A Review on Recent Trends in Nanomaterials and Nanocomposites for Environmental Applications

Author(s): Kannappan Panchamoorthy Gopinath*, Malolan Rajagopal, Abhishek Krishnan, Shweta Kolathur Sreerama

Journal Name: Current Analytical Chemistry

Volume 17 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Depletion and contamination of environmental resources such as water, air and soil caused by human activities is an increasingly important challenge faced around the world. The consequences of environmental pollution are felt acutely by all living beings, both on a short and long-term basis, thereby making methods of remediation of environmental pollution an urgent requirement.

Objectives: The objective of this review is to dissect the complications caused by environmental degradation, highlight advancements in the field of nanotechnology and to scrutinize its applications in environmental remediation. Furthermore, the review aims to concisely explain the merits and drawbacks of nanotechnology compared to existing methods.

Conclusion: The current and potential applications of nanomaterials and nanocomposites in the prevention, control and reduction of air, water and soil pollution and the mechanisms involved have been elucidated, with their various merits and demerits. The applications of nanotechnology in the fields of carbon capture and agriculture have also been discussed in this review.

Keywords: Air pollution, carbon capture, nanocomposites, nanoparticles, soil pollution, synthesis, water pollution.

[1]
Barbier, E.B.; Stern, D.I.; Common, M.S. Economic growth and environmental degradation: The environmental kuznets curve and sustainable development. World Dev., 1996, 24(7), 1151-1160.
[http://dx.doi.org/10.1016/0305-750X(96)00032-0]
[2]
Kazemi, A.; Hosseinzadeh, M. Environmental Progress & Sustainable Energy. Environ. Prog. Sustain. Energy, 2016, 1, 1-10.
[http://dx.doi.org/10.1002/ep]
[3]
Goudie, A.S. Human Impact on the Natural Environment: Past, Present and Future; Wiley & Sons: New York, 2005.
[4]
Harrison, R. Pollution: Causes, 5th ed; Effects and Control, 2014.
[5]
Hassan, S.A.; Zaman, K.; Gul, S. The relationship between growth-inequality-poverty triangle and environmental degradation: unveiling the reality. Arab Econ. Bus. J., 2015, 10(1), 57-71.
[http://dx.doi.org/10.1016/j.aebj.2014.05.007]
[6]
Capps, K.A.; Bentsen, C.N.; Ramírez, A. Poverty, urbanization, and environmental degradation: Urban streams in the developing world. Freshw. Sci., 2016, 35(1), 429-435.
[http://dx.doi.org/10.1086/684945]
[7]
Paul, D. Research on heavy metal pollution of river ganga: a review. Ann. Agrar. Sci., 2017, 15(2), 278-286.
[http://dx.doi.org/10.1016/j.aasci.2017.04.001]
[8]
Wang, Q.; Yang, Z. Industrial water pollution, water environment treatment, and health risks in China. Environ. Pollut., 2016, 218, 358-365.
[http://dx.doi.org/10.1016/j.envpol.2016.07.011]
[9]
Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M. Habibullah -Al- Mamun, M.; Islam, M. K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic., 2015, 48, 282-291.
[http://dx.doi.org/10.1016/j.ecolind.2014.08.016]
[10]
Bhatnagar, A.; Devi, P.; George, M.P. Impact of mass bathing and religious activities on water quality index of prominent water bodies: A multilocation study in Haryana, India. Int. J. Ecol., 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/2915905]
[11]
Aikins, S.; Boakye, D.O. Carwash Wastewater characterization and effect on surface water quality: A case study of washing bays sited on oda and daban streams in Kumasi, Ghana. J. Sci. Technol., 2015, 5(4), 190-197.
[12]
Beyer, J.; Trannum, H.C.; Bakke, T.; Hodson, P.V.; Collier, T.K. Environmental effects of the deepwater horizon oil spill: A review. Mar. Pollut. Bull., 2016, 110(1), 28-51.
[http://dx.doi.org/10.1016/j.marpolbul.2016.06.027]
[13]
Ebenstein, A. The consequences of industrialization: Evidence from. Rev. Econ. Stat., 2012, 94(February), 186-201.
[http://dx.doi.org/10.1162/REST_a_00150]
[14]
Hong, P-Y.; Al-Jassim, N.; Ansari, M.; Mackie, R. Environmental and public health implications of water reuse: antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes. Antibiotics (Basel), 2013, 2(3), 367-399.
[http://dx.doi.org/10.3390/antibiotics2030367]
[15]
Collier, S.A.; Stockman, L.J.; Hicks, L.A.; Garrison, L.E.; Zhou, F.J.; Beach, M.J. Direct healthcare costs of selected diseases primarily or partially transmitted by water. Epidemiol. Infect., 2012, 140(11), 2003-2013.
[http://dx.doi.org/10.1017/S0950268811002858]
[16]
Brimblecombe, P. London air pollution, 1500-1900. Atmos. Environ., 1977, 11(12), 1157-1162.
[http://dx.doi.org/10.1016/0004-6981(77)90091-9]
[17]
Kurokawa, J.; Ohara, T.; Morikawa, T.; Hanayama, S.; Janssens-Maenhout, G.; Fukui, T.; Kawashima, K.; Akimoto, H. Emissions of air pollutants and greenhouse gases over asian regions during 2000-2008: Regional Emission Inventory in ASia (REAS) Version 2. Atmos. Chem. Phys., 2013, 13(21), 11019-11058.
[http://dx.doi.org/10.5194/acp-13-11019-2013]
[18]
Nongkynrih, B.; Gupta, S.; Rizwan, S. Air Pollution in Delhi: Its magnitude and effects on health. Indian J. Community Med., 2013, 38(1), 4.
[http://dx.doi.org/10.4103/0970-0218.106617]
[19]
Zhang, H.; Wang, S.; Hao, J.; Wang, X.; Wang, S.; Chai, F.; Li, M. Air pollution and control action in Beijing. J. Clean. Prod., 2016, 112, 1519-1527.
[http://dx.doi.org/10.1016/j.jclepro.2015.04.092]
[20]
Chen, R.; Huang, W.; Wong, C.M.; Wang, Z.; Quoc Thach, T.; Chen, B.; Kan, H. Short-Term exposure to sulfur dioxide and daily mortality in 17 Chinese cities: The China Air Pollution and Health Effects Study (CAPES). Environ. Res., 2012, 118, 101-106.
[http://dx.doi.org/10.1016/j.envres.2012.07.003]
[21]
Chen, R.; Samoli, E.; Wong, C.M.; Huang, W.; Wang, Z.; Chen, B.; Kan, H. Associations between short-term exposure to nitrogen dioxide and mortality in 17 Chinese Cities: The China Air Pollution and Health Effects Study (CAPES). Environ. Int., 2012, 45(1), 32-38.
[http://dx.doi.org/10.1016/j.envint.2012.04.008]
[22]
Park, C.C. Acid Rain: Rhetoric and Reality; Taylor & Francis: UK, 1987.
[http://dx.doi.org/10.4324/9781315883687]
[23]
Schulze, E.D.; Lange, O.L.; Forest Decline, R.O. Forest Decline and Air Pollution; Springer: Switzerland, 2001.
[24]
Zipperer, W.C.; Foresman, T.W.; Walker, S.P.; Daniel, C.T. Ecological consequences of fragmentation and deforestation in an urban landscape: A case study. Urban Ecosyst., 2012, 15(3), 533-544.
[http://dx.doi.org/10.1007/s11252-012-0238-3]
[25]
Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the Air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol., 2012, 8(2), 166-175.
[http://dx.doi.org/10.1007/s13181-011-0203-1]
[26]
Brian, C. McDonald, Zoe C. McBride, Elliot W. Martin, and R. A. H. High-Resolution mapping of motor vehicle carbon dioxide emissions. J. Geophys. Res. Atmos., 2014, 5, 5283-5298.
[http://dx.doi.org/10.1002/2013JD021219.Received]
[27]
Blasing, J.T. Recent Greenhouse Gas Concentrations Oak Ridge National Laboratory; ORNL: Oak Ridge, 2015.
[http://dx.doi.org/10.3334/CDIAC/ATG.032]
[28]
Mumford, K.A.; Wu, Y.; Smith, K.H.; Stevens, G.W. Review of solvent based carbon-dioxide capture technologies. Front. Chem. Sci. Eng., 2015, 9(2), 125-141.
[http://dx.doi.org/10.1007/s11705-015-1514-6]
[29]
Hellevang, H. Carbon Capture and Storage (CCS). In: 2015; 36, pp. (January 2007), 591-602. http://dx.doi.org/ In: Pet. Geosci. From Sediment. Environ. to Rock Physics, Second Ed;; , 2015; 36, pp. (January 2007)591-602.
[http://dx.doi.org/10.1007/978-3-642-34132-8_24]
[30]
Boot-Handford, M.E.; Abanades, J.C.; Anthony, E.J.; Blunt, M.J.; Brandani, S.; Mac Dowell, N.; Fernández, J.R.; Ferrari, M.C.; Gross, R.; Hallett, J.P. Carbon Capture and Storage update. Energy Environ. Sci., 2014, 7(1), 130-189.
[http://dx.doi.org/10.1039/C3EE42350F]
[31]
Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp, P.; Bongartz, R.; Schreiber, A.; Müller, T.E. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci., 2012, 5(6), 7281-7305.
[http://dx.doi.org/10.1039/c2ee03403d]
[32]
Özerol, G.; Bressers, H.; Coenen, F. Irrigated agriculture and environmental sustainability: An alignment perspective. Environ. Sci. Policy, 2012, 23, 57-67.
[http://dx.doi.org/10.1016/j.envsci.2012.07.015]
[33]
Colazo, J.C.; Buschiazzo, D. The impact of agriculture on soil texture due to wind erosion. Land Degrad. Dev., 2015, 26(1), 62-70.
[http://dx.doi.org/10.1002/ldr.2297]
[34]
Kiley-Worthington, M. Problems of modern agriculture. Food Policy, 1980, 5(3), 208-215.
[http://dx.doi.org/10.1016/0306-9192(80)90129-3]
[35]
Lal, R. Restoring soil quality to mitigate soil degradation. Sustain., 2015, 7(5), 5875-5895.
[http://dx.doi.org/10.3390/su7055875]
[36]
Chen, M.; Xu, P.; Zeng, G.; Yang, C.; Huang, D.; Zhang, J. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol. Adv., 2015, 33(6), 745-755.
[http://dx.doi.org/10.1016/j.biotechadv.2015.05.003]
[37]
Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ., 2015, 512-513, 143-153.
[http://dx.doi.org/10.1016/j.scitotenv.2015.01.025]
[38]
Karak, T.; Bhattacharyya, P.; Das, T.; Paul, R.K.; Bezbaruah, R. Non-Segregated municipal solid waste in an open dumping ground: A potential contaminant in relation to environmental health. Int. J. Environ. Sci. Technol., 2013, 10(3), 503-518.
[http://dx.doi.org/10.1007/s13762-013-0184-5]
[39]
Aragon, F.; Rud, J.P. Department of Economics Working Papers Simon Fraser University., 2012.https://doi.org/10ISSN
[40]
Brookins, D.G. Geochemical Aspects of Radioactive Waste Disposal; Springer Nature: Switzerland, 1984.
[http://dx.doi.org/10.1007/978-1-4613-8254-6]
[41]
North, E.J.; Halden, R.U. Plastics and environmental health: The road ahead. Rev. Environ. Health, 2013, 28(1), 1-8.
[http://dx.doi.org/10.1515/reveh-2012-0030]
[42]
Talsness, C.E.; Andrade, A.J.M.; Kuriyama, S.N.; Taylor, J.A.; Saal, F.S.V. Components of plastic: Experimental studies in animals and relevance for human health. Philos. Trans. R. Soc. B Biol. Sci., 2009, 364(1526), 2079-2096.
[http://dx.doi.org/10.1098/rstb.2008.0281]
[43]
Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S.K.; Grace, A.N.; Bhatnagar, A. role of nanomaterials in water treatment applications: A review. Chem. Eng. J., 2016, 306, 1116-1137.
[http://dx.doi.org/10.1016/j.cej.2016.08.053]
[44]
Ibrahim, R.K.; Hayyan, M.; AlSaadi, M.A.; Hayyan, A.; Ibrahim, S. Environmental application of nanotechnology: air, soil, and water. Environ. Sci. Pollut. Res. Int., 2016, 23(14), 13754-13788.
[http://dx.doi.org/10.1007/s11356-016-6457-z]
[45]
Lee, X.J.; Lee, L.Y.; Foo, L.P.Y.; Tan, K.W.; Hassell, D.G. Evaluation of carbon-based nanosorbents synthesised by ethylene decomposition on stainless steel substrates as potential sequestrating materials for nickel ions in aqueous solution. J. Environ. Sci. (China), 2012, 24(9), 1559-1568.
[http://dx.doi.org/10.1016/S1001-0742(11)60987-X]
[46]
Gupta, V.K.; Kumar, R.; Nayak, A.; Saleh, T.A.; Barakat, M.A. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review. Adv. Colloid Interface Sci., 2013, 193-194, 24-34.
[http://dx.doi.org/10.1016/j.cis.2013.03.003]
[47]
Ihsanullah; Abbas, A.; Al-Amer, A. M.; Laoui, T.; Al-Marri, M. J.; Nasser, M. S.; Khraisheh, M.; Atieh, M. A. Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Separ. Purif. Tech., 2016, 157, 141-161.
[http://dx.doi.org/10.1016/j.seppur.2015.11.039]
[48]
Rao, G.P.; Lu, C.; Su, F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Separ. Purif. Tech., 2007, 58(1), 224-231.
[http://dx.doi.org/10.1016/j.seppur.2006.12.006]
[49]
Mukhopadhyay, S.M. Nanoscale multifunctional materials; Wiley & Sons: New York, 2001.
[http://dx.doi.org/10.1002/9781118114063]
[50]
Geyikçi, F. Adsorption of Acid Blue 161 (AB 161) Dye from water by multi-walled carbon nanotubes. Fuller. Nanotub. Carbon Nanostruct., 2013, 21(7), 579-593.
[http://dx.doi.org/10.1080/1536383X.2011.643428]
[51]
Gao, H.; Zhao, S.; Cheng, X.; Wang, X.; Zheng, L. Removal of anionic azo dyes from aqueous solution using magnetic polymer multi-wall carbon nanotube nanocomposite as adsorbent. Chem. Eng. J., 2013, 223, 84-90.
[http://dx.doi.org/10.1016/j.cej.2013.03.004]
[52]
Bazrafshan, E.; Mostafapour, F.K.; Hosseini, A.R.; Raksh Khorshid, A.; Mahvi, A.H. Decolorisation of reactive red 120 dye by using single-walled carbon nanotubes in aqueous solutions. J. Chem., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/938374]
[53]
Lu, C.; Chung, Y.L.; Chang, K.F. Adsorption of trihalomethanes from water with carbon nanotubes. Water Res., 2005, 39(6), 1183-1189.
[http://dx.doi.org/10.1016/j.watres.2004.12.033]
[54]
Cai, N.; Larese-Casanova, P. Sorption of carbamazepine by commercial graphene oxides: a comparative study with granular activated carbon and multiwalled carbon nanotubes. J. Colloid Interface Sci., 2014, 426, 152-161.
[http://dx.doi.org/10.1016/j.jcis.2014.03.038]
[55]
Deng, J.; Shao, Y.; Gao, N.; Deng, Y.; Tan, C.; Zhou, S.; Hu, X. Multiwalled carbon nanotubes as adsorbents for removal of herbicide diuron from aqueous solution. Chem. Eng. J., 2012, 193-194, 339-347.
[http://dx.doi.org/10.1016/j.cej.2012.04.051]
[56]
Abdel-Ghani, N.T.; El-Chaghaby, G.A.; Helal, F.S. Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. J. Adv. Res., 2015, 6(3), 405-415.
[http://dx.doi.org/10.1016/j.jare.2014.06.001]
[57]
Zhao, D.; Zhang, W.; Chen, C.; Wang, X. Adsorption of methyl orange dye onto multiwalled carbon nanotubes. Procedia Environ. Sci., 2013, 18, 890-895.
[http://dx.doi.org/10.1016/j.proenv.2013.04.120]
[58]
Apul, O.G.; Karanfil, T. Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review. Water Res., 2015, 68, 34-55.
[http://dx.doi.org/10.1016/j.watres.2014.09.032]
[59]
Yu, J.G.; Zhao, X.H.; Yang, H.; Chen, X.H.; Yang, Q.; Yu, L.Y.; Jiang, J.H.; Chen, X.Q. Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci. Total Environ., 2014, 482-483(1), 241-251.
[http://dx.doi.org/10.1016/j.scitotenv.2014.02.129]
[60]
Ren, X.; Chen, C.; Nagatsu, M.; Wang, X. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chem. Eng. J., 2011, 170(2-3), 395-410.
[http://dx.doi.org/10.1016/j.cej.2010.08.045]
[61]
Joseph, L.; Flora, J.R.V.; Park, Y.G.; Badawy, M.; Saleh, H.; Yoon, Y. Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials. Separ. Purif. Tech., 2012, 95, 64-72.
[http://dx.doi.org/10.1016/j.seppur.2012.04.033]
[62]
Daneshvar Tarigh, G.; Shemirani, F. Magnetic multi-wall carbon nanotube nanocomposite as an adsorbent for preconcentration and determination of Lead (II) and Manganese (II) in various matrices. Talanta, 2013, 115, 744-750.
[http://dx.doi.org/10.1016/j.talanta.2013.06.018]
[63]
Tang, W.W.; Zeng, G.M.; Gong, J.L.; Liu, Y.; Wang, X.Y.; Liu, Y.Y.; Liu, Z.F.; Chen, L.; Zhang, X.R.; Tu, D.Z. Simultaneous adsorption of atrazine and Cu (II) from wastewater by magnetic multi-walled carbon nanotube. Chem. Eng. J., 2012, 211-212, 470-478.
[http://dx.doi.org/10.1016/j.cej.2012.09.102]
[64]
Parham, H.; Bates, S.; Xia, Y.; Zhu, Y. A highly efficient and versatile carbon nanotube/ceramic composite filter. Carbon N. Y., 2013, 54, 215-223.
[http://dx.doi.org/10.1016/j.carbon.2012.11.032]
[65]
Wang, J.; Li, Z.; Li, S.; Qi, W.; Liu, P.; Liu, F.; Ye, Y.; Wu, L.; Wang, L.; Wu, W. Adsorption of Cu(II) on oxidized multi-walled carbon nanotubes in the presence of hydroxylated and carboxylated fullerenes. PLoS One, 2013, 8(8), 1-10.
[http://dx.doi.org/10.1371/journal.pone.0072475]
[66]
Ray, P.Z.; Shipley, H.J. Inorganic nano-adsorbents for the removal of heavy metals and arsenic: A review. RSC Advances, 2015, 5(38), 29885-29907.
[http://dx.doi.org/10.1039/C5RA02714D]
[67]
Adeleye, A.S.; Keller, A.A. Long-Term colloidal stability and metal leaching of single wall carbon nanotubes: Effect of temperature and extracellular polymeric substances. Water Res., 2007, 2014(49), 236-250.
[http://dx.doi.org/10.1016/j.watres.2013.11.032]
[68]
Adeleye, A.S.; Conway, J.R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A.A. Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem. Eng. J., 2016, 286, 640-662.
[http://dx.doi.org/10.1016/j.cej.2015.10.105]
[69]
Bhanjana, G.; Dilbaghi, N.; Kim, K.H.; Kumar, S. Carbon nanotubes as sorbent material for removal of cadmium. J. Mol. Liq., 2017, 242, 966-970.
[http://dx.doi.org/10.1016/j.molliq.2017.07.072]
[70]
Sitko, R.; Zawisza, B.; Malicka, E. Graphene as a new sorbent in analytical chemistry. TrAC. Trends Analyt. Chem., 2013, 51, 33-43.
