Importance and ILL-Effects of Nanoparticles: Sensors for their Identification

Author(s): Vallidevi Krishnamurthy*, Kannapan Panchamoorthy Gopinath, Dhakshinamoorthy Gnanaprakash, Ganeshraj Vanathi, Suresh Ganapathy Shivanirudh, Mohd Imran Ahamed

Journal Name: Current Analytical Chemistry

Volume 17 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Nanoparticles have become an important part of many modern scientific technologies. Also, many naturally occurring nanoparticles play an important role in various natural and synthetic processes. The detection of these nanoparticles is expensive and challenging. This review paper explains in detail about various sensor-based methods used for the detection of nanoparticles.

Methodology: Sensor-based analytical techniques are more accurate than other techniques. Nanoparticles may occur in air, water, solid surface and human or other living organisms’ physical environments. The detection methods include spectroscopic techniques, electrochemical methods, microcavities and microlasers based detection, optical techniques and many other highly sensitive methods. All these methods and their principles are explained in this study. The importance and the ill effects of the nanoparticles are explained in this article. Further, the detection of a particular single nanoparticle is also discussed.

Conclusion: The detailed comparative analysis of these methods has shown that sensor-based methods are highly efficient for the detection of nanoparticles. Further research in this field may introduce many cost-effective and high efficient detection techniques that would revolutionize the medical and other application fields.

Keywords: Detection, electrochemical methods, microcavities and microlasers based detection, nanoparticles, optical techniques, sensors, spectroscopic techniques.

[1]
Paridah, M.T. We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists TOP 1%. Intech, 2016, 1, 13.
[2]
Matsoukas, T.; Desai, T.; Lee, K. Engineered nanoparticles and their applications. J. Nanomater., 2015, 2015, 1-2.
[http://dx.doi.org/10.1155/2015/651273]
[3]
Tiede, K.; Boxall, A.B.; Tear, S.P.; Lewis, J.; David, H.; Hassellov, M. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2008, 25(7), 795-821.
[http://dx.doi.org/10.1080/02652030802007553] [PMID: 18569000]
[4]
McCarthy, J.F.; Zachara, J.M. Subsurface transport of contaminants: binding to mobile and immobile phases in groundwater aquifers. Environ. Sci. Technol., 1989, 23, 496-502.
[5]
Harper, S.L.; Carriere, J.L.; Miller, J.M.; Hutchison, J.E.; Maddux, B.L.; Tanguay, R.L. Systematic evaluation of nanomaterial toxicity: Utility of standardized materials and rapid assays. ACS Nano, 2011, 5(6), 4688-4697.
[http://dx.doi.org/10.1021/nn200546k] [PMID: 21609003]
[6]
Laborda, F.; Bolea, E.; Cepriá, G.; Gómez, M.T.; Jiménez, M.S.; Pérez-Arantegui, J.; Castillo, J.R. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples. Anal. Chim. Acta, 2016, 904, 10-32.
[http://dx.doi.org/10.1016/j.aca.2015.11.008] [PMID: 26724760]
[7]
Rogers, K.R.; Navratilova, J.; Stefaniak, A.; Bowers, L.; Knepp, A.K.; Al-Abed, S.R.; Potter, P.; Gitipour, A.; Radwan, I.; Nelson, C.; Bradham, K.D. Characterization of engineered nanoparticles in commercially available spray disinfectant products advertised to contain colloidal silver. Sci. Total Environ., 2018, 619-620, 1375-1384.
[http://dx.doi.org/10.1016/j.scitotenv.2017.11.195] [PMID: 29723948]
[8]
Chaudhry, Q.; Scotter, M.; Blackburn, J.; Ross, B.; Boxall, A.; Castle, L.; Aitken, R.; Watkins, R. Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2008, 25(3), 241-258.
[http://dx.doi.org/10.1080/02652030701744538] [PMID: 18311618]
[9]
Simonet, B.M.; Valcárcel, M. Monitoring nanoparticles in the environment. Anal. Bioanal. Chem., 2009, 393(1), 17-21.
[http://dx.doi.org/10.1007/s00216-008-2484-z] [PMID: 18974979]
[10]
Zhang, X.; Sun, H.; Zhang, Z.; Niu, Q.; Chen, Y.; Crittenden, J.C. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere, 2007, 67(1), 160-166.
