Network Pharmacology Analysis on Zhichan Powder in the Treatment of Parkinson's Disease

Author(s): Jia Li, Xinchang Qi, Yajuan Sun, Yingyu Zhang, Jiajun Chen*

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 23 , Issue 1 , 2020

Become EABM
Become Reviewer

Abstract:

Aims and Objective: Effective components and the mechanism of action of Zhichan powder for the treatment of Parkinson's disease were researched at a systematic level.

Materials and Methods: Screening of active components in Zhichan powder for the treatment of Parkinson's disease was conducted using the Traditional Chinese Medicine Systems Pharmacology database, and a medicine-target-disease network was established with computational network pharmacology.

Results: By using network pharmacology methods, we identified 18 major active components in Zhichan powder through screening, indicating a connection between chemical components of this Traditional Chinese Medicine and Parkinson’s disease-related targets.

Conclusion: The medicine-target-disease system of Zhichan powder established by network pharmacology permitted visualization of clustering and differences among chemical components in this prescription, as well as the complex mechanism of molecular activities among those effective components, relevant targets, pathways, and the disease. Thus, our results provide a new perspective and method for revealing the mechanism of action of Traditional Chinese Medicine prescriptions.

Keywords: Parkinson's disease, network pharmacology, traditional chinese medicine, Zhichan powder, data mining, mechanism.