[http://dx.doi.org/10.1016/j.trac.2013.05.011]
[71]
Zhao, J.; Wang, Z.; White, J.C.; Xing, B. Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation. Environ. Sci. Technol., 2014, 48(17), 9995-10009.
[http://dx.doi.org/10.1021/es5022679]
[72]
Sitko, R.; Turek, E.; Zawisza, B.; Malicka, E.; Talik, E.; Heimann, J.; Gagor, A.; Feist, B.; Wrzalik, R. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans., 2013, 42(16), 5682-5689.
[http://dx.doi.org/10.1039/c3dt33097d]
[73]
Wang, Y.; Liang, S.; Chen, B.; Guo, F.; Yu, S.; Tang, Y. Synergistic removal of Pb(II), Cd(II) and humic acid by Fe3O4 @Mesoporous silica-graphene oxide composites. PLoS One, 2013, 8(6), 2-9.
[http://dx.doi.org/10.1371/journal.pone.0065634]
[74]
Hu, X. jiang; Liu, Y. guo; Zeng, G. ming; You, S. hong; Wang, H.; Hu, X.; Guo, Y. ming; Tan, X. fei; Guo, F. ying. Effects of background electrolytes and ionic strength on enrichment of Cd(II) Ions with magnetic graphene oxide-supported sulfanilic acid. J. Colloid Interface Sci., 2014, 435, 138-144.
[http://dx.doi.org/10.1016/j.jcis.2014.08.054]
[75]
Hur, J.; Shin, J.; Yoo, J.; Seo, Y.S. Competitive adsorption of metals onto magnetic graphene oxide: Comparison with other carbonaceous adsorbents. ScientificWorldJournal, 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/836287]
[76]
Mura, S.; Jiang, Y.; Vassalini, I.; Gianoncelli, A.; Alessandri, I.; Granozzi, G.; Calvillo, L.; Senes, N.; Enzo, S.; Innocenzi, P. Graphene Oxide/Iron Oxide nanocomposites for water remediation. ACS Appl. Nano Mater., 2018, 1(12), 6724-6732.
[http://dx.doi.org/10.1021/acsanm.8b01540]
[77]
Zong, E.; Wei, D.; Wan, H.; Zheng, S.; Xu, Z.; Zhu, D. Adsorptive removal of phosphate ions from aqueous solution using zirconia-functionalized graphite oxide. Chem. Eng. J., 2013, 221, 193-203.
[http://dx.doi.org/10.1016/j.cej.2013.01.088]
[78]
Li, Y.; Du, Q.; Wang, J.; Liu, T.; Sun, J.; Wang, Y.; Wang, Z.; Xia, Y.; Xia, L. Defluoridation from aqueous solution by manganese oxide coated graphene oxide. J. Fluor. Chem., 2013, 148, 67-73.
[http://dx.doi.org/10.1016/j.jfluchem.2013.01.028]
[79]
Giri, S.K.; Das, N.N.; Pradhan, G.C. Synthesis and characterization of magnetite nanoparticles using waste iron ore tailings for adsorptive removal of dyes from aqueous solution. Colloids Surf. A Physicochem. Eng. Asp., 2011, 389(1-3), 43-49.
[http://dx.doi.org/10.1016/j.colsurfa.2011.08.052]
[80]
Da̧browski, A.; Hubicki, Z.; Podkościelny, P.; Robens, E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 2004, 56(2), 91-106.
[http://dx.doi.org/10.1016/j.chemosphere.2004.03.006]
[81]
Chmielewská, E.; Jesenák, K.; Gáplovská, K. Arsenate and chromate removal with cationic surfactant-loaded and cation-exchanged clinoptilolite-rich tuff vs montmorillonite. Collect. Czech. Chem. Commun., 2003, 68(4), 823-836.
[http://dx.doi.org/10.1135/cccc20030823]
[82]
Sahu, D.; Sarkar, N.; Sahoo, G.; Mohapatra, P.; Swain, S.K. Nano silver imprinted polyvinyl alcohol nanocomposite thin films for Hg 2+ sensor. Sens. Actuators B Chem., 2017, 246, 96-107.
[http://dx.doi.org/10.1016/j.snb.2017.01.038]
[83]
Abdi, M.M.; Kassim, A.; Mahmud, H.N.M.E.; Mat Yunus, W.M.; Talib, Z.A.; Sadrolhosseini, A.R. Physical, optical, and electrical properties of a new conducting polymer. J. Mater. Sci., 2009, 44(14), 3682-3686.
[http://dx.doi.org/10.1007/s10853-009-3491-y]
[84]
Wang, N.; Li, J.; Lv, W.; Feng, J.; Yan, W. Synthesis of polyaniline/TiO2 composite with excellent adsorption performance on acid red G. RSC Advances, 2015, 5(27), 21132-21141.
[http://dx.doi.org/10.1039/C4RA16910G]
[85]
Liu, Y.; Yang, W.; Liu, H. Azobenzene-functionalized cage silsesquioxanes as inorganic-organic hybrid, photoresponsive, nanoscale, building blocks. Chemistry, 2015, 21(12), 4731-4738.
[http://dx.doi.org/10.1002/chem.201406142]
[86]
Shen, R.; Liu, H. Construction of bimodal silsesquioxane-based porous materials from triphenylphosphine or triphenylphosphine oxide and their size-selective absorption for dye molecules. RSC Advances, 2016, 6(44), 37731-37739.
[http://dx.doi.org/10.1039/C6RA02963A]
[87]
Hosseinzadeh, H.; Khoshnood, N. Removal of cationic dyes by Poly(AA-Co-AMPS)/Montmorillonite nanocomposite hydrogel. Desalination Water Treat., 2016, 57(14), 6372-6383.
[http://dx.doi.org/10.1080/19443994.2015.1008052]
[88]
Sargazi, G.; Afzali, D.; Mostafavi, A.; Ebrahimipour, S.Y. Synthesis of CS/PVA biodegradable composite nanofibers as a microporous material with well controllable procedure through electrospinning. J. Polym. Environ., 2018, 26(5), 1804-1817.
[http://dx.doi.org/10.1007/s10924-017-1080-8]
[89]
Sargazi, G.; Khajeh Ebrahimi, A.; Afzali, D.; Badoei-dalfard, A.; Malekabadi, S.; Karami, Z. Fabrication of PVA/ZnO fibrous composite polymer as a novel sorbent for arsenic removal: Design and a systematic study. Polym. Bull., 2019, 76, 5661-5682.
[http://dx.doi.org/10.1007/s00289-019-02677-3]
[90]
Geng, B.; Jin, Z.; Li, T.; Qi, X. Kinetics of hexavalent chromium removal from water by chitosan-FeO nanoparticles. Chemosphere, 2009, 75(6), 825-830.
[http://dx.doi.org/10.1016/j.chemosphere.2009.01.009]
[91]
Raveendra, R.S.; Prashanth, P.A.; Hari Krishna, R.; Bhagya, N.P.; Nagabhushana, B.M.; Raja Naika, H.; Lingaraju, K.; Nagabhushana, H.; Daruka Prasad, B. Synthesis, structural characterization of Nano ZnTiO3 ceramic: An effective azo dye adsorbent and antibacterial agent. J. Asian Ceram. Soc., 2014, 2(4), 357-365.
[http://dx.doi.org/10.1016/j.jascer.2014.07.008]
[92]
Bakr, A.A.; Sayed, N.A.; Salama, T.M.; Ali, I.O.; Gayed, R.R.A.; Negm, N.A. Potential of Mg-Zn-Al Layered Double Hydroxide (LDH)/Montmorillonite nanocomposite in remediation of wastewater containing manganese ions. Res. Chem. Intermed., 2018, 44(1), 389-405.
[http://dx.doi.org/10.1007/s11164-017-3110-5]
[93]
Sargazi, G.; Afzali, D.; Ebrahimi, A.K.; Badoei-dalfard, A.; Malekabadi, S.; Karami, Z. Ultrasound assisted reverse micelle efficient synthesis of new Ta-MOF@ Fe3O4 core/shell nanostructures as a novel candidate for lipase immobilization. Mater. Sci. Eng. C, 2018, 93, 768-775.
[http://dx.doi.org/10.1016/j.msec.2018.08.041]
[94]
Sargazi, G.; Afzali, D.; Ghafainazari, A.; Saravani, H. Rapid synthesis of cobalt metal organic framework. J. Inorg. Organomet. Polym. Mater., 2014, 24(4), 786-790.
[http://dx.doi.org/10.1007/s10904-014-0042-z]
[95]
Sargazi, G.; Afzali, D.; Mostafavi, A.; Ebrahimipour, S.Y. Ultrasound-Assisted facile synthesis of a new tantalum(v) metal-organic framework nanostructure: Design, characterization, systematic study, and CO2 adsorption performance. J. Solid State Chem., 2017, 250(V), 32-48.
[http://dx.doi.org/10.1016/j.jssc.2017.03.014]
[96]
Sargazi, G.; Afzali, D.; Mostafavi, A. A novel synthesis of a new Thorium (IV) metal organic framework nanostructure with well controllable procedure through ultrasound assisted reverse micelle method. Ultrason. Sonochem., 2017, 2018(41), 234-251.
[http://dx.doi.org/10.1016/j.ultsonch.2017.09.046]
[97]
Sargazi, G.; Afzali, D.; Mostafavi, A. A novel microwave assisted reverse micelle fabrication route for Th (IV)-MOFs as highly efficient adsorbent nanostructures with controllable structural properties to CO and CH4 adsorption: Design, and a systematic study. Appl. Organomet. Chem., 2019, 33(4), 1-12.
[http://dx.doi.org/10.1002/aoc.4816]
[98]
Zhao, J.; Liu, J.; Li, N.; Wang, W.; Nan, J.; Zhao, Z.; Cui, F. highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4 –MnO2: Adsorption behavior and process study. Chem. Eng. J., 2016, 304, 737-746.
[http://dx.doi.org/10.1016/j.cej.2016.07.003]
[99]
Dwivedi, A.D.; Sanandiya, N.D.; Singh, J.P.; Husnain, S.M.; Chae, K.H.; Hwang, D.S.; Chang, Y.S. Tuning and characterizing nanocellulose interface for enhanced removal of dual-sorbate (AsV and CrVI) from water matrices. ACS Sustain. Chem.& Eng., 2017, 5(1), 518-528.
[http://dx.doi.org/10.1021/acssuschemeng.6b01874]
[100]
Ahmad, M.; Liu, S.; Mahmood, N.; Mahmood, A.; Ali, M.; Zheng, M.; Ni, J. Synergic adsorption-biodegradation by an advanced carrier for enhanced removal of high-strength nitrogen and refractory organics. ACS Appl. Mater. Interfaces, 2017, 9(15), 13188-13200.
[http://dx.doi.org/10.1021/acsami.7b01251]
[101]
Zhou, Y.; Fu, S.; Zhang, L.; Zhan, H.; Levit, M.V. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydr. Polym., 2014, 101(1), 75-82.
[http://dx.doi.org/10.1016/j.carbpol.2013.08.055]
[102]
Liu, W.; Wang, T.; Borthwick, A.G.L.; Wang, Y.; Yin, X.; Li, X.; Ni, J. Adsorption of Pb 2+, Cd 2+, Cu 2+ and Cr 3+ onto titanate nanotubes: Competition and effect of inorganic ions. Sci. Total Environ., 2013, 456-457, 171-180.
[http://dx.doi.org/10.1016/j.scitotenv.2013.03.082]
[103]
Monárrez-Cordero, B.; Amézaga-Madrid, P.; Antúnez-Flores, W.; Leyva-Porras, C.; Pizá-Ruiz, P.; Miki-Yoshida, M. Highly efficient removal of arsenic metal ions with high superficial area hollow magnetite nanoparticles synthetized by AACVD method. J. Alloys Compd., 2014, 586(Suppl. 1), 520-525.
[http://dx.doi.org/10.1016/j.jallcom.2012.12.073]
[104]
Lunge, S.; Singh, S.; Sinha, A. Magnetic Iron Oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J. Magn. Magn. Mater., 2014, 356, 21-31.
[http://dx.doi.org/10.1016/j.jmmm.2013.12.008]
[105]
Kilianová, M.; Prucek, R.; Filip, J.; Kolařík, J.; Kvítek, L.; Panáček, A.; Tuček, J.; Zbořil, R. Remarkable efficiency of ultrafine superparamagnetic Iron(III) oxide nanoparticles toward arsenate removal from aqueous environment. Chemosphere, 2013, 93(11), 2690-2697.
[http://dx.doi.org/10.1016/j.chemosphere.2013.08.071]
[106]
Khan, T. A.; Nazir, M.; Ali, I.; Kumar, A. Removal of Chromium(VI) from aqueous solution using guar gum-nano zinc oxide biocomposite adsorbent. Arab. J. Chem., 2017, 10(Vi), S2388-S2398.
[http://dx.doi.org/10.1016/j.arabjc.2013.08.019]
[107]
Abbasizadeh, S.; Keshtkar, A.R.; Mousavian, M.A. Sorption of heavy metal ions from aqueous solution by a novel cast PVA/TiO2 Nanohybrid adsorbent functionalized with amine groups. J. Ind. Eng. Chem., 2014, 20(4), 1656-1664.
[http://dx.doi.org/10.1016/j.jiec.2013.08.013]
[108]
Rafiq, Z.; Nazir, R. Durr-E-Shahwar; Shah, M. R.; Ali, S. Utilization of magnesium and zinc oxide nano-adsorbents as potential materials for treatment of copper electroplating industry wastewater. J. Environ. Chem. Eng., 2014, 2(1), 642-651.
[http://dx.doi.org/10.1016/j.jece.2013.11.004]
[109]
Venkatesham, V.; Madhu, G. M.; Satyanarayana, S. V.; Preetham, H. S. Adsorption of lead on gel combustion derived nano ZnO. Procedia Eng./, 2013, 51(NUiCONE 2012), 308-313.
[http://dx.doi.org/10.1016/j.proeng.2013.01.041]
[110]
Li, H.; Zhang, D.; Han, X.; Xing, B. Adsorption of antibiotic ciprofloxacin on carbon nanotubes: PH dependence and thermodynamics. Chemosphere, 2014, 95, 150-155.
[http://dx.doi.org/10.1016/j.chemosphere.2013.08.053]
[111]
Luo, C.; Wei, R.; Guo, D.; Zhang, S.; Yan, S. Adsorption behavior of MnO2 functionalized multi-walled carbon nanotubes for the removal of cadmium from aqueous solutions. Chem. Eng. J., 2013, 225, 406-415.
[http://dx.doi.org/10.1016/j.cej.2013.03.128]
[112]
Mubarak, N.M.; Alicia, R.F.; Abdullah, E.C.; Sahu, J.N.; Haslija, A.B.A.; Tan, J. Statistical optimization and kinetic studies on Removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar. J. Environ. Chem. Eng., 2013, 1(3), 486-495.
[http://dx.doi.org/10.1016/j.jece.2013.06.011]
[113]
Yang, W.; Ding, P.; Zhou, L.; Yu, J.; Chen, X.; Jiao, F. Preparation of diamine modified mesoporous silica on multi-walled carbon nanotubes for the adsorption of heavy metals in aqueous solution. Appl. Surf. Sci., 2013, 282, 38-45.
[http://dx.doi.org/10.1016/j.apsusc.2013.05.028]
[114]
Singh, T.; Singhal, R. Reuse of a waste adsorbent Poly(AAc/AM/SH)-Cu superabsorbent hydrogel, for the potential phosphate ion removal from waste water: matrix effects, adsorption kinetics, and thermodynamic studies. J. Appl. Polym. Sci., 2013, 129(6), 3126-3139.
[http://dx.doi.org/10.1002/app.39018]
[115]
Sousa, F.L.; Silva, N.J.O.; Trindade, T. Eco-Friendly Polymer Nanocomposites, 2015, 75.
[http://dx.doi.org/10.1007/978-81-322-2470-9]
[116]
Kommu, A.; Namsani, S.; Singh, J.K. Removal of heavy metal ions using functionalized graphene membranes: A molecular dynamics study. RSC Advances, 2016, 6(68), 63190-63199.
[http://dx.doi.org/10.1039/C6RA06817K]
[117]
Álvarez-Torrellas, S.; Rodríguez, A.; Ovejero, G.; García, J. Comparative Adsorption Performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chem. Eng. J., 2016, 283, 936-947.
[http://dx.doi.org/10.1016/j.cej.2015.08.023]
[118]
Ma, J.; Zhuang, Y.; Yu, F. Facile method for the synthesis of a Magnetic CNTs-C@Fe-Chitosan composite and its application in tetracycline removal from aqueous solutions. Phys. Chem. Chem. Phys., 2015, 17(24), 15936-15944.
[http://dx.doi.org/10.1039/C5CP02542G]
[119]
Ncibi, M.C.; Sillanpää, M. Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. J. Hazard. Mater., 2015, 298, 102-110.
[http://dx.doi.org/10.1016/j.jhazmat.2015.05.025]
[120]
Wang, F.; Sun, W.; Pan, W.; Xu, N. Adsorption of Sulfamethoxazole and 17β-Estradiol by Carbon Nanotubes/CoFe2O4 composites. Chem. Eng. J., 2015, 274, 17-29.
[http://dx.doi.org/10.1016/j.cej.2015.03.113]
[121]
Yang, Q.; Chen, G.; Zhang, J.; Li, H. Adsorption of sulfamethazine by multi-walled carbon nanotubes: effects of aqueous solution chemistry. RSC Advances, 2015, 5(32), 25541-25549.
[http://dx.doi.org/10.1039/C4RA15056B]
[122]
Nandi, D.; Basu, T.; Debnath, S.; Ghosh, A De; Ghosh, and U.C. Mechanistic insight for sorption of Cd (II) and Cu (II) from their aqueous solution on magnetic Mn-doped Fe (III) Oxide nanoparticles implanted graphene. J. Chem. Eng. Data, 2013.
[123]
Kumar, S.; Nair, R.R.; Pillai, P.B.; Gupta, S.N.; Iyengar, M.A.R.; Sood, A.K. Graphene Oxide-MnFe2O4 Magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl. Mater. Interfaces, 2014, 6(20), 17426-17436.
[http://dx.doi.org/10.1021/am504826q]
[124]
Zhang, Y.; Yan, L.; Xu, W.; Guo, X.; Cui, L.; Gao, L.; Wei, Q.; Du, B. Adsorption of Pb(II) and Hg(II) from aqueous solution using magnetic CoFe2O4-Reduced graphene oxide. J. Mol. Liq., 2014, 191, 177-182.
[http://dx.doi.org/10.1016/j.molliq.2013.12.015]
[125]
Madadrang, C.J.; Kim, H.Y.; Gao, G.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M.L.; Hou, S. Adsorption behavior of EDTA-Graphene Oxide for Pb (II) removal. ACS Appl. Mater. Interfaces, 2012, 4(3), 1186-1193.
[http://dx.doi.org/10.1021/am201645g]
[126]
Zhao, L.; Xue, F.; Yu, B. TiO 2 -Graphene Sponge for the Removal of Tetracycline. J. Nanopart. Res., 2015.
[http://dx.doi.org/10.1007/s11051-014-2825-0]
[127]
Yu, F.; Ma, J.; Bi, D. Enhanced adsorptive removal of selected pharmaceutical antibiotics from aqueous solution by activated graphene. Environ. Sci. Pollut. Res. Int., 2015, 22(6), 4715-4724.
[http://dx.doi.org/10.1007/s11356-014-3723-9]
[128]
Shariati-Rad, M.; Irandoust, M.; Amri, S.; Feyzi, M.; Ja’fari, F. Magnetic solid phase adsorption, preconcentration and determination of methyl orange in water samples using silica coated magnetic nanoparticles and central composite design. Int. Nano Lett., 2014, 4(4), 91-101.
[http://dx.doi.org/10.1007/s40089-014-0124-5]
[129]
Mihoc, G.; Ianoş, R.; Pǎcurariu, C. Adsorption of Phenol and P-chlorophenol from aqueous solutions by magnetic nanopowder. Water Sci. Technol., 2014, 69(2), 385-391.