[http://dx.doi.org/10.1016/j.chemosphere.2006.09.003 PMID: 17166554]
[11]
Hinther, A.; Vawda, S.; Skirrow, R.C.; Veldhoen, N.; Collins, P.; Cullen, J.T.; van Aggelen, G.; Helbing, C.C. Nanometals induce stress and alter thyroid hormone action in amphibia at or below North American water quality guidelines. Environ. Sci. Technol., 2010, 44(21), 8314-8321.
[http://dx.doi.org/10.1021/es101902n] [PMID: 20929207]
[12]
Hebbar, R.S.; Isloor, A.M.; Prabhu, B. Inamuddin.; Asiri, A.M.; Ismail, A.F. Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay. Sci. Rep., 2018, 8(1), 4665.
[http://dx.doi.org/10.1038/s41598-018-22837-1] [PMID: 29549259]
[13]
Isloor, A.M. Novel polyphenylsulfone (PPSU)/nano tin oxide (SnO2) mixed matrix ultrafiltration hollow fiber membranes: Fabrication, characterization and toxic dyes removal from aqueous solutions. React. Funct. Polym., 2019, 139, 170-180.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.02.015]
[14]
Garba, M. Complexing agents for metal removal using ultrafiltration membranes: A review. Environ. Chem. Lett., 2019. Environ. Chem. Lett., 2019, 17, 1195-1208.
[http://dx.doi.org/10.1007/s10311-019-00861-5]
[15]
Rangreez, T.A. Synthesis and characterisation of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) Zr(IV) monothiophosphate composite cation exchanger: analytical application in the selective separation of lead metal ions. Int. J. Environ. Anal. Chem., 2015, 95, 556-568.
[http://dx.doi.org/10.1080/03067319.2015.1036863]
[16]
Gong, J.; Liu, T.; Wang, X.; Hu, X.; Zhang, L. Efficient removal of heavy metal ions from aqueous systems with the assembly of anisotropic layered double hydroxide nanocrystals@carbon nanosphere. Environ. Sci. Technol., 2011, 45(14), 6181-6187.
[http://dx.doi.org/10.1021/es200668q] [PMID: 21692502]
[17]
Kotnala, A.; DePaoli, D.; Gordon, R. Sensing nanoparticles using a double nanohole optical trap. Lab Chip, 2013, 13(20), 4142-4146.
[http://dx.doi.org/10.1039/c3lc50772f] [PMID: 23969596]
[18]
Zhang, W.; Huang, L.; Santschi, C.; Martin, O.J. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett., 2010, 10(3), 1006-1011.
[http://dx.doi.org/10.1021/nl904168f] [PMID: 20151698]
[19]
Prefecture, O. Size distribution measurement of nanometer-sized aerosol particles using DMA under low-pressure conditions. J. Aerosol Sci., 1997, 28, 193-206.
[http://dx.doi.org/10.1016/S0021-8502(96)00071-7]
[20]
Naono, Y. Classification and characterization of gold and nickel nanoparticles with a differential mobility analyzer. Sci. Technol. Adv. Mater., 2006, 7, 209-215.
[http://dx.doi.org/10.1016/j.stam.2005.11.025]
[21]
He, L.; Ozdemir, S.K.; Zhu, J.; Kim, W.; Yang, L. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol., 2011, 6(7), 428-432.
[http://dx.doi.org/10.1038/nnano.2011.99] [PMID: 21706025]
[22]
Inamuddin, Fabrication and characterization of starch-cl-poly(Lactic acid-g-acrylamide) nanohydrogel for adsorptive removal of eriochrome black-t from the aqueous medium. Desalination Water Treat., 2018, 116, 294-304.
[http://dx.doi.org/10.5004/dwt.2018.22484]
[23]
Inamuddin, Xanthan gum/titanium dioxide nanocomposite for photocatalytic degradation of methyl orange dye. Int. J. Biol. Macromol., 2019, 121, 1046-1053.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.064] [PMID: 30336247]
[24]
Hebbar, R.S. Fabrication of polyetherimide nanocomposite membrane with amine functionalised halloysite nanotubes for effective removal of cationic dye effluents. J. Taiwan Inst. Chem. Eng., 2018, 93, 42-53.
