., 2004, 50(4), 433-440.
[http://dx.doi.org/10.1016/j.phrs.2003.11.017] [PMID: 15304240]
[137]
Zengin, M.; Genç, H.; Taslimi, P.; Kestane, A.; Güçlü, E.; Ögütlü, A.; Karabay, O.; Gulçin, İ. Novel thymol bearing oxypropanolamine derivatives as potent some metabolic enzyme inhibitors - Their antidiabetic, anticholinergic and antibacterial potentials. Bioorg. Chem., 2018, 81, 119-126.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.003] [PMID: 30118983]
[138]
Huseynova, M.; Taslimi, P.; Medjidov, A.; Farzaliyev, V.; Aliyeva, M.; Gondolova, G.; Şahin, O.; Yalçın, B.; Sujayev, A.; Orman, E.B.; Özkaya, A.R.; Gülçin, İ. Synthesis, characterization, crystal structure, electrochemical studies and biological evaluation of metal complexes with thiosemicarbazone of glyoxylic acid. Polyhedron, 2018, 155, 25-33.
[http://dx.doi.org/10.1016/j.poly.2018.08.026]
[139]
Atmaca, U.; Yıldırım, A.; Taslimi, P.; Çelik, S.T.; Gülçin, İ.; Supuran, C.T.; Çelik, M. Intermolecular amination of allylic and benzylic alcohols leads to effective inhibitions of acetylcholinesterase enzyme and carbonic anhydrase I and II isoenzymes. J. Biochem. Mol. Toxicol., 2018, 32(8) e22173
[http://dx.doi.org/10.1002/jbt.22173] [PMID: 29975450]
[140]
Yiğit, B.; Yiğit, M.; Taslimi, P.; Gök, Y.; Gülçin, İ. Schiff bases and their amines: Synthesis and discovery of carbonic anhydrase and acetylcholinesterase enzymes inhibitors. Arch. Pharm. (Weinheim), 2018, 351(9) e1800146
[http://dx.doi.org/10.1002/ardp.201800146] [PMID: 30033646]
[141]
Aksu, K.; Akıncıoğlu, H.; Akıncıoğlu, A.; Göksu, S.; Tümer, F.; Gülçin, İ. Synthesis of novel sulfamides incorporating phenethylamines and determination of their inhibition profiles against some metabolic enzymes. Arch. Pharm. (Weinheim), 2018, 351(9) e1800150
[http://dx.doi.org/10.1002/ardp.201800150] [PMID: 30074266]
[142]
Taslimi, P.; Osmanova, S.; Çağlayan, C.; Turkan, F.; Sardarova, S.; Farzaliyev, V.; Sujayev, A.; Sadeghian, N.; Gulçin, İ. Novel amides of 1,1-bis-(carboxymethylthio)-1-arylethanes: Synthesis, characterization, acetylcholinesterase, butyrylcholinesterase, and carbonic anhydrase inhibitory properties. J. Biochem. Mol. Toxicol., 2018, 32(9) e22191
[http://dx.doi.org/10.1002/jbt.22191] [PMID: 29992664]
[143]
Gondolova, G.; Taslimi, P.; Medjidov, A.; Farzaliyev, V.; Sujayev, A.; Huseynova, M.; Şahin, O.; Yalçın, B.; Turkan, F.; Gulçin, İ. Synthesis, crystal structure and biological evaluation of spectroscopic characterization of Ni(II) and Co(II) complexes with N-salicyloil-N'-maleoil-hydrazine as anticholinergic and antidiabetic agents. J. Biochem. Mol. Toxicol., 2018, 32(9) e22197
[http://dx.doi.org/10.1002/jbt.22197] [PMID: 30044035]
[144]
Turkan, F.; Çetin, A.; Taslimi, P.; Gulçin, İ. Some pyrazoles derivatives: Potent carbonic anhydrase, α-glycosidase, and cholinesterase enzymes inhibitors. Arch. Pharm. (Weinheim), 2018, 351(10) e1800200
[http://dx.doi.org/10.1002/ardp.201800200] [PMID: 30246264]
[145]
Okten, S.; Ekiz, M.; Koçyiğit, U.M.; Tutar, A.; Çelik, İ.; Akkurt, M.; Gökalp, M.; Taslimi, P.; Gulçin, İ. Synthesis, characterization, crystal structures, theoretical calculations and biological evaluations of novel substituted tacrine derivatives as cholinesterase and carbonic anhydrase enzymes inhibitors. J. Mol. Struct., 2019, 1175, 906-915.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.063]
[146]
Al-Jafari, A.A. The inhibitory effect of the neuromuscular blocking agent, gallamine triethiodide, on camel retina acetylcholinesterase activity. Toxicol. Lett., 1997, 90(1), 45-51.
[http://dx.doi.org/10.1016/S0378-4274(96)03828-3] [PMID: 9020401]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 8
Year: 2020
Page: [703 - 715]
Pages: 13
DOI: 10.2174/1389557520666200103100521
Price: $65

Article Metrics

PDF: 26
HTML: 1