[http://dx.doi.org/10.2166/wst.2013.727]
[130]
Istratie, R.; Stoia, M.; Păcurariu, C.; Locovei, C. Single and simultaneous adsorption of methyl orange and phenol onto magnetic iron oxide/carbon nanocomposites. Arab. J. Chem., 2019, 12(8), 3704-3722.
[http://dx.doi.org/10.1016/j.arabjc.2015.12.012]
[131]
Soares, S.F.; Simões, T.R.; António, M.; Trindade, T.; Daniel-da-Silva, A.L. Hybrid nanoadsorbents for the magnetically assisted removal of metoprolol from water. Chem. Eng. J., 2016, 302, 560-569.
[http://dx.doi.org/10.1016/j.cej.2016.05.079]
[132]
Kutzner, S.; Schaffer, M.; Börnick, H.; Licha, T.; Worch, E. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations. Water Res., 2014, 54, 273-283.
[http://dx.doi.org/10.1016/j.watres.2014.01.042]
[133]
Satheesh, R.; Vignesh, K.; Rajarajan, M.; Suganthi, A.; Sreekantan, S.; Kang, M.; Kwak, B.S. Removal of congo red from water using quercetin modified α-Fe2O2 nanoparticles as effective nanoadsorbent. Mater. Chem. Phys., 2016, 180, 53-65.
[http://dx.doi.org/10.1016/j.matchemphys.2016.05.029]
[134]
Muthukumaran, C.; Sivakumar, V.M.; Thirumarimurugan, M. Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent. J. Taiwan Inst. Chem. Eng., 2016, 63, 354-362.
[http://dx.doi.org/10.1016/j.jtice.2016.03.034]
[135]
De Luca, A.; Ferrer, B.B. Nanomaterials for water remediation: Synthesis, application and environmental fate. Nanotechnol. Environ. Remediat. Appl. Implic., 2017, vii-viii.
[http://dx.doi.org/10.1007/978-3-319-53162-5_2]
[136]
Malik, R.; Tomer, V.; Duhan, S.; Nehra, S.P.; Rana, P. Effect of annealing temperature on the photocatalytic performance of SnO2 Nanoflowers towards degradation of Rhodamine B. Adv. Sci. Eng. Med., 2015, 7(6), 448-456.
[http://dx.doi.org/10.1166/asem.2015.1715]
[137]
Malik, R.; Tomer, V.K.; Duhan, S.; Nehra, S.P.; Rana, P.S. One-Pot hydrothermal synthesis of porous SnO2 Nanostructures for photocatalytic degradation of organic pollutants. Energy Environ. Focus, 2015, 4(4), 340-345.
[http://dx.doi.org/10.1166/eef.2015.1182]
[138]
Francis Opoku, E.M.K.; Mamo, P.P.G. Metal oxide polymer nanocomposites in water treatments. Descr. Inorg. Chem. Res. Met. Compd., 2017,
[139]
Baruah, A.; Chaudhary, V.; Malik, R.; Tomer, V.K. Nanotechnology Based Solutions for Wastewater Treatment; Elsevier Inc., 2018.
[140]
Guesh, K.; Mayoral, Á.; Márquez-Álvarez, C.; Chebude, Y.; Díaz, I. Enhanced photocatalytic activity of TiO2 supported on zeolites tested in real wastewaters from the textile industry of Ethiopia. Microporous Mesoporous Mater., 2016, 225, 88-97.
[http://dx.doi.org/10.1016/j.micromeso.2015.12.001]
[141]
Imamura, K.; Yoshikawa, T.; Hashimoto, K.; Kominami, H. Stoichiometric production of aminobenzenes and ketones by photocatalytic reduction of nitrobenzenes in secondary alcoholic suspension of Titanium(IV) oxide under metal-free conditions. Appl. Catal. B, 2013, 134-135, 193-197.
[http://dx.doi.org/10.1016/j.apcatb.2013.01.015]
[142]
Srifa, A.; Viriya-empikul, N.; Assabumrungrat, S.; Faungnawakij, K.; Science, N.; Phahonyothin, T.; Nueng, T. K.; Khlong, A.; Engineering, C.R. Catalysis Science & Technology Accepted Manuscript Catalysis Science & Technology Accepted Manuscript., 2011.
[143]
Xiao, J.; Xie, Y.; Cao, H. Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere, 2015, 121, 1-17.
[http://dx.doi.org/10.1016/j.chemosphere.2014.10.072]
[144]
Guo, M.; Song, W.; Wang, T.; Li, Y.; Wang, X.; Du, X. Phenyl-Functionalization of Titanium dioxide-nanosheets coating fabricated on a titanium wire for selective solid-phase microextraction of polycyclic aromatic hydrocarbons from environment water samples. Talanta, 2015, 144, 998-1006.
[http://dx.doi.org/10.1016/j.talanta.2015.07.064]
[145]
Moon, G.H.; Kim, D.H.; Kim, H. Il; Bokare, A. D.; Choi, W. Platinum-like behavior of reduced graphene oxide as a cocatalyst on TiO2 for the efficient photocatalytic oxidation of arsenite. Environ. Sci. Technol. Lett., 2014, 1(2), 185-190.
[http://dx.doi.org/10.1021/ez5000012]
[146]
Nguyen, A.T.; Te Hsieh, C.; Juang, R.S. Substituent effects on photodegradation of phenols in binary mixtures by hybrid H2O2 and TiO2 suspensions under UV irradiation. J. Taiwan Inst. Chem. Eng., 2016, 62, 68-75.
[http://dx.doi.org/10.1016/j.jtice.2016.01.012]
[147]
Kim, S.H.; Lee, S.W.; Lee, G.M.; Lee, B.T.; Yun, S.T.; Kim, S.O. Monitoring of TiO2 -catalytic UV-LED photo-oxidation of cyanide contained in mine wastewater and leachate. Chemosphere, 2016, 143, 106-114.
[http://dx.doi.org/10.1016/j.chemosphere.2015.07.006]
[148]
Gar Alalm, M.; Tawfik, A.; Ookawara, S. Comparison of Solar TiO 2 photocatalysis and solar photo-fenton for treatment of pesticides industry wastewater: Operational conditions, kinetics, and costs. J. Water Process Eng., 2015, 8, 55-63.
[http://dx.doi.org/10.1016/j.jwpe.2015.09.007]
[149]
Chen, Z.; Li, Y.; Guo, M.; Xu, F.; Wang, P.; Du, Y.; Na, P. One-pot synthesis of Mn-Doped TiO2 grown on graphene and the mechanism for removal of Cr(VI) and Cr(III). J. Hazard. Mater., 2016, 310, 188-198.
[http://dx.doi.org/10.1016/j.jhazmat.2016.02.034]
[150]
Albay, C.; Koç, M.; Altin, I.; Bayrak, R.; Deǧirmencioǧlu, I.; Sökmen, M. New Dye Sensitized photocatalysts: Copper(II)-Phthalocyanine/TiO2 nanocomposite for water remediation. J. Photochem. Photobiol. A Chem., 2016, 324(Ii), 117-125.
[151]
Hao, H.; Stoller, M.; Bao, Y.; Wang, T.; Wang, J.; Lu, H. An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng., 2016, 2016, 1-10.
[http://dx.doi.org/10.1155/2016/4964828]
[152]
Bai, X.; Wang, L.; Zong, R.; Lv, Y.; Sun, Y.; Zhu, Y. Performance Enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization. Langmuir, 2013, 29(9), 3097-3105.
[http://dx.doi.org/10.1021/la4001768]
[153]
Zhang, H.; Song, Z.; Wang, D.; Tong, Z.; Qin, Y. A facile synthetic method of ZnO nanoparticles and its role in photocatalytic degradation of refractory organic matters. Desalination Water Treat., 2017, 90, 189-195.
[http://dx.doi.org/10.5004/dwt.2017.21233]
[154]
Samadi, M.; Pourjavadi, A.; Moshfegh, A.Z. Role of CdO addition on the growth and photocatalytic activity of electrospun ZnO nanofibers: UV vs. Visible Light; Elsevier B.V., 2014, p. 298.
[http://dx.doi.org/10.1016/j.apsusc.2014.01.146]
[155]
Dai, K.; Lu, L.; Liang, C.; Dai, J.; Zhu, G.; Liu, Z.; Liu, Q.; Zhang, Y. Graphene oxide modified zno nanorods hybrid with high reusable photocatalytic activity under UV-LED irradiation. Mater. Chem. Phys., 2014, 143(3), 1410-1416.
[http://dx.doi.org/10.1016/j.matchemphys.2013.11.055]
[156]
Zhou, X.; Shi, T.; Zhou, H. Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation. Appl. Surf. Sci., 2012, 258(17), 6204-6211.
[http://dx.doi.org/10.1016/j.apsusc.2012.02.131]
[157]
Fan, F.; Wang, X.; Ma, Y.; Fu, K.; Yang, Y. Enhanced photocatalytic degradation of dye wastewater using ZnO/Reduced graphene oxide hybrids. Fuller. Nanotub. Carbon Nanostruct., 2015, 23(11), 917-921.
[http://dx.doi.org/10.1080/1536383X.2015.1013187]
[158]
Shen, J.; Huang, W.; Li, N.; Ye, M. Highly efficient degradation of dyes by reduced graphene oxide-ZnCdS supramolecular photocatalyst under visible light. Ceram. Int., 2014, 41(1), 761-767.
[http://dx.doi.org/10.1016/j.ceramint.2014.08.135]
[159]
Senthilraja, A.; Subash, B.; Krishnakumar, B.; Rajamanickam, D.; Swaminathan, M.; Shanthi, M. Synthesis, Characterization and catalytic activity of Co-Doped Ag-Au-ZnO for MB dye degradation under UV-A light. Mater. Sci. Semicond. Process., 2014, 22(1), 83-91.
[http://dx.doi.org/10.1016/j.mssp.2014.02.011]
[160]
Subash, B.; Krishnakumar, B.; Swaminathan, M.; Shanthi, M. Highly Efficient, Solar Active, and Reusable Photocatalyst: Zr-Loaded Ag-ZnO for Reactive Red 120 dye degradation with synergistic effect and dye-sensitized mechanism. Langmuir, 2013, 29(3), 939-949.
[http://dx.doi.org/10.1021/la303842c]
[161]
Subash, B.; Krishnakumar, B.; Swaminathan, M.; Shanthi, M. Highly Active Zr Co-Doped Ag-ZnO Photocatalyst for the mineralization of acid Black 1 under UV-A light illumination. Mater. Chem. Phys., 2013, 141(1), 114-120.
[http://dx.doi.org/10.1016/j.matchemphys.2013.04.033]
[162]
Dong, S.; Zhang, X.; Dong, S.; Zhou, X.; Yan, L.; Chen, G.; Zhou, D. A Facile One-Pot Synthesis of Er-Al Co-Doped ZnO nanoparticles with enhanced photocatalytic performance under visible light. Mater. Lett., 2015, 143, 312-314.
[http://dx.doi.org/10.1016/j.matlet.2014.12.094]
[163]
Vignesh, K.; Rajarajan, M.; Suganthi, A. Visible light assisted photocatalytic performance of Ni and Th Co-Doped ZnO nanoparticles for the degradation of methylene blue dye. J. Ind. Eng. Chem., 2014, 20(5), 3826-3833.
[http://dx.doi.org/10.1016/j.jiec.2013.12.086]
[164]
Wang, Y.; Fang, Z.; Kang, Y.; Tsang, E.P. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-Stabilized NZVI. J. Hazard. Mater., 2014, 275, 230-237.
[http://dx.doi.org/10.1016/j.jhazmat.2014.04.056]
[165]
Fu, F.; Dionysiou, D.D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater., 2014, 267, 194-205.
[http://dx.doi.org/10.1016/j.jhazmat.2013.12.062]
[166]
Xiong, Z.; Lai, B.; Yang, P.; Zhou, Y.; Wang, J.; Fang, S. Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent Iron (ZVI) under different conditions of N2, air or without aeration. J. Hazard. Mater., 2015, 297, 261-268.
[http://dx.doi.org/10.1016/j.jhazmat.2015.05.006]
[167]
Marková, Z.; Šišková, K.M.; Filip, J.; Čuda, J.; Kolář, M.; Šafářová, K.; Medřík, I.; Zbořil, R. Air stable magnetic bimetallic fe-ag nanoparticles for advanced antimicrobial treatment and phosphorus removal. Environ. Sci. Technol., 2013, 47(10), 5285-5293.
[http://dx.doi.org/10.1021/es304693g]
[168]
Wang, X.; Zhu, M.; Liu, H.; Ma, J.; Li, F. Modification of Pd-Fe nanoparticles for catalytic dechlorination of 2,4-Dichlorophenol. Sci. Total Environ., 2013, 449, 157-167.
[http://dx.doi.org/10.1016/j.scitotenv.2013.01.008]
[169]
Ling, L.; Pan, B.; Zhang, W. xian. Removal of selenium from water with nanoscale zero-valent iron: Mechanisms of intraparticle reduction of Se(IV). Water Res., 2015, 71(34), 274-281.
[http://dx.doi.org/10.1016/j.watres.2015.01.002]
[170]
Liang, D. wei; Yang, Y. han; Xu, W. wei; Peng, S. kan; Lu, S. fu; Xiang, Y. Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: Mechanism and kinetics. J. Hazard. Mater., 2014, 278, 592-596.
[http://dx.doi.org/10.1016/j.jhazmat.2014.06.030]
[171]
Ling, L.; Zhang, W.X. Enrichment and encapsulation of uranium with iron nanoparticle. J. Am. Chem. Soc., 2015, 137(8), 2788-2791.
[http://dx.doi.org/10.1021/ja510488r]
[172]
Bokare, V.; Jung, J. lim; Chang, Y. Y.; Chang, Y. S. Reductive dechlorination of octachlorodibenzo-p-dioxin by nanosized zero-valent Zinc: Modeling of rate kinetics and congener profile. J. Hazard. Mater., 2013, 250-251, 397-402.
[http://dx.doi.org/10.1016/j.jhazmat.2013.02.020]
[173]
Lin, L.; Wang, H.; Luo, H.; Xu, P. Enhanced photocatalysis using side-glowing optical fibers coated with Fe-Doped TiO2 nanocomposite thin films. J. Photochem. Photobiol. Chem., 2015, 307-308, 88-98.
[http://dx.doi.org/10.1016/j.jphotochem.2015.04.010]
[174]
Nayna, O.K.; Tareq, S.M. Application of Semiconductor Nanoparticles for Removal of Organic Pollutants or Dyes From Wastewater; Elsevier Inc., 2018.
[175]
Huang, L.; Weng, X.; Chen, Z.; Megharaj, M.; Naidu, R. Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 117, 801-804.
[http://dx.doi.org/10.1016/j.saa.2013.09.054]
[176]
Kuang, Y.; Wang, Q.; Chen, Z.; Megharaj, M.; Naidu, R. heterogeneous fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. J. Colloid Interface Sci., 2013, 410, 67-73.
[http://dx.doi.org/10.1016/j.jcis.2013.08.020]
[177]
Guzman, C. Kinetic study for reactive Red 84 Photo degradation Using Iron (III) Oxide nanoparticles in annular reactor. J. Text. Sci. Eng., 2014, 04(02), 2-9.
[http://dx.doi.org/10.4172/2165-8064.1000155]
[178]
Narayani, H.; Augustine, R.; Sumi, S.; Jose, M.; Deepa Nair, K.; Samsuddin, M.; Prakash, H.; Shukla, S. Removal of basic and industrial azo reactive dyes from aqueous solutions via fenton-like reactions using catalytic non-magnetic Pd-Flyash and magnetic Pd-Fe3O4-Flyash composite particles. Separ. Purif. Tech., 2017, 172, 338-349.
[http://dx.doi.org/10.1016/j.seppur.2016.08.027]
[179]
Hao, R.; Wang, G.; Tang, H.; Sun, L.; Xu, C.; Han, D. Template-free preparation of macro/mesoporous g-C3N4/TiO2 Heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl. Catal. B, 2016, 187, 47-58.
[http://dx.doi.org/10.1016/j.apcatb.2016.01.026]
[180]
Tian, Y.; Chang, B.; Fu, J.; Zhou, B.; Liu, J.; Xi, F.; Dong, X. Graphitic Carbon Nitride/Cu2O heterojunctions: Preparation, characterization, and enhanced photocatalytic activity under visible light. J. Solid State Chem., 2014, 212, 1-6.
[http://dx.doi.org/10.1016/j.jssc.2014.01.011]
[181]
Ji, Y.; Cao, J.; Jiang, L.; Zhang, Y.; Yi, Z. G-C3N4/BiVO4 Composites with enhanced and stable visible light photocatalytic activity. J. Alloys Compd., 2014, 590(3), 9-14.
[http://dx.doi.org/10.1016/j.jallcom.2013.12.050]
[182]
Tian, Y.; Cheng, F.; Zhang, X.; Yan, F.; Zhou, B.; Chen, Z.; Liu, J.; Xi, F.; Dong, X. Solvothermal synthesis and enhanced visible light photocatalytic activity of novel graphitic carbon nitride-Bi2MoO6 heterojunctions. Powder Technol., 2014, 267, 126-133.
[http://dx.doi.org/10.1016/j.powtec.2014.07.021]
[183]
Xing, C.; Wu, Z.; Jiang, D.; Chen, M. Hydrothermal synthesis of In2S3/g-C3N4 heterojunctions with enhanced photocatalytic activity. J. Colloid Interface Sci., 2014, 433, 9-15.
[http://dx.doi.org/10.1016/j.jcis.2014.07.015]
[184]
Niksefat, N.; Jahanshahi, M.; Rahimpour, A. The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application. Desalination, 2014, 343, 140-146.
[http://dx.doi.org/10.1016/j.desal.2014.03.031]
[185]
Gopakumar, D.A.; Pasquini, D.; Henrique, M.A.; De Morais, L.C.; Grohens, Y.; Thomas, S. Meldrum’s Acid modified cellulose nanofiber-based polyvinylidene fluoride microfiltration membrane for dye water treatment and nanoparticle removal. ACS Sustain. Chem.& Eng., 2017, 5(2), 2026-2033.
[http://dx.doi.org/10.1021/acssuschemeng.6b02952]
[186]
Li, X.; Zhang, C.; Zhao, R.; Lu, X.; Xu, X.; Jia, X.; Wang, C.; Li, L. Efficient adsorption of gold ions from aqueous systems with thioamide-group chelating nanofiber membranes. Chem. Eng. J., 2013, 229, 420-428.
[http://dx.doi.org/10.1016/j.cej.2013.06.022]
[187]
Qu, X.; Alvarez, P.J.J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res., 2013, 47(12), 3931-3946.
[http://dx.doi.org/10.1016/j.watres.2012.09.058]
[188]
Rana, D.; Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev., 2010, 110(4), 2448-2471.
[http://dx.doi.org/10.1021/cr800208y]
[189]
Amini, M.; Jahanshahi, M.; Rahimpour, A. Synthesis of novel thin film nanocomposite (TFN) Forward osmosis membranes using functionalized multi-walled carbon nanotubes. J. Membr. Sci., 2013, 435, 233-241.
[http://dx.doi.org/10.1016/j.memsci.2013.01.041]
[190]
Jiang, S.; Li, Y.; Ladewig, B.P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ., 2017, 595, 567-583.
[http://dx.doi.org/10.1016/j.scitotenv.2017.03.235]
[191]
Yang, X.; Du, Y.; Zhang, X.; He, A.; Xu, Z.K. Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance. Langmuir, 2017, 33(9), 2318-2324.
[http://dx.doi.org/10.1021/acs.langmuir.6b04465]
[192]
Ma, L.; Dong, X.; Chen, M.; Zhu, L.; Wang, C.; Yang, F.; Dong, Y. Fabrication and water treatment application of carbon nanotubes (CNTs)-Based composite membranes: A review. Membranes (Basel), 2017, 7(1), 1-10.