[http://dx.doi.org/10.1016/j.jtice.2018.07.032]
[25]
Chavan, A.A.; Li, H.; Scarpellini, A.; Marras, S.; Manna, L.; Athanassiou, A.; Fragouli, D. Elastomeric nanocomposite foams for the removal of heavy metal ions from water. ACS Appl. Mater. Interfaces, 2015, 7(27), 14778-14784.
[http://dx.doi.org/10.1021/acsami.5b03003] [PMID: 26133912]
[26]
Dinari, M.; Soltani, R.; Mohammadnezhad, G. Kinetics and thermodynamic study on novel modified-mesoporous silica MCM-41/Polymer matrix nanocomposites: Effective adsorbents for trace CrVI removal. J. Chem. Eng. Data, 2017, 62, 2316-2329.
[http://dx.doi.org/10.1021/acs.jced.7b00197]
[27]
Lu, T.; Lee, H.; Chen, T.; Herchak, S.; Kim, J.H.; Fraser, S.E.; Flagan, R.C.; Vahala, K. High sensitivity nanoparticle detection using optical microcavities. Proc. Natl. Acad. Sci. USA, 2011, 108(15), 5976-5979.
[http://dx.doi.org/10.1073/pnas.1017962108] [PMID: 21444782]
[28]
Hafner, J.H.; Cheung, C.L.; Lieber, C.M. Growth of nanotubes for probe microscopy tips. Nature, 1999, 398, 761-762.
[http://dx.doi.org/10.1038/19658]
[29]
Hafner, J.H.; Cheung, C.L.; Woolley, A.T.; Lieber, C.M. Structural and functional imaging with carbon nanotube AFM probes. Prog. Biophys. Mol. Biol., 2001, 77(1), 73-110.
[http://dx.doi.org/10.1016/S0079-6107(01)00011-6 PMID: 11473787]
[30]
Bogner, A.; Thollet, G.; Basset, D.; Jouneau, P.H.; Gauthier, C. Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy, 2005, 104(3-4), 290-301.
[http://dx.doi.org/10.1016/j.ultramic.2005.05.005] [PMID: 15990230]
[31]
Sensitivity, H. Nanoparticle Based Detection; Components, 2009, pp. 3-6.
[32]
Blom, M.T.; Chmela, E.; Oosterbroek, R.E.; Tijssen, R.; van den Berg, A. On-chip hydrodynamic chromatography separation and detection of nanoparticles and biomolecules. Anal. Chem., 2003, 75(24), 6761-6768.
[http://dx.doi.org/10.1021/ac034663l] [PMID: 14670033]
[33]
Noy, A.; Vezenov, D.V.; Lieber, C.M. Chemical force microscopy. Annu. Rev. Mater. Sci., 2002, 27, 381-421.
[http://dx.doi.org/10.1146/annurev.matsci.27.1.381]
[34]
Langheinrich, W.; Beneking, H. Fabrication of metallic structures in the 10 nm region using an inorganic electron beam resist. Jpn. J. Appl. Phys., 1993, 32, 6218-6223.
[http://dx.doi.org/10.1143/JJAP.32.6218]
[35]
Lee, E. An integrated system of microcantilever arrays with carbon nanotube tips for imaging, sensing, and 3D nanomanipulation: Design and control. Sens. Actuators A Phys., 2007, 134, 286-295.
[http://dx.doi.org/10.1016/j.sna.2006.06.046]
[36]
Heller, I.; Kong, J.; Heering, H.A.; Williams, K.A.; Lemay, S.G.; Dekker, C. Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. Nano Lett., 2005, 5(1), 137-142.
[http://dx.doi.org/10.1021/nl048200m] [PMID: 15792427]
[37]
Vollmer, F. Protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett., 2002, 80, 4057-4059.
[http://dx.doi.org/10.1063/1.1482797]
[38]
Park, C.W. Development and performance test of a ZnO nanowire charger for measurements of nano-aerosol particles. Sens. Actuators A Phys., 2015, 222, 1-7.
[http://dx.doi.org/10.1016/j.sna.2014.11.009]
[39]
Madhura, L. Nanotechnology-based water quality management for wastewater treatment. Environ. Chem. Lett., 2019, 17, 65-121.
[http://dx.doi.org/10.1007/s10311-018-0778-8]
[40]
Hebbar, R.S.; Isloor, A.M. Inamuddin.; Asiri, A.M. Carbon nanotube- and graphene-based advanced membrane materials for desalination. Environ. Chem. Lett., 2017, 15(4), 643-671.