[1]
Li, X.; Zhang, Y.; Wang, Y.; Xu, J.; Xin, P.; Meng, Y.; Wang, Q.; Kuang, H. The mechanisms of traditional chinese medicine underlying the prevention and treatment of Parkinson’s disease. Front. Pharmacol., 2017, 8, 634.
[http://dx.doi.org/10.3389/fphar.2017.00634] [PMID: 28970800]
[2]
Zhai, H.Q.; Wang, Y.P.; Wang, Y.Y. Present and future of traditional Chinese medicine clinical pharmacy. Zhongguo Zhongyao Zazhi, 2013, 38(3), 459-461.
[PMID: 23668029]
[3]
Chen, J.; Ma, J.; Qiu, Y.; Yi, S.; Liu, Y.; Zhou, Q.; Zhang, P.; Wan, Q.; Kuang, Y. Effects of Zhichan powder on signal transduction and apoptosis-associated gene expression in the substantia nigra of Parkinson’s disease rats. Neural Regen. Res., 2012, 7(27), 2115-2122.
[PMID: 25558224]
[4]
Liu, Z.; Guo, F.; Wang, Y.; Li, C.; Zhang, X.; Li, H.; Diao, L.; Gu, J.; Wang, W.; Li, D.; He, F. BATMAN-TCM: a bioinformatics analysis tool for molecular mechANism of traditional Chinese medicine. Sci. Rep., 2016, 6, 21146.
[http://dx.doi.org/10.1038/srep21146] [PMID: 26879404]
[5]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6, 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[6]
Gfeller, D; Grosdidier, A; Wirth, M; Daina, A; Michielin, O; Zoete, V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res, 2014, 42(Web Server issue), W32-8.
[http://dx.doi.org/10.1093/nar/gku293]
[7]
UniProt C. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res., 2014, 42(Database issue), D191-D198.
[PMID: 24253303]
[8]
UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res., 2015, 43(Database issue), D204-D212.
[PMID: 25348405]
[9]
Zhou, Q.; Chen, J.; Yi, S.; Lou, Y.; Tang, W.; Liu, Y.; Zhang, P. Zhichan powder regulates nigrostriatal dopamine synthesis and metabolism in Parkinson’s disease rats. Neural Regen. Res., 2012, 7(27), 2107-2114.
[PMID: 25558223]
[10]
Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; Halliday, G.; Goetz, C.G.; Gasser, T.; Dubois, B.; Chan, P.; Bloem, B.R.; Adler, C.H.; Deuschl, G. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord., 2015, 30(12), 1591-1601.
[http://dx.doi.org/10.1002/mds.26424] [PMID: 26474316]
[11]
Cumming, P.; Borghammer, P. Molecular imaging and the neuropathologies of Parkinson’s disease. Curr. Top. Behav. Neurosci., 2012, 11, 117-148.
[http://dx.doi.org/10.1007/7854_2011_165] [PMID: 22034053]
[12]
Blesa, J; Trigo-Damas, I; Dileone, M; Del Rey, NL; Hernandez, LF Obeso, JA Compensatory mechanisms in Parkinson's disease: Circuits adaptations and role in disease modification. Exp Neurol, 2017, 298(Pt B), 148-161.
[13]
Kurzawski, M.; Białecka, M.; Droździk, M. Pharmacogenetic considerations in the treatment of Parkinson’s disease. Neurodegener. Dis. Manag., 2015, 5(1), 27-35.
[http://dx.doi.org/10.2217/nmt.14.38] [PMID: 25711452]
[14]
Sutton, J.P. Dysphagia in Parkinson’s disease is responsive to levodopa. Parkinsonism Relat. Disord., 2013, 19(3), 282-284.
[http://dx.doi.org/10.1016/j.parkreldis.2012.11.007] [PMID: 23333537]
[15]
Ellis, J.M.; Fell, M.J. Current approaches to the treatment of Parkinson’s disease. Bioorg. Med. Chem. Lett., 2017, 27(18), 4247-4255.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.075] [PMID: 28869077]
[16]
Lew, M. Overview of Parkinson’s disease. Pharmacotherapy, 2007, 27(12 Pt 2), 155S-160S.
[http://dx.doi.org/10.1592/phco.27.12part2.155S] [PMID: 18041935]
[17]
Fernandez, H.H. 2015 Update on Parkinson disease. Cleve. Clin. J. Med., 2015, 82(9), 563-568.
[http://dx.doi.org/10.3949/ccjm.82gr.15004] [PMID: 26366951]
[18]
Bi, Y.; Qu, P.C.; Wang, Q.S.; Zheng, L.; Liu, H.L.; Luo, R.; Chen, X.Q.; Ba, Y.Y.; Wu, X.; Yang, H. Neuroprotective effects of alkaloids from Piper longum in a MPTP-induced mouse model of Parkinson’s disease. Pharm. Biol., 2015, 53(10), 1516-1524.
[http://dx.doi.org/10.3109/13880209.2014.991835] [PMID: 25857256]
[19]
Zheng, G.Q. Therapeutic history of Parkinson’s disease in Chinese medical treatises. J. Altern. Complement. Med., 2009, 15(11), 1223-1230.
[http://dx.doi.org/10.1089/acm.2009.0101] [PMID: 19922254]
[20]
Xu, J.; Yang, Y. Traditional Chinese medicine in the Chinese health care system. Health Policy, 2009, 90(2-3), 133-139.
[http://dx.doi.org/10.1016/j.healthpol.2008.09.003] [PMID: 18947898]
[21]
Zhang, G.; Xiong, N.; Zhang, Z.; Liu, L.; Huang, J.; Yang, J.; Wu, J.; Lin, Z.; Wang, T. Effectiveness of traditional Chinese medicine as an adjunct therapy for Parkinson’s disease: a systematic review and meta-analysis. PLoS One, 2015, 10(3)e0118498
[http://dx.doi.org/10.1371/journal.pone.0118498] [PMID: 25756963]
[22]
Ren, S.; Zhang, H.; Mu, Y.; Sun, M.; Liu, P. Pharmacological effects of Astragaloside IV: a literature review. J. Tradit. Chin. Med., 2013, 33(3), 413-416.
[http://dx.doi.org/10.1016/S0254-6272(13)60189-2] [PMID: 24024343]
[23]
Gong, A.G.; Li, N.; Lau, K.M.; Lee, P.S.; Yan, L.; Xu, M.L.; Lam, C.T.; Kong, A.Y.; Lin, H.Q.; Dong, T.T.; Tsim, K.W. Calycosin orchestrates the functions of Danggui Buxue Tang, a Chinese herbal decoction composing of Astragali Radix and Angelica Sinensis Radix: An evaluation by using calycosin-knock out herbal extract. J. Ethnopharmacol., 2015, 168, 150-157.
[http://dx.doi.org/10.1016/j.jep.2015.03.033] [PMID: 25796405]
[24]
Hopkins, A.L. Network pharmacology. Nat. Biotechnol., 2007, 25(10), 1110-1111.
[http://dx.doi.org/10.1038/nbt1007-1110] [PMID: 17921993]
[25]
Hao, C.; Xiao, P.G. Network pharmacology: a Rosetta Stone for traditional Chinese medicine. Drug Dev. Res., 2014, 75(5), 299-312.
[http://dx.doi.org/10.1002/ddr.21214] [PMID: 25160070]
[26]
Zhang, G.B.; Li, Q.Y.; Chen, Q.L.; Su, S.B. Network pharmacology: a new approach for chinese herbal medicine research. Evid. Based Complement. Alternat. Med., 2013, 2013621423
[http://dx.doi.org/10.1155/2013/621423] [PMID: 23762149]
[27]
Wohlfart, S.; Gelperina, S.; Kreuter, J. Transport of drugs across the blood-brain barrier by nanoparticles. J. Control. Release, 2012, 161(2), 264-273.
[http://dx.doi.org/10.1016/j.jconrel.2011.08.017] [PMID: 21872624]
[28]
Su, S.C.; Seo, J.; Pan, J.Q.; Samuels, B.A.; Rudenko, A.; Ericsson, M.; Neve, R.L.; Yue, D.T.; Tsai, L.H. Regulation of N-type voltage-gated calcium channels and presynaptic function by cyclin-dependent kinase 5. Neuron, 2012, 75(4), 675-687.
[http://dx.doi.org/10.1016/j.neuron.2012.06.023] [PMID: 22920258]
[29]
Kong, Y.; Liang, X.; Liu, L.; Zhang, D.; Wan, C.; Gan, Z.; Yuan, L. High throughput sequencing identifies microRNAs mediating α-synuclein toxicity by targeting neuroactive-ligand receptor interaction pathway in early stage of drosophila Parkinson’s disease model. PLoS One, 2015, 10(9)e0137432
[http://dx.doi.org/10.1371/journal.pone.0137432] [PMID: 26361355]
[30]
Knorle, R. Neuromelanin in Parkinson’s disease: from fenton reaction to calcium signaling. Neurotox. Res., 2017, 33(2), 515-522.
[PMID: 28879408]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 1
Year: 2020
Page: [28 - 40]
Pages: 13
DOI: 10.2174/1386207323666200102124302
Price: $65

Article Metrics

PDF: 36
HTML: 6
EPUB: 1
PRC: 1