[http://dx.doi.org/10.3390/membranes7010016]
[193]
Daraei, P.; Madaeni, S.S.; Ghaemi, N.; Khadivi, M.A.; Astinchap, B.; Moradian, R. Enhancing Antifouling Capability OF PES Membrane via mixing with various types of polymer modified multi-walled carbon nanotube. J. Membr. Sci., 2013, 444, 184-191.
[http://dx.doi.org/10.1016/j.memsci.2013.05.020]
[194]
Mukherjee, R.; Bhunia, P.; De, S. Impact of graphene oxide on removal of heavy metals using mixed matrix membrane. Chem. Eng. J., 2016, 292, 284-297.
[http://dx.doi.org/10.1016/j.cej.2016.02.015]
[195]
Safarpour, M.; Vatanpour, V.; Khataee, A. Preparation and characterization of graphene Oxide/TiO2 Blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination, 2016, 393, 65-78.
[http://dx.doi.org/10.1016/j.desal.2015.07.003]
[196]
Yang, G.C.C.; Chen, Y.C.; Yang, H.X.; Yen, C.H. Performance and mechanisms for the removal of phthalates and pharmaceuticals from aqueous solution by graphene-containing ceramic composite tubular membrane coupled with the simultaneous electrocoagulation and electrofiltration process. Chemosphere, 2016, 155, 274-282.
[http://dx.doi.org/10.1016/j.chemosphere.2016.04.060]
[197]
Ben-Sasson, M.; Lu, X.; Bar-Zeev, E.; Zodrow, K.R.; Nejati, S.; Qi, G.; Giannelis, E.P.; Elimelech, M. In Situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Res., 2014, 62, 260-270.
[http://dx.doi.org/10.1016/j.watres.2014.05.049]
[198]
Dankovich, T.A.; Smith, J.A. Incorporation of copper nanoparticles into paper for point-of-use water purification. Water Res., 2014, 63, 245-251.
[http://dx.doi.org/10.1016/j.watres.2014.06.022]
[199]
Pang, R.; Li, X.; Li, J.; Lu, Z.; Sun, X.; Wang, L. Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles. Desalination, 2014, 332(1), 60-66.
[http://dx.doi.org/10.1016/j.desal.2013.10.024]
[200]
Yu, H.; Zhang, X.; Zhang, Y.; Liu, J.; Zhang, H. Development of a hydrophilic PES ultrafiltration membrane containing SiO2@N-Halamine nanoparticles with both organic antifouling and antibacterial properties. Desalination, 2013, 326, 69-76.
[http://dx.doi.org/10.1016/j.desal.2013.07.018]
[201]
Razmjou, A.; Resosudarmo, A.; Holmes, R.L.; Li, H.; Mansouri, J.; Chen, V. The effect of modified TiO2 nanoparticles on the polyethersulfone ultrafiltration hollow fiber membranes. Desalination, 2012, 287, 271-280.
[http://dx.doi.org/10.1016/j.desal.2011.11.025]
[202]
Li, X.; Fang, X.; Pang, R.; Li, J.; Sun, X.; Shen, J.; Han, W.; Wang, L. Self-Assembly of TiO2 nanoparticles around the pores of PES ultrafiltration membrane for mitigating organic fouling. J. Membr. Sci., 2014, 467, 226-235.
[http://dx.doi.org/10.1016/j.memsci.2014.05.036]
[203]
Molinari, R.; Palmisano, L.; Drioli, E.; Schiavello, M. Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification. J. Membr. Sci., 2002, 206(1-2), 399-415.
[http://dx.doi.org/10.1016/S0376-7388(01)00785-2]
[204]
Meng, S.; Mansouri, J.; Ye, Y.; Chen, V. Effect of templating agents on the properties and membrane distillation performance of TiO2-Coated PVDF membranes. J. Membr. Sci., 2014, 450, 48-59.
[http://dx.doi.org/10.1016/j.memsci.2013.08.036]
[205]
Khajouei, M.; Peyravi, M.; Jahanshahi, M. The Potential of nanoparticles for upgrading thin film nanocomposite membranes-A Review. J. Membr. Sci. Res., 2017, 3(1), 2-12.
[http://dx.doi.org/10.22079/JMSR.2017.23341]
[206]
Pandey, N.; Shukla, S.K.; Singh, N.B. Water purification by polymer nanocomposites: An overview. Nanocomposites, 2017, 3(2), 47-66.
[http://dx.doi.org/10.1080/20550324.2017.1329983]
[207]
Zinadini, S.; Rostami, S.; Vatanpour, V.; Jalilian, E. Preparation of antibiofouling polyethersulfone mixed matrix nf membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite. J. Membr. Sci., 2017, 529, 133-141.
[http://dx.doi.org/10.1016/j.memsci.2017.01.047]
[208]
Hossain, F.; Perales-Perez, O.J.; Hwang, S.; Román, F. Antimicrobial nanomaterials as water disinfectant: Applications, limitations and future perspectives. Sci. Total Environ., 2014, 466-467, 1047-1059.
[http://dx.doi.org/10.1016/j.scitotenv.2013.08.009]
[209]
Mayer, B.K.; Daugherty, E.; Abbaszadegan, M. Disinfection Byproduct formation resulting from settled, filtered, and finished water treated by titanium dioxide photocatalysis. Chemosphere, 2014, 117(1), 72-78.
[http://dx.doi.org/10.1016/j.chemosphere.2014.05.073]
[210]
Ahmed, F.; Santos, C.M.; Mangadlao, J.; Advincula, R.; Rodrigues, D.F. Antimicrobial PVK: SWNT nanocomposite coated membrane for water purification: performance and toxicity testing. Water Res., 2013, 47(12), 3966-3975.
[http://dx.doi.org/10.1016/j.watres.2012.10.055]
[211]
Dizaj, S.M.; Mennati, A.; Jafari, S.; Khezri, K.; Adibkia, K. Antimicrobial activity of carbon-based nanoparticles. Adv. Pharm. Bull., 2015, 5(1), 19-23.
[http://dx.doi.org/10.5681/apb.2015.003]
[212]
Karlsson, H.L.; Cronholm, P.; Hedberg, Y.; Tornberg, M.; De Battice, L.; Svedhem, S.; Wallinder, I.O. Cell Membrane damage and protein interaction induced by copper containing nanoparticles-importance of the metal release process. Toxicology, 2013, 313(1), 59-69.
[http://dx.doi.org/10.1016/j.tox.2013.07.012]
[213]
Mmola, M.; Le Roes-Hill, M.; Durrell, K.; Bolton, J.J.; Sibuyi, N.; Meyer, M.E.; Beukes, D.R.; Antunes, E. Enhanced antimicrobial and anticancer activity of silver and gold nanoparticles synthesised using sargassum incisifolium aqueous extracts. Molecules, 2016, 21(12), 1-10.
[http://dx.doi.org/10.3390/molecules21121633]
[214]
Jinu, U.; Gomathi, M.; Saiqa, I.; Geetha, N.; Benelli, G.; Venkatachalam, P. Green engineered biomolecule-capped silver and copper nanohybrids using prosopis cineraria leaf extract: enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer Cells (MCF-7). Microb. Pathog., 2017, 105, 86-95.
[http://dx.doi.org/10.1016/j.micpath.2017.02.019]
[215]
Rieger, K.A.; Cho, H.J.; Yeung, H.F.; Fan, W.; Schiffman, J.D. Antimicrobial activity of silver ions released from zeolites immobilized on cellulose nanofiber mats. ACS Appl. Mater. Interfaces, 2016, 8(5), 3032-3040.
[http://dx.doi.org/10.1021/acsami.5b10130]
[216]
Ahmed, F.; Rodrigues, D.F. Investigation of acute effects of graphene oxide on wastewater microbial community: A case study. J. Hazard. Mater., 2013, 256-257, 33-39.
[http://dx.doi.org/10.1016/j.jhazmat.2013.03.064]
[217]
Perreault, F.; De Faria, A.F.; Nejati, S.; Elimelech, M. Antimicrobial properties of graphene oxide nanosheets: Why size matters. ACS Nano, 2015, 9(7), 7226-7236.
[http://dx.doi.org/10.1021/acsnano.5b02067]
[218]
Gao, P.; Liu, J.; Sun, D.D.; Ng, W. Graphene Oxide-CdS Composite with high photocatalytic degradation and disinfection activities under visible light irradiation. J. Hazard. Mater., 2013, 250-251, 412-420.
[http://dx.doi.org/10.1016/j.jhazmat.2013.02.003]
[219]
Chella, S.; Kollu, P.; Komarala, E.V.P.R.; Doshi, S.; Saranya, M.; Felix, S.; Ramachandran, R.; Saravanan, P.; Koneru, V.L.; Venugopal, V. Solvothermal Synthesis of MnFe2O4 -Graphene Composite-investigation of its adsorption and antimicrobial properties. Appl. Surf. Sci., 2015, 327, 27-36.
[http://dx.doi.org/10.1016/j.apsusc.2014.11.096]
[220]
Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 2011, 5(9), 6971-6980.
[http://dx.doi.org/10.1021/nn202451x]
[221]
Shao, W.; Liu, X.; Min, H.; Dong, G.; Feng, Q.; Zuo, S. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl. Mater. Interfaces, 2015, 7(12), 6966-6973.
[http://dx.doi.org/10.1021/acsami.5b00937]
[222]
De Faria, A.F.; Martinez, D.S.T.; Meira, S.M.M.; de Moraes, A.C.M.; Brandelli, A.; Filho, A.G.S.; Alves, O.L. Anti-Adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf. B Biointerfaces, 2014, 113, 115-124.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.006]
[223]
Kumar, R.; Ansari, M.O.; Parveen, N.; Oves, M.; Barakat, M.A.; Alshahri, A.; Khan, M.Y.; Cho, M.H. Facile route to a conducting ternary polyaniline@TiO2/GN nanocomposite for environmentally benign applications: Photocatalytic degradation of pollutants and biological activity. RSC Advances, 2016, 6(112), 111308-111317.
[http://dx.doi.org/10.1039/C6RA24079H]
[224]
Malik, R.; Tomer, V.K.; Kienle, L.; Chaudhary, V.; Nehra, S.; Duhan, S. Ordered mesoporous Ag-ZnO@g-CN nanohybrid as highly efficient bifunctional sensing material. Adv. Mater. Interfaces, 2018, 5(8), 1-13.
[http://dx.doi.org/10.1002/admi.201701357]
[225]
Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C, 2014, 44, 278-284.
[http://dx.doi.org/10.1016/j.msec.2014.08.031]
[226]
Han, C.; Lalley, J.; Namboodiri, D.; Cromer, K.; Nadagouda, M.N. Titanium dioxide-based antibacterial surfaces for water treatment. Curr. Opin. Chem. Eng., 2016, 11, 46-51.
[http://dx.doi.org/10.1016/j.coche.2015.11.007]
[227]
Jiang, Y.; Wang, W.N.; Liu, D.; Nie, Y.; Li, W.; Wu, J.; Zhang, F.; Biswas, P.; Fortner, J.D. Engineered crumpled graphene oxide nanocomposite membrane assemblies for advanced water treatment processes. Environ. Sci. Technol., 2015, 49(11), 6846-6854.
[http://dx.doi.org/10.1021/acs.est.5b00904]
[228]
Kudhier, M.A.; Sabry, R.S.; Al-Haidarie, Y.K.; All-Marjani, M.F. Significantly enhanced antibacterial activity of Ag-Doped TiO2 nanofibers synthesized by electrospinning. Mater. Technol., 2018, 33(3), 220-226.
[http://dx.doi.org/10.1080/10667857.2017.1396778]
[229]
Kavitha, T.; Gopalan, A.I.; Lee, K.P.; Park, S.Y. Glucose sensing, photocatalytic and antibacterial properties of graphene-ZnO nanoparticle hybrids. Carbon N.Y., 2012, 50(8), 2994-3000.
[http://dx.doi.org/10.1016/j.carbon.2012.02.082]
[230]
Shah, P.; Murthy, C.N. Studies on the porosity control of MWCNT/Polysulfone composite membrane and its effect on metal removal. J. Membr. Sci., 2013, 437, 90-98.
[http://dx.doi.org/10.1016/j.memsci.2013.02.042]
[231]
Dinh, N.T.; Vu, D.T.; Mulligan, D.; Nguyen, A.V. Accumulation and distribution of zinc in the leaves and roots of the hyperaccumulator noccaea caerulescens. Environ. Exp. Bot., 2015, 110, 85-95.
[http://dx.doi.org/10.1016/j.envexpbot.2014.10.001]
[232]
Ahmed, F.; Santos, C.M.; Vergara, R.A.M.V.; Tria, M.C.R.; Advincula, R.; Rodrigues, D.F. Antimicrobial applications of electroactive PVK-SWNT nanocomposites. Environ. Sci. Technol., 2012, 46(3), 1804-1810.
[http://dx.doi.org/10.1021/es202374e]
[233]
Ong, C.S.; Goh, P.S.; Lau, W.J.; Misdan, N.; Ismail, A.F. Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: A review. Desalination, 2016, 393, 2-15.
[http://dx.doi.org/10.1016/j.desal.2016.01.007]
[234]
Cortez, S.; Nicolau, A.; Flickinger, M.C.; Mota, M. Biocoatings: A new challenge for environmental biotechnology. Biochem. Eng. J., 2017, 121, 25-37.
[http://dx.doi.org/10.1016/j.bej.2017.01.004]
[235]
Shweta, K.; Manupati, K.; Das, A.; Jha, H. Novel nanocomposites with selective antibacterial action and low cytotoxic effect on eukaryotic cells. Int. J. Biol. Macromol., 2016, 92, 988-997.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.064]
[236]
Govindhan, M.; Adhikari, B.R.; Chen, A. Nanomaterials-Based electrochemical detection of chemical contaminants. RSC Advances, 2014, 4(109), 63741-63760.
[http://dx.doi.org/10.1039/C4RA10399H]
[237]
Willner, M.R.; Vikesland, P.J. Nanomaterial enabled sensors for environmental contaminants Prof Ueli Aebi, Prof Peter Gehr. J. Nanobiotechnology, 2018, 16(1), 1-16.
[http://dx.doi.org/10.1186/s12951-018-0419-1]
[238]
Khalililaghab, S.; Momeni, S.; Farrokhnia, M.; Nabipour, I.; Karimi, S. Development of a new colorimetric assay for detection of bisphenol-a in aqueous media using green synthesized silver chloride nanoparticles: Experimental and theoretical study. Anal. Bioanal. Chem., 2017, 409(11), 2847-2858.
[http://dx.doi.org/10.1007/s00216-017-0230-0]
[239]
Chettri, P.; Vendamani, V.S.; Tripathi, A.; Singh, M.K.; Pathak, A.P.; Tiwari, A. Green synthesis of silver nanoparticle-reduced graphene oxide using psidium guajava and its application in sers for the detection of methylene blue. Appl. Surf. Sci., 2017, 406, 312-318.
[http://dx.doi.org/10.1016/j.apsusc.2017.02.073]
[240]
Wang, L.; Lin, J. Phenylalanine-Rich peptide mediated binding with graphene oxide and bioinspired synthesis of silver nanoparticles for electrochemical sensing. Appl. Sci. (Basel), 2017, 7(2), 160.
[http://dx.doi.org/10.3390/app7020160]
[241]
Cao, J.; Sun, X.; Zhang, X.; Lu, C. Homogeneous synthesis of Ag Nanoparticles-Doped water-soluble cellulose acetate for versatile applications. Int. J. Biol. Macromol., 2016, 92, 167-173.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.092]
[242]
Han, C.; Doepke, A.; Cho, W.; Likodimos, V.; De La Cruz, A.A.; Back, T.; Heineman, W.R.; Halsall, H.B.; Shanov, V.N.; Schulz, M.J. A Multiwalled-Carbon-Nanotube-based biosensor for monitoring Microcystin-LR in sources of drinking water supplies. Adv. Funct. Mater., 2013, 23(14), 1807-1816.
[http://dx.doi.org/10.1002/adfm.201201920]
[243]
Nugen, S.R.; Jiang, Z.; Rotello, V.M.; Alcaine, S.D.; Chen, J. Detection of Escherichia Coli in drinking water using T7 bacteriophage-conjugated magnetic probe. Anal. Chem., 2015, 1, 1-9.
[http://dx.doi.org/10.1021/acs.analchem.5b02175]
[244]
Shirzadmehr, A.; Afkhami, A.; Madrakian, T. A New Nano-Composite Potentiometric Sensor Containing an Hg2+-Ion imprinted polymer for the trace determination of mercury ions in different matrices. J. Mol. Liq., 2015, 204, 227-235.
[http://dx.doi.org/10.1016/j.molliq.2015.01.014]
[245]
Verma, R.; Gupta, B.D. Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan. Food Chem., 2015, 166, 568-575.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.045]
[246]
Lee, J.E.; Shim, H.W.; Kwon, O.S.; Huh, Y. Il; Yoon, H. Real-Time detection of metal ions using conjugated polymer composite papers. Analyst (Lond.), 2014, 139(18), 4466-4475.
[http://dx.doi.org/10.1039/C4AN00804A]
[247]
Wang, X.; Li, X.; Luo, C.; Sun, M.; Li, L.; Duan, H. Ultrasensitive molecularly imprinted electrochemical sensor based on magnetism graphene Oxide/β-Cyclodextrin/Au nanoparticles composites for chrysoidine analysis. Electrochim. Acta, 2014, 130, 519-525.
[http://dx.doi.org/10.1016/j.electacta.2014.03.039]
[248]
Chamjangali, M.A.; Kouhestani, H.; Masdarolomoor, F.; Daneshinejad, H. A voltammetric sensor based on the glassy carbon electrode modified with multi-walled carbon nanotube/Poly(Pyrocatechol Violet)/Bismuth Film for determination of cadmium and lead as environmental pollutants. Sens. Actuators B Chem., 2015, 216, 384-393.
[http://dx.doi.org/10.1016/j.snb.2015.04.058]
[249]
Palanisamy, S.; Thangavelu, K.; Chen, S.M.; Velusamy, V.; Chang, M.H.; Chen, T.W.; Al-Hemaid, F.M.A.; Ali, M.A.; Ramaraj, S.K. Synthesis and characterization of polypyrrole decorated Graphene/β-Cyclodextrin composite for low level electrochemical detection of Mercury (II) in water. Sens. Actuators B Chem., 2017, 243, 888-894.
[http://dx.doi.org/10.1016/j.snb.2016.12.068]
[250]
Liang, Y.; Yu, L.; Yang, R.; Li, X.; Qu, L.; Li, J. High sensitive and selective graphene oxide/molecularly imprinted polymer electrochemical sensor for 2,4-dichlorophenol in water. Sens. Actuators B Chem., 2017, 240, 1330-1335.
[http://dx.doi.org/10.1016/j.snb.2016.08.137]
[251]
Facure, M.H.M.; Mercante, L.A.; Mattoso, L.H.C.; Correa, D.S. Detection of trace levels of organophosphate pesticides using an electronic tongue based on graphene hybrid nanocomposites. Talanta, 2016, 2017(167), 59-66.
[http://dx.doi.org/10.1016/j.talanta.2017.02.005]
[252]
Patil, S.J.; Duragkar, N.; Rao, V.R. An ultra-sensitive piezoresistive polymer nano-composite microcantilever sensor electronic nose platform for explosive vapor detection. Sens. Actuators B Chem., 2014, 192, 444-451.
[http://dx.doi.org/10.1016/j.snb.2013.10.111]
[253]
Zhou, Z.; Li, T.; Xu, W.; Huang, W.; Wang, N.; Yang, W. Synthesis and characterization of fluorescence molecularly imprinted polymers as sensor for highly sensitive detection of dibutyl phthalate from tap water samples. Sens. Actuators B Chem., 2017, 240, 1114-1122.