[41]
Kumar, M.; Rao, T.S.; Isloor, A.M.; Ismail, A.F.; Asiri, A.M. Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water. Int. J. Biol. Macromol., 2019, 129, 715-727.
[42]
Kolangare, I. Improved desalination by polyamide membranes containing hydrophilic glutamine and glycine. Environ. Chem. Lett., 2018, 17(4), 1053-1059.
[43]
Rezakazemi, M. Fouling-resistant membranes for water reuse. Environ. Chem. Lett., 2018, 16, 715-763.
[http://dx.doi.org/10.1007/s10311-018-0717-8]
[44]
Olivera, S. Oxygen enriched network-type carbon spheres for multipurpose water purification applications. Environ. Technol. Innovat., 2018, 12, 160-171.
[http://dx.doi.org/10.1016/j.eti.2018.08.007]
[45]
Tara, N. Nano-engineered adsorbent for removal of dyes from water: A review. Curr. Anal. Chem., 2019, 1, 15.
[http://dx.doi.org/10.2174/1573411015666190117124344]
[46]
Mashkoor, F.; Nasar, A. Inamuddin.; Asiri, A.M. Exploring the reusability of synthetically contaminated wastewater containing crystal violet dye using tectona grandis sawdust as a very low-cost adsorbent. Sci. Rep., 2018, 8(1), 8314.
[http://dx.doi.org/10.1038/s41598-018-26655-3] [PMID: 29844461]
[47]
Tan, X. A high-throughput microfluidic chip for size sorting of cells. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2011, pp. 1075-1078.
[http://dx.doi.org/10.1109/MEMSYS.2011.5734615]
[48]
Li, S.J.; Shen, C.; Sarro, P.M. A buried vertical filter for micro and nanoparticle filtration. Sens. Actuators A Phys., 2012, 186, 203-209.
[http://dx.doi.org/10.1016/j.sna.2012.04.027]
[49]
Nordström, M.; Keller, S.; Lillemose, M.; Johansson, A.; Dohn, S.; Haefliger, D.; Blagoi, G.; Havsteen-Jakobsen, M.; Boisen, A. SU-8 cantilevers for bio/chemical sensing; fabrication, characterisation and development of novel read-out methods. Sensors (Basel), 2008, 8(3), 1595-1612.
[http://dx.doi.org/10.3390/s8031595] [PMID: 27879783]
[50]
Calleja, M.; Nordström, M.; Alvarez, M.; Tamayo, J.; Lechuga, L.M.; Boisen, A. Highly sensitive polymer-based cantilever-sensors for DNA detection. Ultramicroscopy, 2005, 105(1-4), 215-222.
[http://dx.doi.org/10.1016/j.ultramic.2005.06.039] [PMID: 16051438]
[51]
Noeth, N. Micro-particle filter made in SU-8 for biomedical applications., TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems 2009, pp. 2034-2037.
[52]
Kanchi, S.; Sabela, M.I.; Mdluli, P.S. Inamuddin.; Bisetty, K. Smartphone based bioanalytical and diagnosis applications: A review. Biosens. Bioelectron., 2018, 102, 136-149.
[http://dx.doi.org/10.1016/j.bios.2017.11.021] [PMID: 29128716]
[53]
Olivera, S. Open ended tube like hollow bio-carbon derived from banana fibre for removal of anionic and cationic dyes. Desalination Water Treat., 2018, 132, 297-306.
[54]
Person, S.; Deutsch, B.; Mitra, A.; Novotny, L. Material-specific detection and classification of single nanoparticles. Nano Lett., 2011, 11(1), 257-261.
[http://dx.doi.org/10.1021/nl103656y] [PMID: 21142033]
[55]
Cognet, L.; Tardin, C.; Boyer, D.; Choquet, D.; Tamarat, P.; Lounis, B. Single metallic nanoparticle imaging for protein detection in cells. Proc. Natl. Acad. Sci. USA, 2003, 100(20), 11350-11355.
[http://dx.doi.org/10.1073/pnas.1534635100] [PMID: 13679586]
[56]
Monroe, M.R.; Daaboul, G.G.; Tuysuzoglu, A.; Lopez, C.A.; Little, F.F.; Unlü, M.S. Single nanoparticle detection for multiplexed protein diagnostics with attomolar sensitivity in serum and unprocessed whole blood. Anal. Chem., 2013, 85(7), 3698-3706.