[http://dx.doi.org/10.1016/j.snb.2016.09.092]
[254]
Tomer, V.K.; Singh, K.; Kaur, H.; Shorie, M.; Sabherwal, P. Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor. Sens. Actuators B Chem., 2017, 253, 703-713.
[http://dx.doi.org/10.1016/j.snb.2017.06.179]
[255]
Tomer, V.K.; Malik, R.; Kailasam, K. Near-Room-temperature ethanol detection using ag-loaded mesoporous carbon nitrides. ACS Omega, 2017, 2(7), 3658-3668.
[http://dx.doi.org/10.1021/acsomega.7b00479]
[256]
Tomer, V.K.; Devi, S.; Malik, R.; Nehra, S.P.; Duhan, S. Highly sensitive and selective volatile organic amine (VOA) Sensors using mesoporous WO3-SnO2 Nanohybrids. Sens. Actuators B Chem., 2016, 229, 321-330.
[http://dx.doi.org/10.1016/j.snb.2016.01.124]
[257]
Chaudhary, V.; Malik, R.; Tomer, V.K.; Nehra, S.P.; Duhan, S. Enhanced relative humidity sensing performance using TiO2 Loaded SiO2 nanocomposite. Energy Environ. Focus, 2016, 5(3), 234-239.
[http://dx.doi.org/10.1166/eef.2016.1220]
[258]
Tomer, V.K.; Thangaraj, N.; Gahlot, S.; Kailasam, K. Cubic Mesoporous Ag@CN: A high performance humidity sensor. Nanoscale, 2016, 8(47), 19794-19803.
[http://dx.doi.org/10.1039/C6NR08039A]
[259]
Tomer, V.K.; Devi, S.; Malik, R.; Nehra, S.P.; Duhan, S. Fast response with high performance humidity sensing of Ag-SnO2/SBA-15 nanohybrid sensors. Microporous Mesoporous Mater., 2016, 219, 240-248.
[http://dx.doi.org/10.1016/j.micromeso.2015.08.016]
[260]
Liu, M.; Wang, Y.; Chen, L.; Zhang, Y.; Lin, Z. Mg(OH)2 Supported nanoscale zero valent iron enhancing the removal of Pb(II) from aqueous solution. ACS Appl. Mater. Interfaces, 2015, 7(15), 7961-7969.
[http://dx.doi.org/10.1021/am509184e]
[261]
Dupont, D.; Brullot, W.; Bloemen, M.; Verbiest, T.; Binnemans, K. Selective Uptake of rare earths from aqueous solutions by EDTA-functionalized magnetic and nonmagnetic nanoparticles. ACS Appl. Mater. Interfaces, 2014, 6(7), 4980-4988.
[http://dx.doi.org/10.1021/am406027y]
[262]
Huang, Y.; Keller, A.A. EDTA functionalized magnetic nanoparticle sorbents for cadmium and lead contaminated water treatment. Water Res., 2015, 80, 159-168.
[http://dx.doi.org/10.1016/j.watres.2015.05.011]
[263]
Park, C.M.; Wang, D.; Su, C. Recent Developments in Engineered Nanomaterials for Water Treatment and Environmental Remediation; Elsevier Inc., 2018.
[http://dx.doi.org/10.1016/B978-0-12-813351-4.00048-1]
[264]
Lee, H.; Yoo, H.Y.; Choi, J.; Nam, I.H.; Lee, S.; Lee, S.; Kim, J.H.; Lee, C.; Lee, J. Oxidizing capacity of periodate activated with iron-based bimetallic nanoparticles. Environ. Sci. Technol., 2014, 48(14), 8086-8093.
[http://dx.doi.org/10.1021/es5002902]
[265]
Lu, H.J.; Wang, J.K.; Ferguson, S.; Wang, T.; Bao, Y.; Hao, H.X. Mechanism, synthesis and modification of nano zerovalent iron in water treatment. Nanoscale, 2016, 8(19), 9962-9975.
[http://dx.doi.org/10.1039/C6NR00740F]
[266]
Zhang, Y.; Yang, B.; Fan, J.; Ma, L. A mechanically synthesized SiO 2 -Fe Metal Matrix composite for effective dechlorination of aqueous 2-Chlorophenol: The optimum of the preparation conditions. RSC Advances, 2016, 6(80), 76867-76873.
[http://dx.doi.org/10.1039/C6RA12889K]
[267]
Sahu, R.S.; Bindumadhavan, K.; an Doong, R. Boron-Doped Reduced graphene oxide-based bimetallic Ni/Fe nanohybrids for the rapid dechlorination of trichloroethylene. Environ. Sci. Nano, 2017, 4(3), 565-576.
[http://dx.doi.org/10.1039/C6EN00575F]
[268]
Zare, F.; Ghaedi, M.; Daneshfar, A.; Agarwal, S.; Tyagi, I.; Saleh, T.A.; Gupta, V.K. Efficient removal of radioactive uranium from solvent phase using AgOH-MWCNTs nanoparticles: Kinetic and thermodynamic study. Chem. Eng. J., 2015, 273, 296-306.
[http://dx.doi.org/10.1016/j.cej.2015.03.002]
[269]
Xiao, J.; Gao, B.; Yue, Q.; Sun, Y.; Kong, J.; Gao, Y.; Li, Q. Characterization of nanoscale zero-valent iron supported on granular activated carbon and its application in removal of acrylonitrile from aqueous solution. J. Taiwan Inst. Chem. Eng., 2015, 55, 152-158.
[http://dx.doi.org/10.1016/j.jtice.2015.04.010]
[270]
Dolat, D.; Mozia, S.; Wróbel, R.J.; Moszyński, D.; Ohtani, B.; Guskos, N.; Morawski, A.W. Nitrogen-Doped, metal-modified rutile titanium dioxide as photocatalysts for water remediation. Appl. Catal. B, 2015, 162, 310-318.
[http://dx.doi.org/10.1016/j.apcatb.2014.07.001]
[271]
Zhang, J.; Wang, X.; Bu, Y.; Wang, X.; Song, J.; Xia, P.; Ma, R.; Louangsouphom, B.; Ma, S.; Zhao, J. Remediation of diesel polluted water through buoyant sunlight responsive iron and nitrogen Co-Doped TiO2 coated on chitosan carbonized fly ash. Chem. Eng. J., 2016, 306, 460-470.
[http://dx.doi.org/10.1016/j.cej.2016.07.074]
[272]
Lim, J.; Kim, H.W.; Youdim, M.B.H.; Rhyu, I.J.; Choe, K.M.; Oh, Y.J. Binding Preference of P62 towards LC3-II during dopaminergic neurotoxin-induced impairment of autophagic flux. Autophagy, 2011, 7(1), 51-60.
[http://dx.doi.org/10.4161/auto.7.1.13909]
[273]
NIOSH. Occupational Exposure to Titanium Dioxide., 2011, 1-14.
[274]
Fajardo, C.; Saccà, M.L.; Martinez-Gomariz, M.; Costa, G.; Nande, M.; Martin, M. Transcriptional and proteomic stress responses of a soil bacterium bacillus cereus to nanosized zero-valent iron (NZVI) Particles. Chemosphere, 2013, 93(6), 1077-1083.
[http://dx.doi.org/10.1016/j.chemosphere.2013.05.082]
[275]
Chen, P.J.; Wu, W.L.; Wu, K.C.W. The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish. Water Res., 2013, 47(12), 3899-3909.
[http://dx.doi.org/10.1016/j.watres.2012.12.043]
[276]
Ma, W.; Soroush, A.; Van Anh Luong, T.; Brennan, G.; Rahaman, M.S.; Asadishad, B.; Tufenkji, N. Spray- and Spin-Assisted Layer-by-Layer Assembly of copper nanoparticles on thin-film composite reverse osmosis membrane for biofouling mitigation. Water Res., 2016, 99, 188-199.
[http://dx.doi.org/10.1016/j.watres.2016.04.042]
[277]
Daly, A.; Zanneti, P. An Introduction to Air Pollution-Definitions, Classifications, and History. In: Chapter 1 of Ambient Air Pollution; , 2007; pp. 1-14.
[278]
Kampa, M.; Castanas, E. Health effects of air pollution. Environ. Pollut., 2008, 151(2), 362-367.
[http://dx.doi.org/10.1016/j.envpol.2007.06.012]
[279]
Carnell, E.; Vieno, M.; Vardoulakis, S. Beck, C Occupational Exposure to Titanium Dioxide. 2011-160 2011, 1-140, 2019.
[280]
Cooper, C.D. Air Pollution Control Methods. Kirk-Othmer Encycl. Chem. Technol., 2010, 26(6), 1-10.
[http://dx.doi.org/10.1002/0471238961.01091803181503.a01.pub2]
[281]
Linkov, I.; Steevens, J.; Adlakha-Hutcheon, G.; Bennett, E.; Chappell, M.; Colvin, V.; Davis, J.M.; Davis, T.; Elder, A.; Foss Hansen, S. Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: Summary of NATO Advanced research workshop. J. Nanopart. Res., 2009, 11(3), 513-527.
[http://dx.doi.org/10.1007/s11051-008-9514-9]
[282]
Bernstein, J.A.; Alexis, N.; Barnes, C.; Bernstein, I.L.; Bernstein, J.A.; Nel, A.; Peden, D.; Diaz-Sanchez, D.; Tarlo, S.M.; Williams, P.B. Health effects of air pollution. J. Allergy Clin. Immunol., 2004, 114(5), 1116-1123.
[http://dx.doi.org/10.1016/j.jaci.2004.08.030]
[283]
Ghorani-Azam, A.; Riahi-Zanjani, B.; Balali-Mood, M. Effects of air pollution on human health and practical measures for prevention in Iran. J. Res. Med. Sci., 2016, 21(5)
[http://dx.doi.org/10.4103/1735-1995.189646]
[284]
Nazaroff, W.W.; Weschler, C.J. Cleaning products and air fresheners: Exposure to primary and secondary air pollutants. Atmos. Environ., 2004, 38(18), 2841-2865.
[http://dx.doi.org/10.1016/j.atmosenv.2004.02.040]
[285]
Lei, Y.; Zhang, Q.; Nielsen, C.; He, K. An inventory of primary air pollutants and CO2 emissions from cement production in China, 1990-2020. Atmos. Environ., 2011, 45(1), 147-154.
[http://dx.doi.org/10.1016/j.atmosenv.2010.09.034]
[286]
Cape, J.N. Interactions of forests with secondary air pollutants: Some challenges for future research. Environ. Pollut., 2008, 155(3), 391-397.
[http://dx.doi.org/10.1016/j.envpol.2008.01.038]
[287]
Gilmour, M.I.; Jaakkola, M.S.; London, S.J.; Nel, A.E.; Rogers, C.A. How exposure to environmental tobacco smoke, outdoor air pollutants, and increased pollen burdens influences the incidence of asthma. Environ. Health Perspect., 2006, 114(4), 627-633.
[http://dx.doi.org/10.1289/ehp.8380]
[288]
Curtis, L.; Rea, W.; Smith-Willis, P.; Fenyves, E.; Pan, Y. Adverse health effects of outdoor air pollutants. Environ. Int., 2006, 32(6), 815-830.
[http://dx.doi.org/10.1016/j.envint.2006.03.012]
[289]
Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 2015, 525(7569), 367-371.
[http://dx.doi.org/10.1038/nature15371]
[290]
Bernstein, J.A.; Alexis, N.; Bacchus, H.; Bernstein, I.L.; Fritz, P.; Horner, E.; Li, N.; Mason, S.; Nel, A.; Oullette, J. The health effects of nonindustrial indoor air pollution. J. Allergy Clin. Immunol., 2008, 121(3), 585-591.
[http://dx.doi.org/10.1016/j.jaci.2007.10.045]
[291]
Perez-Padilla, R.; Schilmann, A.; Riojas-Rodriguez, H. Respiratory health effects of indoor air pollution. Int. J. Tuberc. Lung Dis., 2010, 14(9), 1079-1086.
[292]
Zhang, J.; Smith, K.R. Indoor air pollution: A global health concern. Br. Med. Bull., 2003, 68, 209-225.
[http://dx.doi.org/10.1093/bmb/ldg029]
[293]
Sublett, J.L.; Seltzer, J.; Burkhead, R.; Williams, P.B.; Wedner, H.J.; Phipatanakul, W. Air Filters and air cleaners: Rostrum by the american academy of allergy, asthma & immunology indoor allergen committee. J. Allergy Clin. Immunol., 2010, 125(1-3), 32-38.
[http://dx.doi.org/10.1016/j.jaci.2009.08.036]
[294]
Joubert, A.; Laborde, J.C.; Bouilloux, L.; Callé-Chazelet, S.; Thomas, D. Influence of humidity on clogging of flat and pleated HEPA Filters. Aerosol Sci. Technol., 2010, 44(12), 1065-1076.
[http://dx.doi.org/10.1080/02786826.2010.510154]
[295]
Sundarrajan, S.; Tan, K.L.; Lim, S.H.; Ramakrishna, S. Electrospun nanofibers for air filtration applications. Procedia Eng., 2014, 75, 159-163.https://doi.org/https://doi.org/10.1016/j.proeng.2013.11.034
[http://dx.doi.org/10.1016/j.proeng.2013.11.034]
[296]
Deng, N.; He, H.; Yan, J.; Zhao, Y.; Ben Ticha, E.; Liu, Y.; Kang, W.; Cheng, B. One-Step melt-blowing of multi-scale micro/nano fabric membrane for advanced air-filtration. Polymer (Guildf.), 2019, 165, 174-179.
[http://dx.doi.org/10.1016/j.polymer.2019.01.035]
[297]
Cheng, Z.; Cao, J.; Kang, L.; Luo, Y.; Li, T.; Liu, W. Novel transparent nano-pattern window screen for effective air filtration by electrospinning. Mater. Lett., 2018, 221, 157-160.
[http://dx.doi.org/10.1016/j.matlet.2018.03.110]
[298]
Alexandrescu, L.; Syverud, K.; Nicosia, A.; Santachiara, G.; Fabrizi, A.; Belosi, F. Airborne nanoparticles filtration by means of cellulose nanofibril based materials. J. Biomater. Nanobiotechnol., 2016, 07(01), 29-36.
[http://dx.doi.org/10.4236/jbnb.2016.71004]
[299]
Bortolassi, A.C.C.; Nagarajan, S.; de Araújo Lima, B.; Guerra, V.G.; Aguiar, M.L.; Huon, V.; Soussan, L.; Cornu, D.; Miele, P.; Bechelany, M. Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Mater. Sci. Eng. C, 2019, 102, 718-729.
[http://dx.doi.org/10.1016/j.msec.2019.04.094]
[300]
Deshmukh, S.P.; Patil, S.M.; Mullani, S.B.; Delekar, S.D. Silver nanoparticles as an effective disinfectant: A review. Mater. Sci. Eng. C, 2019, 97(December), 954-965.
[http://dx.doi.org/10.1016/j.msec.2018.12.102]
[301]
Anderson, T.R.; Hawkins, E.; Jones, P.D. CO2, the greenhouse effect and global warming: from the pioneering work of arrhenius and callendar to today’s earth system models. Endeavour, 2016, 40(3), 178-187.
[http://dx.doi.org/10.1016/j.endeavour.2016.07.002]
[302]
Herzog, T. World Greenhouse Gas Emissions in 2005 | World Resources Institute; WRI Work; Pap. World Resour. Inst., 2009, pp. 2005-2009.
[303]
Montzka, S.A.; Dlugokencky, E.J.; Butler, J.H. Non-CO 2 Greenhouse Gases and Climate Change. Nature, 2011, 476(7358), 43-50.
[http://dx.doi.org/10.1038/nature10322]
[304]
Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S.C.B.; Frieler, K.; Knutti, R.; Frame, D.J.; Allen, M.R. Greenhouse-Gas emission targets for limiting global warming to 2°C. Nature, 2009, 458(7242), 1158-1162.
[http://dx.doi.org/10.1038/nature08017]
[305]
Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris agreement climate proposals need a boost to keep warming well below 2 °C. Nature, 2016, 534(7609), 631-639.
[http://dx.doi.org/10.1038/nature18307]
[306]
Erickson, L.E. Reducing greenhouse gas emissions and improving air quality: Two global challenges. Environ. Prog. Sustain. Energy, 2017, 36(4), 982-988.
[http://dx.doi.org/10.1002/ep.12665]
[307]
Di Palma, L.; Petrucci, E.; Stoller, M.; Frontera, P.; Macario, A.; Candamano, S.; Barberio, M.; Crea, F.; Antonucci, P. CO2 conversion over supported Ni nanoparticles. Chem. Eng. Trans., 2017, 60, 2017.
[http://dx.doi.org/10.3303/CET1760039]
[308]
Mateo, D.; Albero, J.; García, H. Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Appl. Catal. B, 2018, 224, 563-571.
[http://dx.doi.org/10.1016/j.apcatb.2017.10.071]
[309]
Lu, H.; Yang, X.; Gao, G.; Wang, J.; Han, C.; Liang, X.; Li, C.; Li, Y.; Zhang, W.; Chen, X. Metal (Fe, Co, Ce or La) Doped nickel catalyst supported on ZrO2 modified mesoporous clays for CO and CO 2 methanation. Fuel, 2016, 183, 335-344.
[http://dx.doi.org/10.1016/j.fuel.2016.06.084]
[310]
Sajjadi, S.M.; Haghighi, M. Impregnation vs. Sol-Gel and Sol-Gel-Plasma Dispersion of Nickel Nanoparticles over Al2O3 Employed in combined dry reforming and partial oxidation of greenhouse gases to syngas. Int. J. Hydrogen Energy, 2018, 43(32), 15014-15029.
[http://dx.doi.org/10.1016/j.ijhydene.2018.06.073]
[311]
Wang, H.Y.; Lua, A.C. Development of metallic nickel nanoparticle catalyst for the decomposition of methane into hydrogen and carbon nanofibers. J. Phys. Chem. C, 2012, 116(51), 26765-26775.
[http://dx.doi.org/10.1021/jp306519t]
[312]
Merajin, M.T.; Sharifnia, S.; Hosseini, S.N.; Yazdanpour, N. Photocatalytic conversion of greenhouse gases (CO2 and CH4) to high value products using TiO2 nanoparticles supported on stainless steel webnet. J. Taiwan Inst. Chem. Eng., 2013, 44(2), 239-246.
[http://dx.doi.org/10.1016/j.jtice.2012.11.007]
[313]
Akhter, P.; Hussain, M.; Saracco, G.; Russo, N. Novel nanostructured-TiO2 materials for the photocatalytic reduction of CO2 greenhouse gas to hydrocarbons and syngas. Fuel, 2015, 149, 55-65.
[http://dx.doi.org/10.1016/j.fuel.2014.09.079]
[314]
Reli, M.; Huo, P.; Šihor, M.; Ambrožová, N.; Troppová, I.; Matějová, L.; Lang, J.; Svoboda, L.; Kuśtrowski, P.; Ritz, M. Novel TiO2/C3N4 photocatalysts for photocatalytic reduction of co2 and for photocatalytic decomposition of N2O. J. Phys. Chem. A, 2016, 120(43), 8564-8573.
[http://dx.doi.org/10.1021/acs.jpca.6b07236]
[315]
Arandiyan, H.; Kani, K.; Wang, Y.; Jiang, B.; Kim, J.; Yoshino, M.; Rezaei, M.; Rowan, A.E.; Dai, H.; Yamauchi, Y. Highly selective reduction of carbon dioxide to methane on novel mesoporous Rh catalysts. ACS Appl. Mater. Interfaces, 2018, 10(30), 24963-24968.
[http://dx.doi.org/10.1021/acsami.8b06977]
[316]
Liu, H.; Ma, Z. Rh2O3/Monoclinic CePO4 composite catalysts for N2O Decomposition and CO Oxidation. Chin. J. Chem. Eng., 2018, 26(1), 109-115.
[http://dx.doi.org/10.1016/j.cjche.2017.02.007]
[317]
Zhang, X.; Li, X.; Zhang, D.; Su, N.Q.; Yang, W.; Everitt, H.O.; Liu, J. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun., 2017, 8, 1-9.