[http://dx.doi.org/10.1021/ac4000514] [PMID: 23469929]
[57]
Ángel Aguirre, M. Detection and digital resolution counting of nanoparticles with optical resonators and applications in biosensing. Chemosensors (Basel), 2018, 6, 13.
[http://dx.doi.org/10.3390/chemosensors6020013]
[58]
Descharmes, N.; Dharanipathy, U.P.; Diao, Z.; Tonin, M.; Houdré, R. Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals. Lab Chip, 2013, 13(16), 3268-3274.
[http://dx.doi.org/10.1039/c3lc50447f] [PMID: 23797114]
[59]
Juan, M.L. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys., 2009, 5, 915-919.
[http://dx.doi.org/10.1038/nphys1422]
[60]
Li, B-B.; Clements, W.R.; Yu, X.C.; Shi, K.; Gong, Q.; Xiao, Y.F. Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl. Acad. Sci. USA, 2014, 111(41), 14657-14662.
[http://dx.doi.org/10.1073/pnas.1408453111] [PMID: 25267618]
[61]
Dantham, V.R.; Holler, S.; Barbre, C.; Keng, D.; Kolchenko, V.; Arnold, S. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett., 2013, 13(7), 3347-3351.
[http://dx.doi.org/10.1021/nl401633y] [PMID: 23777440]
[62]
Shao, L.; Jiang, X.F.; Yu, X.C.; Li, B.B.; Clements, W.R.; Vollmer, F.; Wang, W.; Xiao, Y.F.; Gong, Q. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater., 2013, 25(39), 5616-5620.
[http://dx.doi.org/10.1002/adma201302572] [PMID: 24303524]
[63]
Zhi, Y.; Yu, X.C.; Gong, Q.; Yang, L.; Xiao, Y.F. Single nanoparticle detection using optical microcavities. Adv. Mater., 2017, 29(12), 29.
[http://dx.doi.org/10.1002/adma.201604920] [PMID: 28060436]
[64]
Bixler, J.N.; Cone, M.T.; Hokr, B.H.; Mason, J.D.; Figueroa, E.; Fry, E.S.; Yakovlev, V.V.; Scully, M.O. Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy. Proc. Natl. Acad. Sci. USA, 2014, 111(20), 7208-7211.
[http://dx.doi.org/10.1073/pnas.1403175111] [PMID: 24799690]
[65]
Keum, J.W. DNA-directed self-assembly of three-dimensional plasmonic nanostructures for detection by surface-enhanced Raman scattering (SERS). Sens. Biosensing Res., 2014, 1, 21-25.
[http://dx.doi.org/10.1016/j.sbsr.2014.06.003]
[66]
Liao, D.S. Fast and sensitive detection of bacteria from a water droplet by means of electric field effects and micro-Raman spectroscopy. Sens. Biosensing Res., 2015, 6, 59-66.
[http://dx.doi.org/10.1016/j.sbsr.2015.09.005]
[67]
Brown, P.O. 2008. _Science_SRS.pdf, 2008.
[68]
Lindfors, K.; Kalkbrenner, T.; Stoller, P.; Sandoghdar, V. Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett., 2004, 93(3)037401
[http://dx.doi.org/10.1103/PhysRevLett.93.037401] [PMID: 15323866]
[69]
Schmidt, B. Quantitative Characterization of Gold Nanoparticles by Field-Flow Fractionation (FFF) Coupled On-Line with Light Scattering Detection and ICP-MS In: Handbook of Hyphenated Icpms Applications; , 2012; pp. 2461-2468.
[70]
Nie, S.; Emory, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303), 1102-1106.
[http://dx.doi.org/10.1126/science.275.5303.1102] [PMID: 9027306]
[71]
Zybin, A. Real-time detection of single immobilized nanoparticles by surface plasmon resonance imaging. Plasmonics, 2010, 5, 31-35.
[http://dx.doi.org/10.1007/s11468-009-9111-5]
[72]
Sönnichsen, C. Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl. Phys. Lett., 2000, 77, 2949-2951.