[http://dx.doi.org/10.1038/ncomms14542]
[318]
Hunter, K.A.; Liss, P.S.; Surapipith, V.; Dentener, F.; Duce, R.; Kanakidou, M.; Kubilay, N.; Mahowald, N.; Okin, G.; Sarin, M. Impacts of Anthropogenic SOx, NOx and NH3 on acidification of coastal waters and shipping lanes. Geophys. Res. Lett., 2011, 38(13), 2-7.
[http://dx.doi.org/10.1029/2011GL047720]
[319]
Balbuena, J.; Cruz-Yusta, M.; Sánchez, L. Nanomaterials to combat NO X pollution. J. Nanosci. Nanotechnol., 2015, 15(9), 6373-6385.
[http://dx.doi.org/10.1166/jnn.2015.10871]
[320]
Bao, J.; Dai, Y.; Liu, H.; Yang, L. Photocatalytic removal of SO2 over Mn Doped titanium dioxide supported by multi-walled carbon nanotubes. Int. J. Hydrogen Energy, 2016, 41(35), 15688-15695.
[http://dx.doi.org/10.1016/j.ijhydene.2016.03.174]
[321]
Park, H.J.; Bhatti, U.H.; Nam, S.C.; Park, S.Y.; Lee, K.B.; Baek, I.H. Nafion/TiO2 nanoparticle decorated thin film composite hollow fiber membrane for efficient removal of SO2 gas. Separ. Purif. Tech., 2019, 211, 377-390.
[http://dx.doi.org/10.1016/j.seppur.2018.10.010]
[322]
Ding, J.; Zhong, Q.; Zhang, S.; Cai, W. Size- and shape-controlled synthesis and catalytic performance of iron-aluminum mixed oxide nanoparticles for NOX and SO2 removal with hydrogen peroxide. J. Hazard. Mater., 2015, 283(X), 633-642.
[http://dx.doi.org/10.1016/j.jhazmat.2014.10.010]
[323]
Majidi, R.; Parhizkar, J.; Karamian, E. Photocatalytic removal of NOx Gas from Air by TiO2/ polymer composite nanofibers. 2018, 3(2), 212-218.
[324]
Huang, Y.; Cao, J.J.; Kang, F.; You, S.J.; Chang, C.W.; Wang, Y.F. High Selectivity of visible-light-driven La-Doped TiO2 photocatalysts for NO removal. Aerosol Air Qual. Res., 2017, 17(10), 2555-2565.
[http://dx.doi.org/10.4209/aaqr.2017.08.0282]
[325]
Creamer, A.E.; Gao, B. Carbon-Based adsorbents for postcombustion CO2 capture. Crit. Rev. Environ. Sci. Technol., 2016, 50(14), 7276-7289.
[http://dx.doi.org/10.1021/acs.est.6b00627]
[326]
Abdulrasheed, A.A.; Jalil, A.A.; Triwahyono, S.; Zaini, M.A.A.; Gambo, Y.; Ibrahim, M. Surface modification of activated carbon for adsorption of SO 2 and NO X : A review of existing and emerging technologies. Renew. Sustain. Energy Rev., 2018, 94(X), 1067-1085.
[http://dx.doi.org/10.1016/j.rser.2018.07.011]
[327]
Svinterikos, E.; Zuburtikudis, I.; Al-Marzouqi, M. Carbon Nanomaterials for the adsorptive desulfurization of fuels. J. Nanotechnol., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/2809867]
[328]
Babu, D.J.; Puthusseri, D.; Kühl, F.G.; Okeil, S.; Bruns, M.; Hampe, M.; Schneider, J.J. SO2 gas adsorption on carbon nanomaterials: a comparative study. Beilstein J. Nanotechnol., 2018, 9(1), 1782-1792.
[http://dx.doi.org/10.3762/bjnano.9.169]
[329]
Salthammer, T.; Mentese, S.; Marutzky, R. Formaldehyde in the indoor environment. Chem. Rev., 2010, 110(4), 2536-2572.
[http://dx.doi.org/10.1021/cr800399g]
[330]
Salthammer, T. The formaldehyde dilemma. Int. J. Hyg. Environ. Health, 2015, 218(4), 433-436.
[http://dx.doi.org/10.1016/j.ijheh.2015.02.005]
[331]
Rovira, J.; Roig, N.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Human health risks of formaldehyde indoor levels: An issue of concern. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 2016, 51(4), 357-363.
[http://dx.doi.org/10.1080/10934529.2015.1109411]
[332]
Salthammer, T. Formaldehyde sources, formaldehyde concentrations and air exchange rates in european housings. Build. Environ., 2019, 150, 219-232.
[http://dx.doi.org/10.1016/j.buildenv.2018.12.042]
[333]
Miyawaki, J.; Lee, G.H.; Yeh, J.; Shiratori, N.; Shimohara, T.; Mochida, I.; Yoon, S.H. Development of carbon-supported hybrid catalyst for clean removal of formaldehyde indoors. Catal. Today, 2012, 185(1), 278-283.
[http://dx.doi.org/10.1016/j.cattod.2011.09.036]
[334]
Azuma, K.; Uchiyama, I.; Uchiyama, S.; Kunugita, N. Assessment of inhalation exposure to indoor air pollutants: Screening for health risks of multiple pollutants in japanese dwellings. Environ. Res., 2016, 145, 39-49.
[http://dx.doi.org/10.1016/j.envres.2015.11.015]
[335]
Ma, J.; Sun, Y.; Yang, J.; Lin, Z.; Huang, Q.; Ou, T.; Yu, F. High-Performance Amino-Functional Graphene/CNT Aerogel Adsorbent for formaldehyde removal from indoor air. Aerosol Air Qual. Res., 2017, 17(3), 913-922.
[http://dx.doi.org/10.4209/aaqr.2016.07.0312]
[336]
Li, J.; Zhang, P.; Wang, J.; Wang, M. Birnessite-Type manganese oxide on granular activated carbon for formaldehyde removal at room temperature, 2016, 120, 1-10.
[337]
Bai, B.; Qiao, Q.; Arandiyan, H.; Li, J.; Hao, J. Three-Dimensional Ordered Mesoporous MnO2-Supported Ag nanoparticles for Catalytic removal of formaldehyde. Environ. Sci. Technol., 2016, 50(5), 2635-2640.
[http://dx.doi.org/10.1021/acs.est.5b03342]
[338]
Magudieshwaran, R.; Ishii, J.; Raja, K.C.N.; Terashima, C.; Venkatachalam, R.; Fujishima, A.; Pitchaimuthu, S. Green and chemical synthesized CeO2 nanoparticles for photocatalytic indoor air pollutant degradation. Mater. Lett., 2019, 239, 40-44.
[http://dx.doi.org/10.1016/j.matlet.2018.11.172]
[339]
Lacey, J.; Dutkiewicz, J. Bioaerosols and occupational lung disease. J. Aerosol Sci., 1994, 25(8), 1371-1404.
[http://dx.doi.org/10.1016/0021-8502(94)90215-1]
[340]
Kim, K.H.; Kabir, E.; Jahan, S.A. Airborne bioaerosols and their impact on human health. J. Environ. Sci. (China), 2018, 67, 23-35.
[http://dx.doi.org/10.1016/j.jes.2017.08.027]
[341]
Jafari, A.J.; Rostami, R.; Ghainy, G. Advance in bioaerosol removal technologies; A review. Iran. J. Health Saf. Environ., 2018, 5(2), 1007-1016.
[342]
Lee, B.; Yun, H. Inactivation of S. Epidermidis, B. Subtilis, and E. Coli Bacteria Bioaerosols Deposited on a Filter Utilizing Airborne Silver Nanoparticles, 2008, 18, 1-10.
[343]
Ali, A.; Pan, M.; Tilly, T.B.; Zia, M.; Wu, C.Y. Performance of silver, zinc, and iron nanoparticles-doped cotton filters against airborne E. coli to minimize bioaerosol exposure. Air Qual. Atmos. Health, 2018, 11(10), 1233-1242.
[http://dx.doi.org/10.1007/s11869-018-0622-0]
[344]
Permpoon, S.; Houmard, M.; Riassetto, D.; Rapenne, L.; Berthomé, G.; Baroux, B.; Joud, J.C.; Langlet, M. Natural and persistent superhydrophilicity of SiO2/TiO2 and TiO2/SiO2 Bi-Layer Films. Thin Solid Films, 2008, 516(6), 957-966.
[http://dx.doi.org/10.1016/j.tsf.2007.06.005]
[345]
Pham, T.D.; Lee, B.K. Photocatalytic comparison of Cu- and Ag-doped TiO2/GF for bioaerosol disinfection under visible light. J. Solid State Chem., 2015, 232, 256-263.
[http://dx.doi.org/10.1016/j.jssc.2015.10.011]
[346]
Al-Jumaili, A.; Alancherry, S.; Bazaka, K.; Jacob, M.V. Review on the antimicrobial properties of carbon nanostructures. Materials (Basel), 2017, 10(9), 1-26.
[http://dx.doi.org/10.3390/ma10091066]
[347]
Park, J.H.; Yoon, K.Y.; Na, H.; Kim, Y.S.; Hwang, J.; Kim, J.; Yoon, Y.H. Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy. Sci. Total Environ., 2011, 409(19), 4132-4138.
[http://dx.doi.org/10.1016/j.scitotenv.2011.04.060]
[348]
Seo, Y.; Park, C.; Son, J.; Lee, K.; Hwang, J.; Jo, Y.; Lee, D.; Khan, M.S.; Chavan, S.G.; Choi, Y. Synthesis of multi-walled carbon nanotubes modified with silver nanoparticles and evaluation of their antibacterial activities and cytotoxic properties. J. Vis. Exp., 2018, (135), 1-7.
[http://dx.doi.org/10.3791/57384]
[349]
Guan, T.; Yao, M. Use of carbon nanotube filter in removing bioaerosols. J. Aerosol Sci., 2010, 41(6), 611-620.
[http://dx.doi.org/10.1016/j.jaerosci.2010.03.002]
[350]
Hwan, G.B.; Sim, K.M.; Bae, G.N.; Jung, J.H. Synthesis of hybrid carbon nanotube structures coated with sophora flavescens nanoparticles and their application to antimicrobial air filtration. J. Aerosol Sci., 2015, 86, 44-54.
[http://dx.doi.org/10.1016/j.jaerosci.2015.04.004]
[351]
Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils - A review. Food Chem. Toxicol., 2008, 46(2), 446-475.
[http://dx.doi.org/10.1016/j.fct.2007.09.106]
[352]
Sim, K.M.; Park, H.S.; Bae, G.N.; Jung, J.H. Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop. Sci. Total Environ., 2015, 533, 266-274.
[http://dx.doi.org/10.1016/j.scitotenv.2015.07.003]
[353]
Hwang, G.B.; Heo, K.J.; Yun, J.H.; Lee, J.E.; Lee, H.J.; Nho, C.W.; Bae, G.N.; Jung, J.H. Antimicrobial air filters using natural euscaphis japonica nanoparticles. PLoS One, 2015, 10(5), 1-14.
[http://dx.doi.org/10.1371/journal.pone.0126481]
[354]
Azam, M.A.; Alias, F.M.; Tack, L.W.; Seman, R.N.A.R.; Taib, M.F.M. Electronic properties and gas adsorption behaviour of pristine, silicon-, and boron-doped (8, 0) single-walled carbon nanotube: A first principles study. J. Mol. Graph. Model., 2017, 75, 85-93.
[http://dx.doi.org/10.1016/j.jmgm.2017.05.003]
[355]
Esrafili, M.D. N2O Reduction over a fullerene-like boron nitride nanocage: A DFT study. Phys. Lett. Sect. A Gen. Solid State Phys., 2017, 381(25-26), 2085-2091.
[http://dx.doi.org/10.1016/j.physleta.2017.04.009]
[356]
Ghenaatian, H.R.; Baei, M.T.; Hashemian, S. Zn12O12 Nano-Cage as a promising adsorbent for CS2 capture. Superlattices Microstruct., 2013, 58, 198-204.
[http://dx.doi.org/10.1016/j.spmi.2013.03.006]
[357]
Gusain, R.; Kumar, P.; Sharma, O.P.; Jain, S.L.; Khatri, O.P. Reduced Graphene Oxide-CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Appl. Catal. B, 2016, 181, 352-362.
[http://dx.doi.org/10.1016/j.apcatb.2015.08.012]
[358]
Carabineiro, S.A.C.; Papista, E.; Marnellos, G.E.; Tavares, P.B.; Maldonado-Hódar, F.J.; Konsolakis, M. Catalytic decomposition of N2O on inorganic oxides: Effect of doping with Au Nanoparticles. Mol. Catal., 2017, 436, 78-89.
[http://dx.doi.org/10.1016/j.mcat.2017.04.009]
[359]
Chiu, C.H.; Kuo, T.H.; Chang, T.C.; Lin, S.F.; Lin, H.P.; Hsi, H.C. Multipollutant removal of Hg 0/SO 2/NO from simulated coal-combustion flue gases using metal oxide/mesoporous SiO2 Composites. Int. J. Coal Geol., 2017, 170, 60-68.
[http://dx.doi.org/10.1016/j.coal.2016.08.014]
[360]
Abbasi, A.; Sardroodi, J.J. An innovative method for the removal of Toxic SOx molecules from environment by TiO2/Stanene nanocomposites: A first-principles study. J. Inorg. Organomet. Polym. Mater., 2018, 28(5), 1901-1913.
[http://dx.doi.org/10.1007/s10904-018-0832-9]
[361]
Pham, T.D.; Lee, B.K. Advanced removal of c. famata in bioaerosols by simultaneous adsorption and photocatalytic oxidation of Cu-Doped TiO2/PU under visible irradiation. Chem. Eng. J., 2016, 286, 377-386.
[http://dx.doi.org/10.1016/j.cej.2015.10.100]
[362]
Narasimharao, K.; Al-Shehri, A.; Al-Thabaiti, S. Porous Ag-Fe2O3 nanocomposite catalysts for the oxidation of carbon monoxide. Appl. Catal. A Gen., 2015, 505, 431-440.
[http://dx.doi.org/10.1016/j.apcata.2015.05.017]
[363]
Zhang, R.; Lu, K.; Zong, L.; Tong, S.; Wang, X.; Zhou, J.; Lu, Z.H.; Feng, G. Control Synthesis of CeO2 Nanomaterials supported gold for catalytic oxidation of carbon monoxide. Mol. Catal., 2017, 442, 173-180.
[http://dx.doi.org/10.1016/j.mcat.2017.09.024]
[364]
Mishra, A.; Mehta, A.; Kainth, S.; Basu, S. Effect of different plasmonic metals on photocatalytic degradation of volatile organic compounds (VOCs) by Bentonite/M-TiO2 nanocomposites under UV/Visible Light. Appl. Clay Sci., 2017, 2018(153), 144-153.
[http://dx.doi.org/10.1016/j.clay.2017.11.040]
[365]
Zhang, G.; Sun, Z.; Duan, Y.; Ma, R.; Zheng, S. Synthesis of Nano-TiO 2/Diatomite composite and its photocatalytic degradation of gaseous formaldehyde. Appl. Surf. Sci., 2017, 412, 105-112.
[http://dx.doi.org/10.1016/j.apsusc.2017.03.198]
[366]
Sawant, S.Y.; Somani, R.S.; Bajaj, H.C.; Sharma, S.S. A dechlorination pathway for synthesis of horn shaped carbon nanotubes and its adsorption properties for CO2, CH4, CO and N2. J. Hazard. Mater., 2012, 227-228, 317-326.
[http://dx.doi.org/10.1016/j.jhazmat.2012.05.062]
[367]
Rengga, W.D.P.; Chafidz, A.; Sudibandriyo, M.; Nasikin, M.; Abasaeed, A.E. Silver nano-particles deposited on bamboo-based activated carbon for removal of formaldehyde. J. Environ. Chem. Eng., 2017, 5(2), 1657-1665.
[http://dx.doi.org/10.1016/j.jece.2017.02.033]
[368]
Mitrovic, M.; Malone, A. Carbon Capture and Storage (CCS) Demonstration Projects in Canada. Energy Procedia, 2011, 4, 5685-5691.
[http://dx.doi.org/10.1016/j.egypro.2011.02.562]
[369]
Haszeldine, R.S. Carbon Capture and Storage: How Green Can. Black Be, 2009, 325, 1-10.
[http://dx.doi.org/10.1126/science.1172246]
[370]
Jansen, D.; Gazzani, M.; Manzolini, G.; Van Dijk, E.; Carbo, M. Pre-Combustion CO2 capture. Int. J. Greenh. Gas Control, 2015, 40, 167-187.
[http://dx.doi.org/10.1016/j.ijggc.2015.05.028]
[371]
Wang, Y.; Zhao, L.; Otto, A.; Robinius, M.; Stolten, D. A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia, 2016, 2017(114), 650-665.
[http://dx.doi.org/10.1016/j.proeng.2016.11.237]
[372]
Borgert, K.J.; Rubin, E.S. Oxyfuel combustion: Technical and economic considerations for the development of carbon capture from pulverized coal power plants. Energy Procedia, 2013, 37, 1291-1300.
[http://dx.doi.org/10.1016/j.egypro.2013.06.004]
[373]
Kanniche, M.; Gros-Bonnivard, R.; Jaud, P.; Valle-Marcos, J.; Amann, J.M.; Bouallou, C. Pre-Combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl. Therm. Eng., 2010, 30(1), 53-62.
[http://dx.doi.org/10.1016/j.applthermaleng.2009.05.005]
[374]
Ben-Mansour, R.; Habib, M.A.; Bamidele, O.E.; Basha, M.; Qasem, N.A.A.; Peedikakkal, A.; Laoui, T.; Ali, M. Carbon Capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations - A review. Appl. Energy, 2016, 161, 225-255.
[http://dx.doi.org/10.1016/j.apenergy.2015.10.011]
[375]
Bajpai, A.K.; Rajpoot, M. Adsorption techniques. J. Sci. Ind. Res. (India), 1999, 58(11), 844-860.
[376]
Przepiórski, J.; Skrodzewicz, M.; Morawski, A.W. High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Appl. Surf. Sci., 2004, 225(1-4), 235-242.
[http://dx.doi.org/10.1016/j.apsusc.2003.10.006]
[377]
Chowdhury, S.; Parshetti, G.K.; Balasubramanian, R. Post-Combustion CO2 capture using mesoporous TiO2/Graphene oxide nanocomposites. Chem. Eng. J., 2015, 263, 374-384.
[http://dx.doi.org/10.1016/j.cej.2014.11.037]
[378]
Rashidi, A.M.; Kazemi, D.; Izadi, N.; Pourkhalil, M.; Jorsaraei, A.; Ganji, E.; Lotfi, R. Preparation of nanoporous activated carbon and its application as nano adsorbent for CO2 storage. Korean J. Chem. Eng., 2016, 33(2), 616-622.
[http://dx.doi.org/10.1007/s11814-015-0149-0]
[379]
Crake, A.; Christoforidis, K.C.; Kafizas, A.; Zafeiratos, S.; Petit, C. CO 2 Capture and photocatalytic reduction using bifunctional TiO 2/MOF nanocomposites under UV-Vis irradiation. Appl. Catal. B, 2017, 210(0), 131-140.
[http://dx.doi.org/10.1016/j.apcatb.2017.03.039]
[380]
Creamer, A.E.; Gao, B.; Zimmerman, A.; Harris, W. Biomass-facilitated production of activated magnesium oxide nanoparticles with extraordinary CO2 capture capacity. Chem. Eng. J., 2017, 2018(334), 81-88.
[http://dx.doi.org/10.1016/j.cej.2017.10.035]
[381]
Sultana, K.S.; Tran, D.T.; Walmsley, J.C.; Rønning, M.; Chen, D. CaO nanoparticles coated by ZrO2 layers for enhanced CO2 capture stability. Ind. Eng. Chem. Res., 2015, 54(36), 8929-8939.
[http://dx.doi.org/10.1021/acs.iecr.5b00423]
[382]
Irani, M.; Jacobson, A.T.; Gasem, K.A.M.; Fan, M. Modified carbon nanotubes/tetraethylenepentamine for CO2 capture. Fuel, 2017, 206, 10-18.
[http://dx.doi.org/10.1016/j.fuel.2017.05.087]
[383]
Upendar, K.; Sri Hari Kumar, A.; Lingaiah, N.; Rama Rao, K.S.; Sai Prasad, P.S. Low-Temperature CO2 adsorption on alkali metal titanate nanotubes. Int. J. Greenh. Gas Control, 2012, 10, 191-198.
[http://dx.doi.org/10.1016/j.ijggc.2012.06.008]
[384]
Nowrouzi, M.; Younesi, H.; Bahramifar, N. Superior CO2 capture performance on biomass-derived carbon/metal oxides nanocomposites from persian ironwood by H3PO4 activation. Fuel, 2017, 2018(223), 99-114.
[http://dx.doi.org/10.1016/j.fuel.2018.03.035]
[385]
Niu, M.; Yang, H.; Zhang, X.; Wang, Y.; Tang, A. Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2. Capture, 2016, 8, 1-10.
[http://dx.doi.org/10.1021/acsami.6b05044]
[386]
Rochelle, G. T. Amine Scrubbing for CO2 Capture. Science (80-.), 2009, 325(5948), 2009, 1652-1654.
[387]
Yu, C.H.; Huang, C.H.; Tan, C.S. A Review of CO2 Capture by absorption and adsorption. Aerosol Air Qual. Res., 2012, 12(5), 745-769.
[http://dx.doi.org/10.4209/aaqr.2012.05.0132]
[388]
Olajire, A.A. CO2 Capture and separation technologies for end-of-pipe applications - A review. Energy, 2010, 35(6), 2610-2628.
[http://dx.doi.org/10.1016/j.energy.2010.02.030]
[389]
Anderson, S.; Newell, R. Prospects for carbon capture and storage technologies. Annu. Rev. Environ. Resour., 2004, 29(1), 109-142.
[http://dx.doi.org/10.1146/annurev.energy.29.082703.145619]
[390]
Chow, J.C.; Watson, J.G.; Herzog, A.; Benson, S.M.; Hidy, G.M.; Gunter, W.D.; Penkala, S.J.; White, C.M. Separation and capture of CO2 from large stationary sources and sequestration in geological formations. J. Air Waste Manage. Assoc., 2012, 53(10), 1172-1182.
[http://dx.doi.org/10.1080/10473289.2003.10466274]
[391]
Zhang, Y.; Zhao, B.; Jiang, J.; Zhuo, Y.; Wang, S. The use of TiO2 nanoparticles to enhance CO2 absorption. Int. J. Greenh. Gas Control, 2016, 50, 49-56.
[http://dx.doi.org/10.1016/j.ijggc.2016.04.014]
[392]
Bhaduri, G.A.; Alamiry, M.A.H.; Šiller, L. Nickel nanoparticles for enhancing carbon capture. J. Nanomater., 2015, 2015
[http://dx.doi.org/10.1155/2015/581785]
[393]
Choi, I.D.; Lee, J.W.; Kang, Y.T. CO2 Capture/Separation control by SiO2 nanoparticles and surfactants. Sep. Sci. Technol., 2015, 50(5), 772-780.
[http://dx.doi.org/10.1080/01496395.2014.965257]
[394]
Zhang, H.; Liu, R.; Ning, T.; Lal, R. Higher CO2 absorption using a new class of calcium hydroxide (Ca(OH)2) nanoparticles. Environ. Chem. Lett., 2018, 16(3), 1095-1100.
[http://dx.doi.org/10.1007/s10311-018-0729-4]
[395]
Brunetti, A.; Scura, F.; Barbieri, G.; Drioli, E. Membrane technologies for CO2 separation. J. Membr. Sci., 2010, 359(1-2), 115-125.
[http://dx.doi.org/10.1016/j.memsci.2009.11.040]
[396]
Powell, C.E.; Qiao, G.G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J. Membr. Sci., 2006, 279(1-2), 1-49.
[http://dx.doi.org/10.1016/j.memsci.2005.12.062]
[397]
Fu, Q.; Halim, A.; Kim, J.; Scofield, J.M.P.; Gurr, P.A.; Kentish, S.E.; Qiao, G.G. Highly permeable membrane materials for CO2 capture. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(44), 13769-13778.
[http://dx.doi.org/10.1039/c3ta13066e]
[398]
Hasib-ur-Rahman. M.; Siaj, M.; Larachi, F. Ionic liquids for CO2 capture-development and progress. Chem. Eng. Process. Process Intensif., 2010, 49(4), 313-322.
[http://dx.doi.org/10.1016/j.cep.2010.03.008]
[399]
Azizi, N.; Mohammadi, T.; Behbahani, R.M. Synthesis of a PEBAX-1074/ZnO Nanocomposite membrane with improved CO2 separation performance. J. Energy Chem., 2017, 26(3), 454-465.
[http://dx.doi.org/10.1016/j.jechem.2016.11.018]
[400]
Nasir, R.; Mukhtar, H.; Man, Z.; Mohshim, D.F. Material advancements in fabrication of mixed-matrix membranes. Chem. Eng. Technol., 2013, 36(5), 717-727.
[http://dx.doi.org/10.1002/ceat.201200734]
[401]
Ng, L.Y.; Mohammad, A.W.; Leo, C.P.; Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination, 2013, 308, 15-33.
[http://dx.doi.org/10.1016/j.desal.2010.11.033]
[402]
Wang, T.; Yang, C.H.; Man, C.L.; Wu, L.G.; Xue, W.L.; Shen, J.N.; Van Der Bruggen, B.; Yi, Z. Enhanced separation performance for CO2 gas of mixed-matrix membranes incorporated with TiO2/Graphene Oxide: Synergistic effect of graphene oxide and small TiO2 particles on gas permeability of membranes. Ind. Eng. Chem. Res., 2017, 56(31), 8981-8990.
[http://dx.doi.org/10.1021/acs.iecr.7b02191]
[403]
Azizi, N.; Mohammadi, T.; Mosayebi Behbahani, R. Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 nanocomposite membranes for CO2/CH4 separation. Chem. Eng. Res. Des., 2017, 117, 177-189.
[http://dx.doi.org/10.1016/j.cherd.2016.10.018]
[404]
Mahdavi, H.R.; Azizi, N.; Arzani, M.; Mohammadi, T. Improved CO2/CH4 separation using a nanocomposite ionic liquid gel membrane. J. Nat. Gas Sci. Eng., 2017, 46, 275-288.
[http://dx.doi.org/10.1016/j.jngse.2017.07.024]
[405]
Khdary, N.H.; Abdelsalam, M.E. Polymer-Silica nanocomposite membranes for CO2 capturing. Arab. J. Chem., 2017, 13(1), 557-567.
[http://dx.doi.org/10.1016/j.arabjc.2017.06.001]
[406]
Shen, Y.; Wang, H.; Liu, J.; Zhang, Y. Enhanced Performance of a Novel Polyvinyl Amine/Chitosan/Graphene Oxide Mixed Matrix Membrane for CO2. Capture, 2015, 3, 1-10.
[407]
Shen, Y.; Wang, H.; Zhang, X.; Zhang, Y. MoS2 Nanosheets functionalized composite mixed matrix membrane for enhanced CO2 Capture via surface drop-coating method. ACS Appl. Mater. Interfaces, 2016, 8(35), 23371-23378.
[http://dx.doi.org/10.1021/acsami.6b07153]
[408]
Kim, S.J.; Chi, W.S.; Jeon, H.; Kim, J.H.; Patel, R. Spontaneously self-assembled dual-layer mixed matrix membranes containing mass-produced mesoporous TiO2 for CO2 capture. J. Membr. Sci., 2016, 508, 62-72.
[http://dx.doi.org/10.1016/j.memsci.2016.02.023]
[409]
Sun, H.; Wang, T.; Xu, Y.; Gao, W.; Li, P.; Niu, Q.J. Fabrication of polyimide and functionalized multi-walled carbon nanotubes mixed matrix membranes by in-situ polymerization for CO2 separation. Separ. Purif. Tech., 2017, 177, 327-336.
[http://dx.doi.org/10.1016/j.seppur.2017.01.015]
[410]
Zhang, H.; Guo, R.; Hou, J.; Wei, Z.; Li, X. Mixed-Matrix membranes containing carbon nanotubes composite with hydrogel for efficient CO2 separation. ACS Appl. Mater. Interfaces, 2016, 8(42), 29044-29051.
[http://dx.doi.org/10.1021/acsami.6b09786]
[411]
Kim, J.; Fu, Q.; Xie, K.; Scofield, J.M.P.; Kentish, S.E.; Qiao, G.G. CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture. J. Membr. Sci., 2016, 515, 54-62.
[http://dx.doi.org/10.1016/j.memsci.2016.05.029]
[412]
Li, X.; Cheng, Y.; Zhang, H.; Wang, S.; Jiang, Z.; Guo, R.; Wu, H. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes. ACS Appl. Mater. Interfaces, 2015, 7(9), 5528-5537.
[http://dx.doi.org/10.1021/acsami.5b00106]
[413]
Gupta, H. Role of nanocomposites in agriculture. Nano Hybrids Compos., 2018, 20, 81-89.
[http://dx.doi.org/10.4028/www.scientific.net/NHC.20.81]
[414]
Cătălin Balaure, P.; Gudovan, D.; Gudovan, I. Nanopesticides: A New Paradigm in Crop Protection, 2017.
[http://dx.doi.org/10.1016/B978-0-12-804299-1.00005-9]
[415]
Roopan, S.M.; Madhumitha, G. Bioorganic Phase in Natural Food: An Overview; Bioorganic Phase Nat. Food an Overview, 2018, 1-331.
[http://dx.doi.org/10.1007/978-3-319-74210-6]
[416]
Sundarraj, A.A. Plant Nanobionics; Springer Nature: Switzerland, 2019.
[417]
Gardner, B.D.; Pope, R.D. In agriculture? Balanc. Sheet, 2011, 60(2), 295-302.
[418]
Vishwakarma, K.; Upadhyay, N.; Kumar, N.; Tripathi, D.K.; Chauhan, D.K.; Sharma, S.; Sahi, S. Potential Applications and Avenues of Nanotechnology in Sustainable Agriculture; Elsevier, 2017, Vol. 1, pp. 1-10.
[419]
Cornelis, G.; Hund-Rinke, K.; Kuhlbusch, T.; van den Brink, N.; Nickel, C. Fate and bioavailability of engineered nanoparticles in soils: A review. Crit. Rev. Environ. Sci. Technol., 2014, 44(24), 2720-2764.
[http://dx.doi.org/10.1080/10643389.2013.829767]
[420]
Liu, R.; Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ., 2015, 514, 131-139.
[http://dx.doi.org/10.1016/j.scitotenv.2015.01.104]
[421]
Dimkpa, C.O.; Bindraban, P.S. Nanofertilizers: New products for the industry? J. Agric. Food Chem., 2018, 66(26), 6462-6473.
[http://dx.doi.org/10.1021/acs.jafc.7b02150]
[422]
Raliya, R.; Saharan, V.; Dimkpa, C.; Biswas, P. Nanofertilizer for precision and sustainable agriculture: Current state and future perspectives. J. Agric. Food Chem., 2018, 66(26), 6487-6503.
[http://dx.doi.org/10.1021/acs.jafc.7b02178]
[423]
Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci., 2019, 289110270https://doi.org/https://doi.org/10.1016/j.plantsci.2019.110270
[http://dx.doi.org/10.1016/j.plantsci.2019.110270]
[424]
Kah, M.; Kookana, R.S.; Gogos, A.; Bucheli, T.D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol., 2018, 13(8), 677-684.
[http://dx.doi.org/10.1038/s41565-018-0131-1]
[425]
Yata, V.K.; Tiwari, B.C.; Ahmad, I. Research trends and patents in nano-food and agriculture. NanoSci. Food Agricult., 2017, 26, 1-20.
[http://dx.doi.org/10.1007/978-3-319-58496-6_1]
[426]
Hayles, J.; Johnson, L.; Worthley, C.; Losic, D. 5 - Nanopesticides: A Review of Current Research and Perspectives; Elsevier Inc., 2017.
[427]
Dwivedi, S.; Saquib, Q. Understanding the Role of Nanomaterials in Agriculture., 2016.
[http://dx.doi.org/10.1007/978-81-322-2644-4_17]
[428]
Kurecic, M.; Sfiligoj, M. Polymer Nanocomposite Hydrogels for Water Purification; Nanocomposites - New Trends Dev, 2012.
[http://dx.doi.org/10.5772/51055]
[429]
Harito, C.; Bavykin, D.V.; Yuliarto, B.; Dipojono, H.K.; Walsh, F.C. Polymer nanocomposites having a high filler content: Synthesis, structures, properties, and applications. Nanoscale, 2019, 11(11), 4653-4682.
[http://dx.doi.org/10.1039/C9NR00117D]
[430]
Morles, R. B.; Marchetti, M.; Muraviev, D.; Arrieta, J. B.; Tapia, M. M.; Kim, J.; Thangavel, E.; Sfiligoj-smole, M.; Kurecic, M.; Bhandari, H. Nanocomposites - New Trends and Developments;, 2012.
[431]
Ngo, Q.B.; Dao, T.H.; Nguyen, H.C.; Tran, X.T.; Van Nguyen, T.; Khuu, T.D.; Huynh, T.H. Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese Species DT-51). Adv. Nat. Sci. Nanosci. Nanotechnol., 2014, 5(1), 1-10.
[http://dx.doi.org/10.1088/2043-6262/5/1/015016]
[432]
Lee, W.M.; An, Y-J.; Yoon, H.; Kweon, H-S. Toxicity and bioavailability of copper nanoparticles To the terrestrial plants mung Bean (Phaseolus Radiatus) and wheat. Environ. Toxicol. Chem., 2008, 27(9), 1915-1921.
[http://dx.doi.org/10.1897/07-481.1]
[433]
Choudhary, R.C.; Kumaraswamy, R.V.; Kumari, S.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Cu-Chitosan nanoparticle boost defense responses and plant growth in Maize (Zea Mays L.). Sci. Rep., 2017, 7(1), 1-11.
[http://dx.doi.org/10.1038/s41598-017-08571-0]
[434]
Lin, D.; Xing, B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut., 2007, 150(2), 243-250.
[http://dx.doi.org/10.1016/j.envpol.2007.01.016]
[435]
He, L.; Liu, Y.; Mustapha, A.; Lin, M. Antifungal activity of zinc oxide nanoparticles against botrytis cinerea and penicillium expansum. Microbiol. Res., 2011, 166(3), 207-215.
[http://dx.doi.org/10.1016/j.micres.2010.03.003]
[436]
Raliya, R.; Nair, R.; Chavalmane, S.; Wang, W.N.; Biswas, P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum Lycopersicum L.). Plant. Metallomics, 2015, 7(12), 1584-1594.
[http://dx.doi.org/10.1039/C5MT00168D]
[437]
Duarte-Gardea, M.; Niu, G.; Hong, J.; Hernandez-Viezcas, J.A.; Zhao, L.; Servin, A.D.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L.; Sun, Y. Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: A life cycle study. J. Agric. Food Chem., 2013, 61(49), 11945-11951.
[http://dx.doi.org/10.1021/jf404328e]
[438]
López-Moreno, M.L.; De La Rosa, G.; Hernández-Viezcas, J.A.; Castillo-Michel, H.; Botez, C.E.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine Max) Plants. Environ. Sci. Technol., 2010, 44(19), 7315-7320.
[http://dx.doi.org/10.1021/es903891g]
[439]
Arora, S.; Sharma, P.; Kumar, S.; Nayan, R.; Khanna, P.K.; Zaidi, M.G.H. Gold-nanoparticle induced enhancement in growth and seed yield of brassica juncea. Plant Growth Regul., 2012, 66(3), 303-310.
[http://dx.doi.org/10.1007/s10725-011-9649-z]
[440]
Sharma, P.; Bhatt, D.; Zaidi, M.G.H.; Saradhi, P.P.; Khanna, P.K.; Arora, S. Silver nanoparticle-mediated enhancement in growth and antioxidant status of brassica juncea. Appl. Biochem. Biotechnol., 2012, 167(8), 2225-2233.
[http://dx.doi.org/10.1007/s12010-012-9759-8]
[441]
Gao, F.; Hong, F.; Liu, C.; Zheng, L.; Su, M.; Wu, X.; Yang, F.; Wu, C.; Yang, P. Mechanism of Nano-Anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of rubisco-rubisco activase. Biol. Trace Elem. Res., 2006, 111(1-3), 239-253.
[http://dx.doi.org/10.1385/BTER:111:1:239]
[442]
Feizi, H.; Rezvani Moghaddam, P.; Shahtahmassebi, N.; Fotovat, A. Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol. Trace Elem. Res., 2012, 146(1), 101-106.
[http://dx.doi.org/10.1007/s12011-011-9222-7]
[443]
Khodakovskaya, M.V.; Kim, B.S.; Kim, J.N.; Alimohammadi, M.; Dervishi, E.; Mustafa, T.; Cernigla, C.E. Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small, 2013, 9(1), 115-123.
[http://dx.doi.org/10.1002/smll.201201225]
[444]
Mishra, S.; Singh, B.R.; Singh, A.; Keswani, C.; Naqvi, A.H.; Singh, H.B. Biofabricated silver nanoparticles act as a strong fungicide against bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One, 2014, 9(5), 1-10.
[http://dx.doi.org/10.1371/journal.pone.0097881]
[445]
El-Shanshoury, A.E-R.R.; ElSilk, S.E.; Ebeid, M.E. Extracellular biosynthesis of silver nanoparticles using Escherichia Coli ATCC 8739, Bacillus Subtilis ATCC 6633, and streptococcus thermophilus ESh1 and their antimicrobial activities. ISRN Nanotechnol., 2011, 2011, 1-7.
[http://dx.doi.org/10.5402/2011/385480]
[446]
Siddiqui, M.H.; Al-Whaibi, M.H. Role of Nano-SiO2 in germination of tomato (Lycopersicum Esculentum Seeds Mill.). Saudi J. Biol. Sci., 2014, 21(1), 13-17.
[http://dx.doi.org/10.1016/j.sjbs.2013.04.005]
[447]
Dai, Z.; Ju, H. Bioanalysis based on nanoporous materials. TrAC -. Trends Analyt. Chem., 2012, 39, 149-162.
[http://dx.doi.org/10.1016/j.trac.2012.05.008]
[448]
Chhipa, H.; Joshi, P. Nanoscience in Food and Agriculture. Agriculture, 2017, 26, 1-10.
[449]
Chen, H.; Yada, R. Nanotechnologies in agriculture: New tools for sustainable development. Trends Food Sci. Technol., 2011, 22(11), 585-594.
[http://dx.doi.org/10.1016/j.tifs.2011.09.004]
[450]
Sharon, M.; Sharon, M. Carbon nanomaterials: Applications in physico-chemical systems and biosystems. Def. Sci. J., 2008, 58(4), 460-485.
[http://dx.doi.org/10.14429/dsj.58.1668]
[451]
Montalvo, D.; McLaughlin, M.J.; Degryse, F. Efficacy of hydroxyapatite nanoparticles as phosphorus fertilizer in andisols and oxisols. Soil Sci. Soc. Am. J., 2015, 79(2), 551.
[http://dx.doi.org/10.2136/sssaj2014.09.0373]
[452]
Zahedifar, M.; Najafian, S. Ocimum Basilicum L. Growth and nutrient status as influenced by biochar and potassium-nano chelate fertilizers. Arch. Agron. Soil Sci., 2017, 63(5), 638-650.