[http://dx.doi.org/10.1063/1.1323553]
[73]
Lenggoro, I.W.; Widiyandari, H.; Hogan, C.J., Jr; Biswas, P.; Okuyama, K. Colloidal nanoparticle analysis by nanoelectrospray size spectrometry with a heated flow. Anal. Chim. Acta, 2007, 585(2), 193-201.
[http://dx.doi.org/10.1016/j.aca.2006.12.030] [PMID: 17386665]
[74]
Wang, C.Y. In situ electron microscopy investigation of Fe(III)-doped TiO2 nanoparticles in an aqueous environment. J. Nanopart. Res., 2004, 6, 119-122.
[http://dx.doi.org/10.1023/B:NANO.0000023222.85864.78]
[75]
Cao, Y.C.; Jin, R.; Mirkin, C.A. Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection. Science, 2002, 297(5586), 1536-1540.
[http://dx.doi.org/10.1126/science.297.5586.1536] [PMID: 12202825]
[76]
Martín-Yerga, D.; Álvarez-Martos, I.; Blanco-López, M.C.; Henry, C.S.; Fernández-Abedul, M.T. Point-of-need simultaneous electrochemical detection of lead and cadmium using low-cost stencil-printed transparency electrodes. Anal. Chim. Acta, 2017, 981, 24-33.
[http://dx.doi.org/10.1016/j.aca.2017.05.027] [PMID: 28693726]
[77]
Martín-Yerga, D. Electrochemical detection and characterization of nanoparticles with printed devices. Biosensors (Basel), 2019, 9(2), 47.
[http://dx.doi.org/10.3390/bios9020047] [PMID: 30925772]
[78]
Parolo, C. Paper-based electrodes for nanoparticles detection. Part. Part. Syst. Charact., 2013, 30, 662-666.
[http://dx.doi.org/10.1002/ppsc.201200124]
[79]
de la Escosura-Muñiz, A.; Parolo, C.; Maran, F.; Mekoçi, A. Size-dependent direct electrochemical detection of gold nanoparticles: Application in magnetoimmunoassays. Nanoscale, 2011, 3(8), 3350-3356.
[http://dx.doi.org/10.1039/c1nr10377f] [PMID: 21761067]
[80]
Cheng, W.; Stuart, E.J.; Tschulik, K.; Cullen, J.T.; Compton, R.G. A disposable sticky electrode for the detection of commercial silver NPs in seawater. Nanotechnology, 2013, 24(50)505501
[http://dx.doi.org/10.1088/0957-4484/24/50/505501] [PMID: 24270734]
[81]
Nasir, M.Z.M.; Pumera, M. Impact electrochemistry on screen-printed electrodes for the detection of monodispersed silver nanoparticles of sizes 10-107 nm. Phys. Chem. Chem. Phys., 2016, 18(40), 28183-28188.
[http://dx.doi.org/10.1039/C6CP05463C] [PMID: 27711701]
[82]
Zhou, Y.G.; Rees, N.V.; Compton, R.G. The electrochemical detection and characterization of silver nanoparticles in aqueous solution. Angew. Chem. Int. Ed. Engl., 2011, 50(18), 4219-4221.
[http://dx.doi.org/10.1002/anie.201100885] [PMID: 21472836]
[83]
Cunningham, J.C. Paper-Based sensor for electrochemical detection of silver nanoparticle labels by galvanic exchange. ACS Sens., 2016, 1, 40-47.
[http://dx.doi.org/10.1021/acssensors.5b00051]
[84]
Shopova, S.I.; Rajmangal, R.; Nishida, Y.; Arnold, S. Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser. Rev. Sci. Instrum., 2010, 81(10)103110
[http://dx.doi.org/10.1063/1.3499261] [PMID: 21034078]
[85]
Shopova, S.I. Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection. Appl. Phys. Lett., 2011, 98, 1-3.
[http://dx.doi.org/10.1063/1.3599584]
[86]
Knittel, J.; Swaim, J.D.; McAuslan, D.L.; Brawley, G.A.; Bowen, W.P. Back-scatter based whispering gallery mode sensing. Sci. Rep., 2013, 3, 2974.
[http://dx.doi.org/10.1038/srep02974] [PMID: 24131939]
[87]
Jiang, H.S.; Li, M.; Chang, F.Y.; Li, W.; Yin, L.Y. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ. Toxicol. Chem., 2012, 31(8), 1880-1886.