[http://dx.doi.org/10.1080/03650340.2016.1233323]
[453]
Watts-Williams, S.J.; Turney, T.W.; Patti, A.F.; Cavagnaro, T.R. Uptake of zinc and phosphorus by plants is affected by Zinc fertiliser material and arbuscular mycorrhizas. Plant Soil, 2014, 376(1), 165-175.
[http://dx.doi.org/10.1007/s11104-013-1967-7]
[454]
Liu, R.; Lal, R. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine Max). Sci. Rep., 2014, 4, 5686.
[http://dx.doi.org/10.1038/srep05686]
[455]
Manivasakan, P.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Suriyaprabha, R.; Kannan, N.; Rajendran, V. Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnol., 2013, 7(3), 70-77.
[http://dx.doi.org/10.1049/iet-nbt.2012.0048]
[456]
Sarkar, S.; Datta, S.C.; Biswas, D.R. Synthesis and characterization of nanoclay-polymer composites from soil clay with respect to their water-holding capacities and nutrient-release behavior. J. Appl. Polym. Sci., 2014, 131(6), 1-8.
[http://dx.doi.org/10.1002/app.39951]
[457]
Wang, M.; Zhang, G.; Zhou, L.; Wang, D.; Zhong, N.; Cai, D.; Wu, Z. Fabrication of PH-Controlled-Release ferrous foliar fertilizer with high adhesion capacity based on nanobiomaterial. ACS Sustain. Chem.& Eng., 2016, 4(12), 6800-6808.
[http://dx.doi.org/10.1021/acssuschemeng.6b01761]
[458]
Wanyika, H.; Gatebe, E.; Kioni, P.; Tang, Z.; Gao, Y. Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems. J. Nanosci. Nanotechnol., 2012, 12(3), 2221-2228.
[http://dx.doi.org/10.1166/jnn.2012.5801]
[459]
Wang, Y.; Lin, Y.; Xu, Y.; Yin, Y.; Guo, H.; Du, W. Divergence in response of lettuce (Var. Ramosa Hort.) to copper oxide nanoparticles/microparticles as potential agricultural fertilizer. Environ. Pollut. Bioavailab., 2019, 31(1), 80-84.
[http://dx.doi.org/10.1080/26395940.2019.1578187]
[460]
Rai, S.K.; Mukherjee, A.K. Optimization for production of liquid nitrogen fertilizer from the degradation of chicken feather by iron-oxide (Fe3O4) magnetic nanoparticles coupled β-Keratinase. Biocatal. Agric. Biotechnol., 2015, 4(4), 632-644.
[http://dx.doi.org/10.1016/j.bcab.2015.07.002]
[461]
Sarkar, S.; Datta, S.C.; Biswas, D.R. Effect of fertilizer loaded nanoclay/superabsorbent polymer composites on nitrogen and phosphorus release in soil. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 2015, 85(2), 415-421.
[http://dx.doi.org/10.1007/s40011-014-0371-2]
[462]
Bushyhead. This article is protected by copyright. All rights reserved. 1. Person. Psychol., 2013, 1, 1-29.
[463]
Yuvaraj, M.; Subramanian, K.S. Controlled-Release fertilizer of zinc encapsulated by a manganese hollow core shell. Soil Sci. Plant Nutr., 2014, 61(2), 319-326.
[http://dx.doi.org/10.1080/00380768.2014.979327]
[464]
Yatim, N.M.; Shaaban, A.; Dimin, M.F.; Yusof, F. Statistical evaluation of the production of urea fertilizer-multiwalled carbon nanotubes using plackett burman experimental design. Procedia Soc. Behav. Sci., 2015, 195, 315-323.
[http://dx.doi.org/10.1016/j.sbspro.2015.06.358]
[465]
Zhang, G.; Zhou, L.; Cai, D.; Wu, Z. Anion-responsive carbon nanosystem for controlling selenium fertilizer release and improving selenium utilization efficiency in vegetables. Carbon, 2018, 129, 711-719.https://doi.org/https://doi.org/10.1016/j.carbon.2017.12.062
[466]
Rui, M.; Ma, C.; Hao, Y.; Guo, J.; Rui, Y.; Tang, X.; Zhao, Q.; Fan, X.; Zhang, Z.; Hou, T. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis Hypogaea). Front. Plant Sci., 2016, 2016(7), 1-10.
[http://dx.doi.org/10.3389/fpls.2016.00815]
[467]
A., M.; K., S. S. Fabrication and characterisation of nanoporous zeolite based N Fertilizer. Afr. J. Agric. Res., 2014, 9(2), 276-284.
[http://dx.doi.org/10.5897/AJAR2013.8236]
[468]
Yan, H.; Chen, Q.; Liu, J.; Feng, Y.; Shih, K. Phosphorus recovery through adsorption by layered double hydroxide nano-composites and transfer into a struvite-like fertilizer. Water Res., 2018, 145, 721-730.https://doi.org/https://doi.org/10.1016/j.watres.2018.09.005
[http://dx.doi.org/10.1016/j.watres.2018.09.005]
[469]
Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V.; Kannan, N. Growth and Physiological Responses of Maize (Zea Mays L.) to porous silica nanoparticles in soil. J. Nanopart. Res., 2012, 14(12), 1-10.
[http://dx.doi.org/10.1007/s11051-012-1294-6]
[470]
Li, Z.; Huang, J. Effects of nanoparticle hydroxyapatite on growth and antioxidant system in pakchoi (Brassica Chinensis L.) from cadmium-contaminated soil. J. Nanomater., 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/547139]
[471]
Delfani, M.; Baradarn Firouzabadi, M.; Farrokhi, N.; Makarian, H. Some Physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun. Soil Sci. Plant Anal., 2014, 45(4), 530-540.
[http://dx.doi.org/10.1080/00103624.2013.863911]
[472]
Tarafdar, J.C.; Raliya, R.; Mahawar, H.; Rathore, I. Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum Americanum). Agric. Res., 2014, 3(3), 257-262.
[http://dx.doi.org/10.1007/s40003-014-0113-y]
[473]
Dhillon, G.S.; Kaur, S.; Verma, M.; Brar, S.K. Biopolymer-Based Nanomaterials: Potential Applications in Bioremediation of Contaminated Wastewaters and Soils, 1st ed; Elsevier B.V., 2012, Vol. 59, pp. 1-10.
[http://dx.doi.org/10.1016/B978-0-444-56328-6.00003-7]
[474]
Akhbarizadeh, R.; Shayestefar, M.R.; Darezereshki, E. Konkurrierende entfernung von metallen aus abwasser mit hilfe von maghemit- nanopartikeln: Ein vergleich zwischen künstlichem abwasser und sauerwasser. Mine Water Environ., 2014, 33(1), 89-96.
[http://dx.doi.org/10.1007/s10230-013-0255-3]
[475]
Seoktae, K.; Mathieu, P.; Lisa, D.P.; Menachem, E. Single-Walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 2007, 23(14), 8670-8673.
[http://dx.doi.org/10.1021/LA701067R]
[476]
Fereidoun, H.; Nourddin, M.S.; Rreza, N.A.; Mohsen, A.; Ahmad, R.; Pouria, H. The effect of long-term exposure to particulate pollution on the lung function of teheranian and zanjanian students. Pakistan J. Physiol., 2007, 3(2), 1-5.
[477]
Kumar, B.; Mukherjee, D.P.; Kumar, S.; Mishra, M.; Prakash, D.; Singh, S.K.; Sharma, C.S. Bioaccumulation of heavy metals in muscle tissue of fishes from selected aquaculture ponds in east kolkata wetlands. Ann. Biol. Res., 2011, 2(5), 125-134.
[478]
Smical, A.I.; Hotea, V.; Oros, V.; Juhasz, J.; Pop, E. Studies on transfer and bioaccumulation of heavy metals from soil into lettuce. Environ. Eng. Manag. J., 2008, 7(5), 609-615.
[http://dx.doi.org/10.30638/eemj.2008.085]
[479]
Yap, C.K.; Azmizan, A.R.; Hanif, M.S. Biomonitoring of Trace Metals (Fe, Cu, and Ni) in the mangrove area of peninsular malaysia using different soft tissues of flat tree oyster isognomon alatus. Water Air Soil Pollut., 2011, 218(1-4), 19-36.
[http://dx.doi.org/10.1007/s11270-010-0621-8]
[480]
Bayen, S.; Wurl, O.; Karuppiah, S.; Sivasothi, N.; Hian, K.L.; Obbard, J.P. Persistent organic pollutants in mangrove food webs in Singapore. Chemosphere, 2005, 61(3), 303-313.
[http://dx.doi.org/10.1016/j.chemosphere.2005.02.097]
[481]
Vans, M.A.S.E.; Ang, X.I.W.; Hittle, D.M.I.W.; Affner, D.O.U.G.H.; Ling, H.E.D.Y.K.; Houde, M.; Muir, D. Influence of lake characteristics on the biomagnification of persistent organic pollutants in lake trout food webs. Environ. Toxicol. Chem., 2008, 27(10), 2169-2178.
[http://dx.doi.org/10.1897/08-071.1]
[482]
Kelly, B. C.; Ikonomou, M. G.; Blair, J. D.; Morin, A. E.; Gobas, F. A. P. C. Food web-specific biomagnification of persistent organic pollutants. Science (80), 2007, 317(5835), 236-239.
[483]
Lin, D.F.; Luo, H.L.; Hsiao, D.H.; Chen, C.T.; Du Cai, M. enhancing soft subgrade soil with a sewage sludge ash/cement mixture and nano-silicon dioxide. Environ. Earth Sci., 2016, 75(7), 1-10.
[http://dx.doi.org/10.1007/s12665-016-5432-9]
[484]
An, B.; Zhao, D. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn Oxide nanoparticles. J. Hazard. Mater., 2012, 211-212, 332-341.
[http://dx.doi.org/10.1016/j.jhazmat.2011.10.062]
[485]
Chen, S.S.; Der Hsu, H.; Li, C.W. A new method to produce nanoscale iron for nitrate removal. J. Nanopart. Res., 2004, 6(6), 639-647.
[http://dx.doi.org/10.1007/s11051-004-6672-2]
[486]
Liu, Z.; Gu, C.; Ye, M.; Bian, Y.; Cheng, Y.; Wang, F.; Yang, X.; Song, Y.; Jiang, X. Debromination of polybrominated diphenyl ethers by attapulgite-supported Fe/Ni bimetallic nanoparticles: influencing factors, kinetics and mechanism. J. Hazard. Mater., 2015, 298(2-3), 328-337.
[http://dx.doi.org/10.1016/j.jhazmat.2015.05.032]
[487]
Reyhanitabar, A.; Alidokht, L.; Khataee, A.R.; Oustan, S. Application of stabilized FeO nanoparticles for remediation of Cr(VI)-spiked soil. Eur. J. Soil Sci., 2012, 63(5), 724-732.
[http://dx.doi.org/10.1111/j.1365-2389.2012.01447.x]
[488]
Slomberg, D.L.; Schoenfisch, M.H. Silica nanoparticle phytotoxicity to arabidopsis thaliana. Environ. Sci. Technol., 2012, 46(18), 10247-10254.
[http://dx.doi.org/10.1021/es300949f]
[489]
Khodakovskaya, M.; Dervishi, E.; Mahmood, M.; Xu, Y.; Li, Z.R.; Watanabe, F.; Biris, A.S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth (Retracted Article. See Vol. 6, Pg. 7541, 2012). ACS Nano, 2009, 3(10), 3221-3227.
[http://dx.doi.org/10.1021/nn900887m]
[490]
Chang, C.S.W.; Chang, C.H.; Chen, S.H.; Wang, M.C.; Madhava Rao, M.; Satya Veni, S. Effect of sunlight irradiation on photocatalytic pyrene degradation in contaminated soils by micro-nano size TiO2. Sci. Total Environ., 2011, 409(19), 4101-4108.
[http://dx.doi.org/10.1016/j.scitotenv.2011.06.050]
[491]
Mahdavi, S.; Afkhami, A. Erratum to: Reducing leachability and bioavailability of soil heavy metals using modified and bare Al2O3 and ZnO Nanoparticles. Environ. Earth Sci., 2015, 73(8), 4873.
[492]
Wang, Y.; Peng, C.; Fang, H.; Sun, L.; Zhang, H.; Feng, J.; Duan, D.; Liu, T.; Shi, J. Mitigation of Cu(Ii) phytotoxicity to rice (Oryza Sativa) in the presence of TiO2 and CeO2 nanoparticles combined with humic acid. Environ. Toxicol. Chem., 2015, 34(7), 1588-1596.
[http://dx.doi.org/10.1002/etc.2953]
[493]
Goi, A.; Viisimaa, M.; Trapido, M.; Munter, R. Polychlorinated Biphenyls-Containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides. Chemosphere, 2011, 82(8), 1196-1201.
[http://dx.doi.org/10.1016/j.chemosphere.2010.11.053]
[494]
Mallampati, S.R.; Mitoma, Y.; Okuda, T.; Simion, C.; Lee, B.K. Solvent-Free synthesis and application of Nano-Fe/Ca/CaO/[PO4] Composite for dual separation and immobilization of stable and radioactive cesium in contaminated soils. J. Hazard. Mater., 2015, 297, 74-82.
[http://dx.doi.org/10.1016/j.jhazmat.2015.04.071]
[495]
Towell, M.G.; Browne, L.A.; Paton, G.I.; Semple, K.T. Impact of carbon nanomaterials on the behaviour of 14C- phenanthrene and 14C-Benzo-[a] pyrene in soil. Environ. Pollut., 2011, 159(3), 706-715.
[http://dx.doi.org/10.1016/j.envpol.2010.11.040]
[496]
Vítková, M.; Komárek, M.; Tejnecký, V.; Šillerová, H. Interactions of nano-oxides with low-molecular-weight organic acids in a contaminated soil. J. Hazard. Mater., 2015, 293, 7-14.
[http://dx.doi.org/10.1016/j.jhazmat.2015.03.033]
[497]
Singh, R.; Manickam, N.; Mudiam, M.K.R.; Murthy, R.C.; Misra, V. An Integrated (Nano-Bio) technique for degradation of γ-HCH contaminated soil. J. Hazard. Mater., 2013, 258-259, 35-41.
[http://dx.doi.org/10.1016/j.jhazmat.2013.04.016]
[498]
Singh, R.; Misra, V.; Mudiam, M.K.R.; Chauhan, L.K.S.; Singh, R.P. Degradation of γ-HCH spiked soil using stabilized Pd/Fe0 bimetallic nanoparticles: Pathways, kinetics and effect of reaction conditions. J. Hazard. Mater., 2012, 237-238, 355-364.
[http://dx.doi.org/10.1016/j.jhazmat.2012.08.064]
[499]
Liu, J.; Cai, H.; Mei, C.; Wang, M. Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars. Front. Environ. Sci. Eng., 2015, 9(5), 905-911.
[http://dx.doi.org/10.1007/s11783-015-0786-x]
[500]
Li, Z.; Zhou, M.M.; Lin, W. The research of nanoparticle and microparticle hydroxyapatite amendment in multiple heavy metals contaminated soil remediation. J. Nanomater., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/168418]
[501]
Martínez-Fernández, D.; Bingöl, D.; Komárek, M. Trace elements and nutrients adsorption onto nano-maghemite in a contaminated-soil solution: A geochemical/statistical approach. J. Hazard. Mater., 2014, 276, 271-277.
[http://dx.doi.org/10.1016/j.jhazmat.2014.05.043]
[502]
Martínez-Fernández, D.; Vítková, M.; Bernal, M.P.; Komárek, M. Effects of nano-maghemite on trace element accumulation and drought response of Helianthus Annuus L. in a contaminated mine soil. Water Air Soil Pollut., 2015, 226(4), 1-10.
[http://dx.doi.org/10.1007/s11270-015-2365-y]
[503]
Reddy, A.V.B.; Madhavi, V.; Reddy, K.G.; Madhavi, G. Remediation of chlorpyrifos-contaminated soils by laboratory-synthesized zero-valent nano iron particles: Effect of pH and aluminium salts. J. Chem., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/521045]
[504]
Shariatmadari, N.; Weng, C-H.; Daryaee, H. Enhancement of hexavalent chromium [cr(vi)] remediation from clayey soils by electrokinetics coupled with a nano-sized zero-valent iron barrier. Environ. Eng. Sci., 2009, 26(6), 1071-1079.
[http://dx.doi.org/10.1089/ees.2008.0257]
[505]
Chang, M.C.; Shu, H.Y.; Hsieh, W.P.; Wang, M.C. Remediation of soil contaminated with pyrene using ground nanoscale zero-valent iron. J. Air Waste Manag. Assoc., 2007, 57(2), 221-227.
[http://dx.doi.org/10.1080/10473289.2007.10465312]
[506]
Mar Gil-Díaz, M.; Pérez-Sanz, A.; Ángeles Vicente, M.; Carmen Lobo, M. Immobilisation of Pb and Zn in soils using stabilised zero-valent iron nanoparticles: effects on soil properties. Clean - Soil, Air. Water, 2014, 42(12), 1776-1784.
[http://dx.doi.org/10.1002/clen.201300730]
[507]
Gomes, H.I.; Dias-Ferreira, C.; Ottosen, L.M.; Ribeiro, A.B. Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants. J. Colloid Interface Sci., 2014, 433, 189-195.
[http://dx.doi.org/10.1016/j.jcis.2014.07.022]
[508]
Katsenovich, Y.P.; Miralles-Wilhelm, F.R. Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils. Sci. Total Environ., 2009, 407(18), 4986-4993.
[http://dx.doi.org/10.1016/j.scitotenv.2009.05.033]
[509]
El-Temsah, Y.S.; Oughton, D.H.; Joner, E.J. Effects of nano-sized zero-valent iron on DDT degradation and residual toxicity in soil: a column experiment. Plant Soil, 2013, 368(1-2), 189-200.
[http://dx.doi.org/10.1007/s11104-012-1509-8]
[510]
Tungittiplakorn, W.; Leonard, W.L.; Claude, C.; Kim, J-Y. Engineered Polymeric Nanoparticles for Soil Remediation Engineered Polymeric Nanoparticles for Soil. Remediation, 2004, 2016(38), 1605-1610.
[http://dx.doi.org/10.1021/es0348997]
[511]
Pulimi, M.; Subramanian, S. Nanoscience in food and agriculture. Agriculture, 2017, 26, 229-246.
[512]
Liu, J.; Chen, T.; Qi, Z.; Yan, J.; Buekens, A.; Li, X. Thermal desorption of PCBs from contaminated Soil using nano zerovalent iron. Environ. Sci. Pollut. Res. Int., 2014, 21(22), 12739-12746.
[http://dx.doi.org/10.1007/s11356-014-3226-8]
[513]
Guo, J. H.; Liu, X. J.; Zhang, Y.; Shen, J. L.; Han, W. X.; Zhang, W. F.; Christie, P.; Goulding, K. W. T.; Vitousek, P. M.; Zhang, F. Significant acidification in major chinese croplands. Science (80-.)., 2010, 327(5968), 1008-1010.
[514]
Cui, J.; Jin, Q.; Li, Y.; Li, F. Oxidation and removal of As(Iii) from soil using novel magnetic nanocomposite derived from biomass waste. Environ. Sci. Nano, 2019, 6(2), 478-488.
[http://dx.doi.org/10.1039/C8EN01257A]
[515]
Shi, W.; Gao, S.; Tong, Y.; Yang, Z.; Chai, L.; Yang, W.; Liang, L.; Liao, Q. Simultaneous immobilization of cadmium and lead in contaminated soils by hybrid bio-nanocomposites of fungal hyphae and nano-hydroxyapatites. Environ. Sci. Pollut. Res. Int., 2018, 25(12), 11970-11980.
[http://dx.doi.org/10.1007/s11356-018-1492-6]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 2
Year: 2021
Published on: 01 January, 2020
Page: [202 - 243]
Pages: 42
DOI: 10.2174/1573411016666200102112728
Price: $65

Article Metrics

PDF: 26
HTML: 1