[http://dx.doi.org/10.1002/etc.1899] [PMID: 22639346]
[88]
Zhu, J.; Özdemir, Ş.K.; He, L.; Chen, D.R.; Yang, L. Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities. Opt. Express, 2011, 19(17), 16195-16206.
[http://dx.doi.org/10.1364/OE.19.016195] [PMID: 21934982]
[89]
Kim, W. Demonstration of mode splitting in an optical microcavity in aqueous environment. Appl. Phys. Lett., 2010, 97, 2008-2011.
[http://dx.doi.org/10.1063/1.3481352]
[90]
Swaim, J.D.; Knittel, J.; Bowen, W.P. Detection of nanoparticles with a frequency locked whispering gallery mode microresonator. Appl. Phys. Lett., 2013, 102, 3-7.
[http://dx.doi.org/10.1063/1.4804243]
[91]
Larsen, T.; Schmid, S.; Villanueva, L.G.; Boisen, A. Photothermal analysis of individual nanoparticulate samples using micromechanical resonators. ACS Nano, 2013, 7(7), 6188-6193.
[http://dx.doi.org/10.1021/nn402057f] [PMID: 23799869]
[92]
Li, G.; Sun, S.; Wilson, R.J.; White, R.L.; Pourmand, N.; Wang, S.X. Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications. Sens. Actuators A Phys., 2006, 126(1), 98-106.
[http://dx.doi.org/10.1016/j.sna.2005.10.001] [PMID: 18414592]
[93]
Özdemir, Ş.K.; Zhu, J.; Yang, X.; Peng, B.; Yilmaz, H.; He, L.; Monifi, F.; Huang, S.H.; Long, G.L.; Yang, L. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc. Natl. Acad. Sci. USA, 2014, 111(37), E3836-E3844.
[http://dx.doi.org/10.1073/pnas.1408283111] [PMID: 25197086]
[94]
Hartmann, G.; Hutterer, C.; Schuster, M. Ultra-trace determination of silver nanoparticles in water samples using cloud point extraction and ETAAS. J. Anal. At. Spectrom., 2013, 28, 567-572.
[http://dx.doi.org/10.1039/c3ja30365a]
[95]
Yeh, C.H. Using a T-junction microfluidic chip for monodisperse calcium alginate microparticles and encapsulation of nanoparticles. Sens. Actuators A Phys., 2009, 151, 231-236.
[http://dx.doi.org/10.1016/j.sna.2009.02.036]
[96]
Zhu, J. Zhu 09-Np , 1-23.
[97]
Grepstad, J.O.; Kaspar, P.; Solgaard, O.; Johansen, I.R.; Sudbø, A.S. Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application. Opt. Express, 2012, 20(7), 7954-7965.
[http://dx.doi.org/10.1364/OE.20.007954] [PMID: 22453468]
[98]
Zhuo, Y.; Hu, H.; Chen, W.; Lu, M.; Tian, L.; Yu, H.; Long, K.D.; Chow, E.; King, W.P.; Singamaneni, S.; Cunningham, B.T. Single nanoparticle detection using photonic crystal enhanced microscopy. Analyst (Lond.), 2014, 139(5), 1007-1015.
[http://dx.doi.org/10.1039/C3AN02295A] [PMID: 24432353]
[99]
Liang, F.; Quan, Q. Detecting single gold nanoparticles (1.8 nm) with Ultrahigh-Q Air-Mode photonic crystal nanobeam cavities. ACS Photonics, 2015, 2, 1692-1697.
[http://dx.doi.org/10.1021/acsphotonics.5b00602]
[100]
Wang, C. Single-nanoparticle detection with slot-mode photonic crystal cavities. Appl. Phys. Lett., 2015, 106261105
[http://dx.doi.org/10.1063/1.4923322]
[101]
Schmid, S.; Kurek, M.; Adolphsen, J.Q.; Boisen, A. Real-time single airborne nanoparticle detection with nanomechanical resonant filter-fiber. Sci. Rep., 2013, 3, 1288.
[http://dx.doi.org/10.1038/srep01288] [PMID: 23411405]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 2
Year: 2021
Published on: 01 January, 2020
Page: [244 - 259]
Pages: 16
DOI: 10.2174/1573411016666200102113529
Price: $65

Article Metrics

PDF: 16
HTML: 1